Liquid crystal composition containing dibenzofuran polymerizable compound and application thereof
Technical Field
The invention relates to a liquid crystal material, in particular to a liquid crystal composition containing dibenzofuran polymerizable compounds and application thereof.
Background
Negative liquid crystals, which were proposed at the beginning of the 80's last century, are mainly used in the VA mode, which has very excellent contrast performance, but has significant viewing angle problems and response time problems, and in order to solve the viewing angle problems, display technologies such as MVA, PVA, CPA, etc., which are essentially to solve the viewing angle problems using multi-domains and achieve good effects, have been proposed. However, the display industry has been plagued by problems of increased difficulty and response time in the art, until PSVA (polymer stabilized vertical alignment) technology has been proposed, which uses polymers to achieve multi-domain and pretilt angle control to achieve fast response and wide viewing angle liquid crystal displays.
The polymerizable compound and the liquid crystal cause the voltage holding ratio of the liquid crystal to be reduced, so the residual polymerizable compound needs to be added in the production process of the liquid crystal display to fully react, and in order to ensure the full reaction, the time is usually longer, so the process time is prolonged, and the productivity is reduced; on the other hand, since the glass substrate needs to be exposed for a period of time after the completion of the preceding process, the surface layer of the panel is contaminated by the pollution source in the environment, which results in the degradation of the quality of the liquid crystal display.
The invention aims to provide a liquid crystal composition capable of reacting quickly, shortening the polymerization time of a polymerizable compound and improving the production capacity of a liquid crystal display; the interval time of the working procedures in the production process of the liquid crystal display is shortened, and the quality of the liquid crystal display is improved.
Disclosure of Invention
The liquid crystal composition provided by the invention has high reaction speed and is characterized by at least comprising a polymerizable compound shown in a general formula I:
wherein, the ring A1And ring A2Each independently represents 1, 4-phenylene, 1, 4-cyclohexylene, 1, 4-cyclohexenylene, or 1, 4-phenylene in which 1 to 4 hydrogen atoms are each independently substituted by F or Cl;
the P is1、P2、P3Each independently represents an acrylate group, a methacrylate group, a fluoroacrylate group, a chloroacrylate group, a vinyloxy group, an oxetane group or an epoxy group;
z is1、Z4Each independently represents a single bond, -O-, -S-, -CO-O-, -O-CO-O-, -CH ═ N-, -N ═ CH-, -N ═ N-, -C ≡ C-, C1-C12 alkylene or alkenyl, wherein one or more hydrogen atoms in the C1-C12 alkylene or alkenyl may each independently be substituted by F, Cl, or CN, and one or more non-adjacent-CH 2-groups may each independently be substituted by-O-, -S-, -NH-, -CO-, COO-, -OCO-, -OCOO-, -SCO-, -COS-or an olefinic bond is replaced in a manner not directly linked to each other;
z is2、Z3Each independently represents a single bond, -O-, -S-, -CO-O-, -O-CO-O-, -CH-N-, -N-CH-, -N-, -C.ident.C-, or C1-C12Alkylene or alkenyl of, said C1-C12May each independently be substituted with F, Cl, or CN, and one or more non-adjacent-CH2The-groups may each independently be-O-, -S-, -NH-, -CO-, COO-, -OCO-, -OCOO-, -SCO-or-COS-is replaced in a manner not directly linked to each other;
L1,L2each independently represents-F, -Cl, -CN, -NO2, -CH3, -C2H5, -C (CH3)3, -CH (CH3)2, -CH2CH (CH3) C2H5, -OCH3, -OC2H5, -COCH3, -COC2H5, -COOCH3, -COOC2H5, -CF3, -OCF3, -OCHF2 or-OC 2F 5;
r, s each independently represent 0, 1, 2 or 3; m and n independently represent 0 or 1.
