CN110927840B - Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure - Google Patents
Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure Download PDFInfo
- Publication number
- CN110927840B CN110927840B CN201911175771.3A CN201911175771A CN110927840B CN 110927840 B CN110927840 B CN 110927840B CN 201911175771 A CN201911175771 A CN 201911175771A CN 110927840 B CN110927840 B CN 110927840B
- Authority
- CN
- China
- Prior art keywords
- layer
- metal tungsten
- absorber
- grating cascade
- cascade structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 67
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 61
- 229910052751 metal Inorganic materials 0.000 claims abstract description 54
- 239000002184 metal Substances 0.000 claims abstract description 54
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 53
- 239000010937 tungsten Substances 0.000 claims abstract description 53
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 30
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 30
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 18
- 239000011651 chromium Substances 0.000 claims abstract description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 16
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 31
- 230000003595 spectral effect Effects 0.000 abstract description 8
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000000862 absorption spectrum Methods 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 20
- 238000000034 method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/003—Light absorbing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/18—Diffraction gratings
- G02B5/1861—Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
Abstract
本发明涉及一种三光栅级联结构及超宽带吸收器,属于光学器件技术领域。一种三光栅级联结构,由三光栅级联单元构成,三光栅级联单元从左到右依次包括金属钨块、二氧化硅介质和条形金属钨。一种基于三光栅级联结构的超宽带吸收器,包括:基底层;铬膜层,其形成于基底层表面;和氮化硅层,其形成于铬膜层上;和石墨烯层,其形成于氮化硅层上;和三光栅级联结构层,其形成于石墨烯层上。发明的吸收器能覆盖的光谱范围更宽,跨越部分紫外光、全部可见光、部分红外线;吸收率高,尤其近红外波段,吸收率达90%以上。
The invention relates to a triple grating cascade structure and an ultra-wideband absorber, belonging to the technical field of optical devices. A three-grating cascade structure is composed of three-grating cascade units, and the three-grating cascade units include metal tungsten blocks, silicon dioxide medium and strip-shaped metal tungsten sequentially from left to right. An ultra-wideband absorber based on a triple grating cascade structure, comprising: a base layer; a chromium film layer, which is formed on the surface of the base layer; and a silicon nitride layer, which is formed on the chromium film layer; and a graphene layer, which is formed on the silicon nitride layer; and a triple grating cascade structure layer formed on the graphene layer. The absorber of the invention can cover a wider spectral range, spanning part of ultraviolet light, all visible light and part of infrared light; the absorption rate is high, especially in the near-infrared band, the absorption rate is more than 90%.
Description
技术领域technical field
本发明涉及一种三光栅级联结构及超宽带吸收器,属于光学器件技术领域。The invention relates to a triple grating cascade structure and an ultra-wideband absorber, belonging to the technical field of optical devices.
背景技术Background technique
超材料是一类人工复合材料,可通过结构设计实现谐振频率及阻抗匹配,致使工作频率和带宽根据需求任意调控;同时其结构本身深度亚波长尺度,使超材料电磁结构的厚度非常小,可达波长的几十分之一,比传统吸收结构更利于实际应用。自2008年Landy等人采用与自由空间阻抗相匹配法减小反射,使得吸收最大化,研制出第一个宽带吸收器以来,由于其在电磁隐身、热辐射、薄膜太阳能电池、传感器和探测等方面有着非常广泛的应用前景,成为研究的热点;尤其高性能跨频段吸收器,可在不同新领域发挥重大作用而备受青睐。如T.等利用三角槽金光栅设计结构获得500-1500横跨部分可见光和近红外光双频段光谱;(T.Sergey I.Bozhevolnyi.Surface-plasmonpolariton resonances in triangular-groove metal gratings.PHYSICAL REVIEW B80,195407(2009)),该结构吸收频带窄且三角槽制作复杂,角度精确控制难度大。又如Ji等提出一种在银反射镜表面交替堆积金属颗粒和氧化硅薄膜的结构,实现了300–1100nm吸收(Ji Ting,Peng Lining,Zhu Yuntao,et al.Plasmonic Broadband absorber bystacking multiple mentallic nanoparticle layers,Appl.Phys.Lett.106,161107(2015)),此吸收器易于加工,但光谱带宽较窄。再如Dasol等利用底层铬膜和顶层铜光栅之间置二氧化硅的设计结构获得了500-1200nm的可见光到近红外波段的宽带吸收(DasolLee,Sung Yong Han,Yeonggyo Jeong,et al.Polarization-sensitive tunableabsorber in visible and near-infrared regimes.Scientific Reports(2018)8:12393),该结构吸收带宽较窄,只有700nm。上述方法有的制备复杂、成本高,不利于批量生产;有的结构相对简单,但吸收带宽窄。Metamaterials are a class of artificial composite materials, which can achieve resonance frequency and impedance matching through structural design, so that the operating frequency and bandwidth can be arbitrarily adjusted according to requirements; at the same time, the depth of the structure itself is sub-wavelength scale, so that the thickness of the metamaterial electromagnetic structure is very small, which can be easily adjusted. It can reach several tenths of the wavelength, which is more beneficial to practical application than the traditional absorption structure. In 2008, Landy et al. adopted the method of matching with free space impedance to reduce reflection and maximize absorption, and developed the first broadband absorber. It has a very wide range of application prospects and has become a research hotspot; especially high-performance cross-band absorbers, which can play a major role in different new fields and are favored. as T. et al used a triangular groove gold grating design structure to obtain a 500-1500 dual-band spectrum spanning part of the visible light and near-infrared light; (T. Sergey I.Bozhevolnyi.Surface-plasmonpolariton resonances in triangular-groove metal gratings.PHYSICAL REVIEW B80,195407(2009)), the structure has narrow absorption band and complicated triangular groove fabrication, and it is difficult to precisely control the angle. Another example is Ji et al. proposed a structure in which metal particles and silicon oxide films are alternately stacked on the surface of a silver mirror to achieve 300–1100 nm absorption (Ji Ting, Peng Lining, Zhu Yuntao, et al.Plasmonic Broadband absorber by stacking multiple mentallic nanoparticle layers). , Appl.Phys.Lett.106, 161107(2015)), this absorber is easy to process, but the spectral bandwidth is narrow. Another example is Dasol et al. to obtain broadband absorption in the visible light to near-infrared wavelengths from 500-1200 nm by using the design structure of silicon dioxide between the bottom chromium film and the top copper grating (Dasol Lee, Sung Yong Han, Yeonggyo Jeong, et al.Polarization- Sensitive tunable absorber in visible and near-infrared regimes. Scientific Reports (2018) 8:12393), the absorption bandwidth of this structure is narrow, only 700nm. Some of the above methods have complex preparation and high cost, which are not conducive to mass production; some have relatively simple structures but narrow absorption bandwidths.
发明内容SUMMARY OF THE INVENTION
本发明为了克服现有技术中存在的上述不足,提供一种三光栅级联结构,以及基于该三光栅级联结构的超宽带吸收器,该吸收器的吸收覆盖的吸收波段更宽,吸收率高。In order to overcome the above-mentioned deficiencies in the prior art, the present invention provides a triple-grating cascade structure and an ultra-wideband absorber based on the triple-grating cascade structure. The absorption coverage of the absorber is wider and the absorption rate is wider high.
为了实现上述目的,本发明采用以下技术方案:一种三光栅级联结构,由三光栅级联单元构成,三光栅级联单元从左到右依次包括金属钨块、二氧化硅介质和条形金属钨。金属钨在紫外到红外波段具有较好的抗反射强透过特性,同时利用紫外到红外波段几乎零反射二氧化硅作为中间介质,构成三光栅级联单元后形成水平腔共振模,腔共振模与光衍射模耦合,致使入射光场均衡透射。In order to achieve the above purpose, the present invention adopts the following technical solutions: a triple-grating cascade structure, which is composed of three-grating cascade units, and the three-grating cascade units sequentially include metal tungsten blocks, silicon dioxide media and strips from left to right. Metal tungsten. Metal tungsten has good anti-reflection and strong transmission properties in the ultraviolet to infrared band. At the same time, it uses silicon dioxide with almost zero reflection in the ultraviolet to infrared band as the intermediate medium to form a horizontal cavity resonance mode after forming a triple grating cascade unit. The cavity resonance mode Coupling with the diffraction mode of light, resulting in equalized transmission of the incident light field.