Preferably, in formula I: the ring A1And ring A2Independently of one another, 1, 4-phenylene, 1, 4-cyclohexylene or 1, 4-phenylene in which 1 to 4 hydrogen atoms have been replaced by F or Cl atoms; preferably, said ring A1And ring A2Independently of one another, 1, 4-phenylene, 1, 4-cyclohexylene, 2-fluoro-1, 4-phenylene;
and/or, said P1、P2、P3Independently of one another, a methacrylate group or an acrylate group;
and/or r, s independently of one another denote 0 or 1
And/or m, n independently of one another represent 0 or 1, and m + n ≦ 1;
and/or, said Z1、Z4Independently of one another, represents a single bond, -O-, -S-, -CO-O-, -O-CO-O-, -CH ═ N-, -N ═ CH-, -N ═ N-, -C ≡ C-, C1-C12Alkylene or alkenyl of (a), wherein said C1-C12May be independently of each other substituted by F, Cl or CN, and one or more non-adjacent-CH2The radicals may be replaced, independently of one another, by-O-, -S-, -NH-, -CO-, -COO-, -OCO-, -OCOO-, -SCO-, -COS-or an olefinic bond in such a way that they are not linked directly to one another; preferably, Z is1、Z4Independently of one another, represents a single bond, -O-or C1-C5Alkylene and alkoxy groups of (a);
and/or, said Z2、Z3Independently of one another, represents a single bond or- (CH)2)k-, k represents 1 to 8; preferably, k represents 1, 2, 3, 4 or 5; further onK represents 1, 2 or 3;
and/or, said L1,L2Independently of one another denotes-F, -Cl, -CN, or C1-C3Alkyl or alkoxy of (a); preferably, L1、L2Identical or different and independently of one another represent-F, -Cl, -CN, -CH3、-OCH3、-CF3、-OCF3or-OCHF2(ii) a Further, said L1、L2Identical or different, independently of one another, represent-F, -Cl;
and/or, m ═ n ═ 0, L1And L2Each represents-F, r and s are independently from each other selected from 0 or 1; or, m is 1, n is 0, L1And L2Each represents-F, ring A is selected from 1, 4-phenylene, 1, 4-cyclohexylene or 1, 4-phenylene in which 1 to 2 hydrogen atoms are substituted by one or more of F or Cl atoms, r and s are independently from each other selected from 0 or 1; or, m is 0, n is 1, L1And L2Both represent-F, ring B is selected from 1, 4-phenylene, 1, 4-cyclohexylene or 1, 4-phenylene in which 1 to 2 hydrogen atoms are substituted by one or more of F or Cl atoms, r and s are independently from each other selected from 0 or 1.
The liquid crystal composition provided by the invention also comprises a liquid crystal base system, and the liquid crystal base system also comprises one or more compounds represented by general formulas II to V:
wherein R is1、R2、R3、R4、R5、R6、R7、R8Each independently represents C1~C12Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); z5、Z6Each independently represents CH2O、CH2CH2;A3、A4Each independently represents trans-1, 4-cyclohexyl or 1, 4-phenylene.
With respect to R1、R2、R3、R4、R5、R6、R7、R8: preferably, R1、R2、R3、R4、R5、R6、R7、R8Each independently represents C1~C7Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); more preferably, R1、R3、R5、R7Each independently represents C1~C7Straight chain alkyl or C2~C5Straight-chain alkenyl group (more preferably C)1~C5Straight chain alkyl or C2~C5Linear alkenyl groups of (a); and/or, R2、R4、R6、R8Each independently represents C1~C7Straight-chain alkyl group or straight-chain alkoxy group (more preferably C)1~C4Linear alkyl or linear alkoxy groups of (a).
The compound of the general formula I provided by the invention is a polymerizable compound monomer, and the compound is polymerized under the irradiation of ultraviolet light to form a stable structure, so that the stable alignment of liquid crystal molecules is promoted.
Specifically, the compound of the general formula I provided by the invention is selected from one or more of the general formulas I-1 to I-42:
in the liquid crystal basic system, the compound provided by the general formula II is a compound with a two-ring structure and containing a2, 3-difluorobenzene structure, and the compound has large negative dielectric anisotropy and excellent intersolubility, and has remarkable effects of improving the negative dielectric anisotropy of the liquid crystal composition and improving the low temperature.
Specifically, the compound shown in the general formula II is selected from one or more of the following formulas IIA and IIB:
wherein R is1Represents C1~C7Straight chain alkyl or C2~C5A linear alkenyl group of (a); r2Represents C1~C7Linear alkyl or linear alkoxy groups of (1).
In the liquid crystal basic system, the compound represented by the general formula III is a tricyclic compound containing a2, 3-difluorobenzene structure, and the compound has large negative dielectric anisotropy and high clearing point, and can improve the clearing point and the negative dielectric anisotropy of the liquid crystal composition.
Specifically, the compound represented by the general formula III is selected from one or more of formula IIIA and formula IIIB:
wherein R is3Represents C1~C7Straight chain alkyl or C2~C5A linear alkenyl group of (a); r4Represents C1~C7Linear alkyl or linear alkoxy groups of (1).