在上述三光栅级联结构中,所述的金属钨块、二氧化硅介质和条形金属钨的宽度比为3:(1.8-2.5):(1.5-2.2)。若三光栅宽度比超出该尺寸范围,透射谱光谱范围变窄或透过率降低。In the above-mentioned triple grating cascade structure, the width ratio of the metal tungsten block, the silicon dioxide medium and the strip metal tungsten is 3:(1.8-2.5):(1.5-2.2). If the width ratio of the three gratings exceeds this size range, the spectral range of the transmission spectrum is narrowed or the transmittance is reduced.
在上述三光栅级联结构中,所述的金属钨块、二氧化硅介质和条形金属钨的高度比为3:(7-10):(5-8)。若三光栅高度比超出该尺寸范围,透射谱光谱范围变窄或透过率降低。In the above three-grating cascade structure, the height ratio of the metal tungsten block, the silicon dioxide medium and the strip metal tungsten is 3:(7-10):(5-8). If the height ratio of the three gratings exceeds this size range, the spectral range of the transmission spectrum is narrowed or the transmittance is reduced.
在上述三光栅级联结构中,所述的三光栅级联单元的周期为是金属钨块、二氧化硅介质和条形金属钨的宽度和,总和为900-1120纳米。In the above three-grating cascade structure, the period of the three-grating cascade unit is the sum of the widths of the metal tungsten block, the silicon dioxide medium and the strip-shaped metal tungsten, and the sum is 900-1120 nanometers.
作为优选,所述的金属钨块的宽度为400-500纳米,高度为100-150纳米。Preferably, the width of the metal tungsten block is 400-500 nanometers, and the height is 100-150 nanometers.
作为优选,所述的二氧化硅介质宽度为300-320纳米,高度为400-450纳米。Preferably, the silicon dioxide medium has a width of 300-320 nanometers and a height of 400-450 nanometers.
作为优选,所述的条形金属钨的宽度为200-300纳米,高度为300-350纳米。Preferably, the strip-shaped metal tungsten has a width of 200-300 nanometers and a height of 300-350 nanometers.
本发明还在于提供一种基于上述三光栅级联结构的超宽带吸收器,所述吸收器包括:The present invention also provides an ultra-wideband absorber based on the triple grating cascade structure, the absorber comprising:
基底层,basal layer,
铬膜层,其形成于基底层表面,用于增强光的反射,增大吸收;和a chromium film layer formed on the surface of the base layer to enhance the reflection of light and increase absorption; and
氮化硅层,其形成于铬膜层上,用于增大入射电磁波的吸收率;和a silicon nitride layer formed on the chromium film layer for increasing the absorptivity of incident electromagnetic waves; and
石墨烯层,其形成于氮化硅层上,用于增大等离子共振光场强度,提高吸收率;和a graphene layer formed on the silicon nitride layer for increasing the intensity of the plasmon resonance light field and increasing the absorptivity; and
三光栅级联结构层,其形成于石墨烯层上,用于减小入射电磁波的反射,产生宽带共振吸收,增大吸收器的带宽和吸收率。The triple grating cascade structure layer, which is formed on the graphene layer, is used to reduce the reflection of incident electromagnetic waves, generate broadband resonance absorption, and increase the bandwidth and absorption rate of the absorber.
在上述超宽带吸收器中,所述基底层为硅或二氧化硅,所述基底层的厚度为0.1-5mm。In the above-mentioned ultra-broadband absorber, the base layer is silicon or silicon dioxide, and the thickness of the base layer is 0.1-5 mm.
在上述超宽带吸收器中,所述铬膜层的厚度为100-120nm。In the above-mentioned ultra-broadband absorber, the thickness of the chromium film layer is 100-120 nm.
在上述超宽带吸收器中,所述氮化硅层的厚度为100-500nm。In the above-mentioned ultra-broadband absorber, the thickness of the silicon nitride layer is 100-500 nm.
在上述超宽带吸收器中,所述石墨烯层的厚度为30-100nm。In the above-mentioned ultra-broadband absorber, the thickness of the graphene layer is 30-100 nm.
本发明研究了横磁(transverse magnetic,TM)偏振光波正入射情况下,即光波沿Y轴反方向垂直入射时,入射电磁波吸收率和带宽。本发明超宽带吸收器由下至上依次包括基底层、铬膜层、氮化硅层、石墨烯层和三光栅级联结构层,通过改变各种介质的材料和厚度,以及通过采用不同厚度、宽度的金属钨块、二氧化硅介质和条形金属钨有规律排列形成的结构单元并构成三光栅级联结构层,同时顶层的三光栅级联结构层通过采用亚波长结构,保证设计结构对入射电磁波的高吸收率。铬膜厚度优选100nm以上,大于其在紫外到红外波段的趋附深度,因此没有透射光,此时结构的光波吸收率可简化为A=1-R,其中R为结构设计的光谱反射率。The invention studies the absorption rate and bandwidth of incident electromagnetic waves under the normal incidence of transverse magnetic (TM) polarized light waves, that is, when the light waves are vertically incident along the opposite direction of the Y axis. The ultra-broadband absorber of the present invention sequentially includes a base layer, a chromium film layer, a silicon nitride layer, a graphene layer and a triple grating cascade structure layer from bottom to top. The width of the metal tungsten block, the silicon dioxide medium and the strip metal tungsten are regularly arranged to form a structural unit and constitute a three-grating cascade structure layer. High absorption rate of incident electromagnetic waves. The thickness of the chromium film is preferably more than 100nm, which is greater than its adhesion depth in the ultraviolet to infrared band, so there is no transmitted light. At this time, the light wave absorption rate of the structure can be simplified as A=1-R, where R is the spectral reflectance designed by the structure.
与现有技术相比,本发明具有如下优点:Compared with the prior art, the present invention has the following advantages:
1.吸收器基本单元的材料和物理尺寸,可以改变每个吸收器单元对入射电磁波的吸收特性,多个吸收器基本单元按照一定规律排布,可使吸收器对入射电磁波具有连续的宏观作用。本发明的三光栅级联结构分别将不同厚度、宽度的金属钨块、二氧化硅介质和条形金属钨有规律排列形成结构单元,从而实现三个吸收峰整体上的叠加。1. The material and physical size of the basic unit of the absorber can change the absorption characteristics of each absorber unit to the incident electromagnetic wave. Multiple basic units of the absorber are arranged according to certain rules, so that the absorber has a continuous macroscopic effect on the incident electromagnetic wave. . In the triple grating cascade structure of the present invention, metal tungsten blocks, silicon dioxide medium and strip metal tungsten with different thicknesses and widths are arranged regularly to form structural units, thereby realizing the overall superposition of the three absorption peaks.
2.相比于传统的吸收器,本发明的吸收器能覆盖的光谱范围更宽,跨越部分紫外光、全部可见光、部分红外线;吸收率高,尤其近红外波段,吸收率达90%以上。2. Compared with the traditional absorber, the absorber of the present invention can cover a wider spectral range, spanning part of ultraviolet light, all visible light, and part of infrared light; the absorption rate is high, especially in the near-infrared band, the absorption rate is more than 90%.
3.由于本发明吸收器各部分均采用条形结构,制备方便,成本低。3. Since each part of the absorber of the present invention adopts a strip structure, the preparation is convenient and the cost is low.
附图说明Description of drawings
图1为本发明三光栅级联结构的结构示意图。FIG. 1 is a schematic structural diagram of a triple grating cascade structure according to the present invention.
图2为本发明三光栅级联结构的主视图。FIG. 2 is a front view of the triple grating cascade structure of the present invention.
图3为本发明超宽带吸收器的主视图。3 is a front view of the ultra-broadband absorber of the present invention.
图4为实施例4中的吸收器的吸收光谱。FIG. 4 is the absorption spectrum of the absorber in Example 4. FIG.
图5为本发明实施例1三光栅级联结构中的金属钨块1、二氧化硅介质2和条形金属钨3分别作为吸收器顶层部分产生的吸收光谱。5 is the absorption spectrum generated by the
图6为本发明实施例5中吸收器的吸收光谱。FIG. 6 is the absorption spectrum of the absorber in Example 5 of the present invention.
图7为本发明实施例6中吸收器的吸收光谱。FIG. 7 is the absorption spectrum of the absorber in Example 6 of the present invention.
图8为本发明对比例1中吸收器的吸收光谱。FIG. 8 is the absorption spectrum of the absorber in Comparative Example 1 of the present invention.