In the liquid crystal basic system, the compound provided by the general formula IV is a compound with a two-ring structure and a2, 3-difluorobenzene structure, and the compound has large negative dielectric anisotropy and excellent intersolubility, and has remarkable effects of improving the negative dielectric anisotropy of the liquid crystal composition and improving the low temperature.
Specifically, the compound of formula IV is selected from one or more of formula IVA, formula IVB:
wherein R is5Represents C1~C7Straight chain alkyl or C2~C5A linear alkenyl group of (a); r6Represents C1~C7Linear alkyl or linear alkoxy groups of (1).
In the liquid crystal basic system, the compound provided by the general formula V is a tricyclic compound containing a2, 3-difluorobenzene structure, and the compound has large negative dielectric anisotropy and high clearing point, and can improve the clearing point and the negative dielectric anisotropy of the liquid crystal composition.
Specifically, the compound shown in the general formula V is selected from one or more of formula VA and formula VB:
wherein R is7Represents C1~C7Straight chain alkyl or C2~C5A linear alkenyl group of (a); r8Represents C1~C7Linear alkyl or linear alkoxy groups of (1).
Preferably, the polymerizable compound represented by formula I is selected from one or more of the following structures:
preferably, the compound represented by the general formula II is selected from one or more of IIA 1-IIB 24:
more preferably, the compound represented by the general formula II provided by the invention is selected from one or more of IIA14, IIA16, IIA22, IIB16, IIB17, IIB24 and IIB 26; particularly preferably, the compound represented by the general formula II provided by the invention is selected from one or more of IIA14, IIA16, IIA22, IIB16, IIB17 and IIB 24.
Preferably, the compound represented by formula III is selected from one or more of IIIA 1-IIIB 24:
more preferably, the compound represented by the general formula III provided by the present invention is selected from one or more of IIIA1, IIIA2, IIIA10, IIIA13, IIIA14, IIIA15, IIIA16, IIIA18, IIIB1, IIIB2, IIIB13, IIIB14, IIIB15, IIIB 22; particularly, one or more of IIIA1, IIIA2, IIIA10, IIIA13, IIIA14, IIIA15, IIIB13, IIIB14, and IIIB22 are preferable.
Preferably, the compound represented by formula IV is selected from one or more of IVA 1-IVB 24:
more preferably, the compound represented by formula IV is selected from one or more of IVA10, IVA14, IVA16, IVA22, IVB14, IVB 16; particularly preferably, the compound represented by the general formula IV is selected from one or more of IVA10, IVA14, IVB 14.
Preferably, the compound represented by the general formula V is selected from one or more of VA 1-VB 16:
more preferably, the compound represented by the general formula V is selected from one or more of VA5, VA6, VA7, VA8, VB5 and VB 6; particularly preferably, the compound represented by the general formula V is selected from one or more of VA5, VA6, VB5 and VB 6.
In the liquid crystal composition provided by the present invention, the liquid crystal base system may further comprise one or more compounds selected from compounds represented by formula VI:
wherein R is9、R10Each independently represents C1~C12Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); n is1、n2Each independently represents 0 or 1 (preferably n)1、n2Not 1 at the same time); a. the5Represents trans-1, 4-cyclohexyl, 1, 4-phenylene in which one or more H atoms on the phenyl ring may each independently be substituted by F.
The compound represented by the general formula VI is a compound containing a cyclohexene structure and a2, 3-difluorobenzene structure, and the structure has larger dielectric anisotropy.
Specifically, the compound represented by formula VI is selected from one or more of VIA to VID:
wherein R is9Represents C2~C7Linear alkyl or alkenyl of (preferably C)2~C5A linear alkyl or linear alkenyl group of); r10Represents C1~C5Linear alkyl or alkoxy radical (preferably C)1~C4Linear alkyl or linear alkoxy groups of (a).
Preferably, the compound represented by formula VI is selected from one or more of VIA 1-VID 16:
more preferably, the compound represented by the general formula VI provided by the present invention is selected from one or more of VIA6, VIA8, VIA14, VIB6, VIB7, VIB10, VIB14, VIC5, VIC6, VIC14, VID5, VID 6; particularly preferably, the compound represented by formula VI is selected from one or more of VIB6, VIB10, VIC5, VIC6, VID5, VID 6.
In the liquid crystal composition provided by the invention, the liquid crystal base system can further comprise one or more compounds represented by a general formula VII:
wherein R is11、R12Each independently represents C1~C12Linear alkyl, linear alkoxy or C2~C12Linear alkenyl of (preferably C)1~C7Linear alkyl, linear alkoxy or C2~C7Linear alkenyl groups of (a); a. the6、A7Each independently represents trans-1, 4-cyclohexyl or 1, 4-phenylene.