图9为本发明对比例2中吸收器的吸收光谱。FIG. 9 is the absorption spectrum of the absorber in Comparative Example 2 of the present invention.
图10为本发明对比例3中吸收器的吸收光谱。FIG. 10 is the absorption spectrum of the absorber in Comparative Example 3 of the present invention.
图11为本发明对比例4中吸收器的吸收光谱。FIG. 11 is the absorption spectrum of the absorber in Comparative Example 4 of the present invention.
图中,1、金属钨块;2、二氧化硅介质;3、条形金属钨;4、基底层;5、铬膜层;6、氮化硅层;7、石墨烯层;8、三光栅级联结构层。In the figure, 1, metal tungsten block; 2, silicon dioxide medium; 3, strip metal tungsten; 4, base layer; 5, chromium film layer; 6, silicon nitride layer; 7, graphene layer; 8, three Grating cascade structure layers.
具体实施方式Detailed ways
以下是本发明的具体实施例结合附图说明,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。The following is a description of specific embodiments of the present invention in conjunction with the accompanying drawings to further describe the technical solutions of the present invention, but the present invention is not limited to these embodiments.
实施例1Example 1
一种如图1、图2所示的三光栅级联结构,由三光栅级联单元构成,三光栅级联单元从左到右依次包括金属钨块1、二氧化硅介质2和条形金属钨3,金属钨块1的宽度为427.352纳米,高度为133.34纳米;二氧化硅介质2宽度为309.137纳米,高度为416.8纳米;条形金属钨3的宽度为235.431纳米,高度为333.34纳米。A three-grating cascade structure as shown in Figure 1 and Figure 2 is composed of three-grating cascade units. The three-grating cascade units include
实施例2Example 2
一种三光栅级联结构,由三光栅级联单元构成,三光栅级联单元从左到右依次包括金属钨块、二氧化硅介质和条形金属钨,金属钨块的宽度为453.272纳米,高度为124.86纳米;二氧化硅介质宽度为314.271纳米,高度为415.82纳米;条形金属钨的宽度为232.457纳米,高度为326.91纳米。A triple grating cascading structure is composed of three grating cascading units. The three grating cascading units sequentially include a metal tungsten block, a silicon dioxide medium and a strip-shaped metal tungsten from left to right. The width of the metal tungsten block is 453.272 nanometers. The height is 124.86 nm; the width of the silicon dioxide medium is 314.271 nm and the height is 415.82 nm; the width of the strip metal tungsten is 232.457 nm and the height is 326.91 nm.
实施例3Example 3
一种三光栅级联结构,由三光栅级联单元构成,三光栅级联单元从左到右依次包括金属钨块、二氧化硅介质和条形金属钨,金属钨块的宽度为481.362纳米,高度为138.74纳米;二氧化硅介质宽度为318.176纳米,高度为446.12纳米;条形金属钨的宽度为284.65纳米,高度为341.71纳米。A triple grating cascading structure is composed of three grating cascading units. The three grating cascading units sequentially include a metal tungsten block, a silicon dioxide medium and a strip-shaped metal tungsten from left to right. The width of the metal tungsten block is 481.362 nanometers. The height is 138.74 nanometers; the width of the silicon dioxide medium is 318.176 nanometers and the height is 446.12 nanometers; the width of the strip metal tungsten is 284.65 nanometers and the height is 341.71 nanometers.
实施例4Example 4
一种图如3所示的基于实施例1三光栅级联结构的超宽带吸收器,所述吸收器由下至上依次包括:An ultra-broadband absorber based on the three-grating cascade structure of
厚度为0.2毫米的基底层4,
厚度为110纳米的铬膜层5,其形成于基底层表面;和A
厚度为383.42纳米的氮化硅层6,其形成于铬膜层上;和a
厚度为34纳米的石墨烯层7,其形成于氮化硅层上;和a
实施例1中的三光栅级联结构层8,其形成于石墨烯层上。The triple grating
该实施例中得到的吸收器的吸收光谱如图4所示。从图中可知,该吸收器的吸收光谱范围为0.2-2.58微米,包括部分紫外光波段、全部可见光波段、全部近红外光波段和部分短波红外波段;最高吸收率可达97.4%。The absorption spectrum of the absorber obtained in this example is shown in FIG. 4 . It can be seen from the figure that the absorption spectrum range of the absorber is 0.2-2.58 microns, including part of the ultraviolet light band, all the visible light band, all the near-infrared light band and part of the short-wave infrared band; the highest absorption rate can reach 97.4%.
图5为实施例1三光栅级联结构中的金属钨块1、二氧化硅介质2和条形金属钨3分别作为吸收器顶层部分产生的吸收光谱。5 is the absorption spectrum generated by the
实施例5Example 5
一种基于实施例2三光栅级联结构的超宽带吸收器,所述吸收器由下至上依次包括:图5An ultra-broadband absorber based on the triple grating cascade structure in Example 2, the absorber sequentially includes from bottom to top: Figure 5
厚度为0.2毫米的基底层,A base layer with a thickness of 0.2 mm,
厚度为105纳米的铬膜层,其形成于基底层表面;和a 105 nm thick layer of chromium formed on the surface of the base layer; and
厚度为365.35纳米的氮化硅层,其形成于铬膜层上;和a silicon nitride layer having a thickness of 365.35 nanometers formed on the chromium film layer; and
厚度为51纳米的石墨烯层,其形成于氮化硅层上;和a graphene layer having a thickness of 51 nanometers formed on the silicon nitride layer; and
实施例2中的三光栅级联结构层,其形成于石墨烯层上。The triple grating cascade structure layer in Example 2 is formed on the graphene layer.
该实施例中得到的吸收器的吸收光谱如图6所示。从图6中可知,该吸收器的吸收光谱范围为0.2-2.2微米,包括部分紫外光波段、全部可见光波段、全部近红外光波段和部分短波红外波段;最高吸收率可达91.5%。The absorption spectrum of the absorber obtained in this example is shown in FIG. 6 . It can be seen from Figure 6 that the absorption spectrum of the absorber ranges from 0.2 to 2.2 microns, including part of the ultraviolet light band, all the visible light band, all the near-infrared light band and part of the short-wave infrared band; the highest absorption rate can reach 91.5%.
实施例6Example 6
一种基于实施例3三光栅级联结构的超宽带吸收器,所述吸收器由下至上依次包括:An ultra-broadband absorber based on the triple grating cascade structure in
厚度为0.2毫米的基底层,A base layer with a thickness of 0.2 mm,
厚度为115纳米的铬膜层,其形成于基底层表面;和a 115 nanometer thick layer of chromium formed on the surface of the base layer; and
厚度为365.35纳米的氮化硅层,其形成于铬膜层上;和a silicon nitride layer having a thickness of 365.35 nanometers formed on the chromium film layer; and
厚度为85纳米的石墨烯层,其形成于氮化硅层上;和a graphene layer having a thickness of 85 nanometers formed on the silicon nitride layer; and
实施例3中的三光栅级联结构层,其形成于石墨烯层上。The triple grating cascade structure layer in Example 3 is formed on the graphene layer.
该实施例中得到的吸收器的吸收光谱如图7所示。从图7中可知,该吸收器的吸收光谱范围为0.2-2.01微米,包括部分紫外光波段、全部可见光波段、全部近红外光波段和部分短波红外波段;最高吸收率可达98.8%。The absorption spectrum of the absorber obtained in this example is shown in FIG. 7 . It can be seen from Figure 7 that the absorption spectrum of the absorber ranges from 0.2 to 2.01 microns, including part of the ultraviolet light band, all the visible light band, all the near-infrared light band and part of the short-wave infrared band; the highest absorption rate can reach 98.8%.
对比例1Comparative Example 1
该对比例与实施例4的区别仅在于,该对比例吸收器中的三光栅级联结构层的金属钨块、二氧化硅介质和条形金属钨的宽度比为3:1.5:1。The difference between this comparative example and Example 4 is only that the width ratio of the metal tungsten block, silicon dioxide medium and strip metal tungsten in the triple grating cascade structure layer in the absorber of this comparative example is 3:1.5:1.
该对比例中得到的吸收器的吸收光谱如图8所示。从图8中可知,与实施例4相比该吸收器的吸收率降低,尤其短波近红外波段吸收率明显下降。The absorption spectrum of the absorber obtained in this comparative example is shown in FIG. 8 . It can be seen from FIG. 8 that compared with Example 4, the absorption rate of the absorber is reduced, especially the absorption rate in the short-wave and near-infrared band is significantly reduced.
对比例2Comparative Example 2
该对比例与实施例4的区别仅在于,该对比例吸收器中的三光栅级联结构层的金属钨块、二氧化硅介质和条形金属钨的宽度比为1:1:1。The difference between this comparative example and Example 4 is only that the width ratio of the metal tungsten block, silicon dioxide medium and strip metal tungsten in the triple grating cascade structure layer in the absorber of this comparative example is 1:1:1.
该对比例中得到的吸收器的吸收光谱如图9所示。从图9中可知,与实施例4相比该吸收器的吸收光谱带宽仅为1.2微米,红外波段吸收率下降明显。The absorption spectrum of the absorber obtained in this comparative example is shown in FIG. 9 . As can be seen from FIG. 9 , compared with Example 4, the absorption spectral bandwidth of the absorber is only 1.2 μm, and the absorption rate in the infrared band decreases significantly.
对比例3Comparative Example 3
该对比例与实施例4的区别仅在于,该对比例吸收器中的三光栅级联结构层的金属钨块、二氧化硅介质和条形金属钨的高度比为3:5:3。The difference between this comparative example and Example 4 is only that the height ratio of the metal tungsten block, silicon dioxide medium and strip metal tungsten in the triple grating cascade structure layer in the absorber of this comparative example is 3:5:3.
该对比例中得到的吸收器的吸收光谱如图10所示。从图10中可知,与实施例4相比该吸收器的吸收光谱范围为0.2-2.33微米,但出现1.21-1.96微米波段低吸收率区间。The absorption spectrum of the absorber obtained in this comparative example is shown in FIG. 10 . It can be seen from FIG. 10 that, compared with Example 4, the absorption spectrum of the absorber is in the range of 0.2-2.33 microns, but a low absorptivity range of 1.21-1.96 microns appears.
对比例4Comparative Example 4
该对比例与实施例4的区别仅在于,该对比例吸收器中的三光栅级联结构层的金属钨块、二氧化硅介质和条形金属钨的高度比为3:12:10。The difference between this comparative example and Example 4 is only that the height ratio of the metal tungsten block, silicon dioxide medium and strip metal tungsten in the triple grating cascade structure layer in the absorber of this comparative example is 3:12:10.
该对比例中得到的吸收器的吸收光谱如图11所示。从图10中可知,与实施例4相比该吸收器的吸收光谱范围为0.2-2.39微米,但出现1.47-2.09微米波段低吸收率区间。The absorption spectrum of the absorber obtained in this comparative example is shown in FIG. 11 . It can be seen from Fig. 10 that, compared with Example 4, the absorption spectrum of the absorber is in the range of 0.2-2.39 microns, but a low absorption rate range of 1.47-2.09 microns appears.
综上所述,本发明采用顶层级联三光栅结构在同一单元,通过光栅衍射模、不同材料之间形成的腔共振模和表面等离子体激元共振模等多种模式之间的复合耦合作用实现吸收光谱带宽叠加展宽和吸收率的提升。To sum up, the present invention adopts the top-level cascaded three-grating structure in the same unit, through the composite coupling effect between multiple modes such as grating diffraction mode, cavity resonance mode formed between different materials, and surface plasmon resonance mode. To achieve the superposition broadening of the absorption spectral bandwidth and the improvement of the absorption rate.
尽管对本发明已作出了详细的说明并引证了一些具体实施例,但是对本领域熟练技术人员来说,只要不离开本发明的精神和范围可作各种变化或修正是显然的。Although the present invention has been described in detail and cited some specific embodiments, it will be apparent to those skilled in the art that various changes or modifications can be made without departing from the spirit and scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911175771.3A CN110927840B (en) | 2019-11-26 | 2019-11-26 | Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911175771.3A CN110927840B (en) | 2019-11-26 | 2019-11-26 | Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110927840A CN110927840A (en) | 2020-03-27 |
CN110927840B true CN110927840B (en) | 2022-08-05 |
Family
ID=69851160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911175771.3A Expired - Fee Related CN110927840B (en) | 2019-11-26 | 2019-11-26 | Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110927840B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777532B (en) * | 2015-04-03 | 2017-02-22 | 中国科学院上海光学精密机械研究所 | Ultra-narrow-band TE (transverse electric) polarizing spectrum selective absorber based on cascaded fiber grating structure |
CN108614314A (en) * | 2018-05-10 | 2018-10-02 | 江西师范大学 | Perfect light absorber of solar energy full spectral range |
CN109088005A (en) * | 2018-08-07 | 2018-12-25 | 太原理工大学 | A kind of organic solar batteries of tandem type metal grating structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002139629A (en) * | 2000-10-31 | 2002-05-17 | Sumitomo Electric Ind Ltd | Optical loss filter |
CN109103334A (en) * | 2018-07-04 | 2018-12-28 | 太原理工大学 | A kind of deep etching metal grating structure improving organic solar batteries absorption efficiency |
CN110459876B (en) * | 2019-08-29 | 2024-12-03 | 桂林电子科技大学 | An ultra-broadband absorber based on a simple two-dimensional metamaterial structure |
-
2019
- 2019-11-26 CN CN201911175771.3A patent/CN110927840B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104777532B (en) * | 2015-04-03 | 2017-02-22 | 中国科学院上海光学精密机械研究所 | Ultra-narrow-band TE (transverse electric) polarizing spectrum selective absorber based on cascaded fiber grating structure |
CN108614314A (en) * | 2018-05-10 | 2018-10-02 | 江西师范大学 | Perfect light absorber of solar energy full spectral range |
CN109088005A (en) * | 2018-08-07 | 2018-12-25 | 太原理工大学 | A kind of organic solar batteries of tandem type metal grating structure |
Non-Patent Citations (1)
Title |
---|
基于哑铃型光栅宽带吸收器的优化设计;赵洪霞 等;《光电子·激光》;20191031;第30卷(第10期);第1026-1029页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110927840A (en) | 2020-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110196464B (en) | A method for realizing ultra-broadband light absorption and a composite microstructure | |
CN104570184B (en) | One can the miniature light filter in integrated arrowband | |
CN103217730B (en) | Narrow-band negative filter plate membrane system with gradually-changing optical thicknesses | |
CN104777532B (en) | Ultra-narrow-band TE (transverse electric) polarizing spectrum selective absorber based on cascaded fiber grating structure | |
CN103197365B (en) | Based on the plasmon spectral absorption device of periodic chirp structure | |
CN103323896B (en) | Based on the periodic chirp structure plasmon spectral absorption device of nanometer embossing | |
CN110133771B (en) | Method for realizing ultra-narrow band absorption and sensing by using structural symmetry defects | |
CN107203018B (en) | A kind of preparation method of subwavelength reflection type one-dimensional metal wave plate | |
CN103592714B (en) | A design method of reflective multi-channel filter element that is easy to prepare | |
CN111338011B (en) | A method for ultra-broadband light absorption enhancement using composite microstructures | |
CN105652354A (en) | Polarization-independent broadband absorber based on conical metal-dielectric multilayer grating structure | |
CN110346854B (en) | A Polarization-Independent Ultra-Narrow Multiband Tunable Perfect Absorber | |
CN101266309A (en) | Unimodal Narrow-Band Reflection Filter with Wide Low-Reflection Bypass Band | |
CN104779447A (en) | Structure of broadband wave absorber and preparation method | |
CN102928912A (en) | Metal-medium coupling resonance cavity for generating Vaino resonance phenomenon | |
CN109494484A (en) | A kind of terahertz wave band Meta Materials wave absorbing device | |
CN103293572B (en) | TE polarization spectrum selective absorber | |
CN110441848B (en) | Subwavelength metal metagratings and mid-infrared steerable retroreflectors | |
CN103984047B (en) | A kind of infrared excess material wave-absorber | |
WO2021138981A1 (en) | Metal grating polarization beam splitter with asymmetric reflection | |
CN105549133B (en) | A kind of near-infrared omnidirectional absorber based on hyperbolic metamaterials microcavity | |
CN110927840B (en) | Three-grating cascade structure and ultra-wideband absorber based on three-grating cascade structure | |
CN108375812B (en) | Three-frequency absorber based on optical Tamm state | |
CN111338010A (en) | Surface plasmon metamaterial structure with near-infrared perfect absorption | |
CN214849067U (en) | Broadband terahertz wave absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220805 |
|
CF01 | Termination of patent right due to non-payment of annual fee |