The compound represented by the general formula VII is a two-ring structure neutral compound, and the structure has very low rotational viscosity, so that the rotational viscosity of the liquid crystal composition is reduced, and the response time is effectively prolonged.
Specifically, the compound represented by the general formula VII is selected from one or more of VIIA to VIIC:
wherein R is11Represents C1~C7Straight chain alkyl or C2~C7A linear alkenyl group of (a); r12Represents C1~C7Linear alkyl, linear alkoxy or C2~C7Linear alkenyl of (preferably represents C)1~C5Linear alkyl, linear alkoxy or C2~C5Linear alkenyl groups of (ii).
Preferably, the compound represented by formula VII is selected from one or more of VIIA 1-VIIC 25:
more preferably, the compound represented by the general formula VII is selected from one or more of VIIA2, VIIA6, VIIA14, VIIA18, VIIA20, VIIA22, VIIA24, VIIA26, VIIA27, VIIA32, VIIA36, VIIB2, VIIB8, VIIB14, VIIB18, VIIB26, VIIC2, VIIC4, VIIC6, VIIC17, VIIC18, VIIC28, VIIC30, VIIC32, VIIC34, VIIC43, VIIC 44; particularly preferably, the compound represented by the general formula VII is selected from one or more of VIIA2, VIIA6, VIIA22, VIIA26, VIIA27, VIIB14, VIIB18, VIIC4, VIIC6, VIIC18, VIIC28, VIIC 32.
In the liquid crystal composition provided by the present invention, the liquid crystal base system may further comprise one or more compounds represented by general formula VIII:
wherein R is13、R14Each independently represents C1~C12Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); a. the8Represents trans-1, 4-cyclohexyl or 1, 4-phenylene.
The compound represented by the general formula VIII has a high clearing point and a large elastic constant, and is very effective in increasing the clearing point and increasing the elastic constant of the liquid crystal composition.
Specifically, the compound represented by formula VIII is selected from one or more of VIIIA to VIIIB:
wherein R is13Represents C2~C7Linear alkyl or alkenyl of (preferably represents C)2~C5A linear alkyl or linear alkenyl group of); r14Represents C1~C7Linear alkyl, linear alkoxy or C2~C7Linear alkenyl of (preferably represents C)1~C4Linear alkyl, linear alkoxy or C2~C4Linear alkenyl groups of (ii).
Preferably, the compound represented by formula VIII is selected from one or more of VIIIA1 to VIIIB 24:
more preferably, the compound represented by formula VIII is selected from one or more of VIIIA2, VIIIA6, VIIIA10, VIIIA17, VIIIA18, VIIIA25, VIIIA31, VIIIA37, VIIIB2, VIIIB6, VIIIB8, VIIIB25, VIIIB27, VIIIB31, VIIIB33, VIIIB 50; more preferably, the compound represented by formula VIII is selected from one or more of VIIIA2, VIIIA6, VIIIA17, VIIIA25, VIIIA37, VIIIB2, VIIIB6, VIIIB8, VIIIB 50.
In the liquid crystal composition provided by the present invention, the liquid crystal base system may further comprise one or more compounds represented by formula IX:
wherein R is15Represents C1~C12Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); r16Representative F, C1~C12Linear alkyl, linear alkoxy or C2~C12A linear alkenyl group of (a); l is3、L5、L6Each independently represents H or F; l is4Representative H, CH3F; preferably, L3、L4、L5、L6Not H at the same time; or not both as F.
The compound represented by the general formula IX is a terphenyl compound, and the compound has large optical anisotropy and can effectively improve the optical anisotropy of the liquid crystal composition.
Specifically, the compound represented by the general formula IX is selected from one or more of IXA to IXF:
wherein R is15Represents C1~C7Linear alkyl radical of (preferably represents C)1~C5Linear alkyl groups of (a); r16Representative F, C1~C7Linear alkyl or alkoxy radical of (preferably representing F, C)1~C5Linear alkyl or linear alkoxy groups of (a).
Preferably, the compound represented by formula IX is selected from one or more of IXA 1-IXI 24:
more preferably, the compound represented by formula IX is selected from one or more of IXA2, IXA3, IXA4, IXA8, IXB1, IXB2, IXC1, IXC2, IXD1, IXD2, IXE2, IXE3, IXF1, IXG2, IXH2, IXI2, IXI14, IXI21, IXI 22; particularly preferably, the compound represented by the general formula IX is selected from one or more of IXA2, IXA3, IXE2, IXE3, IXG2, IXH2, IXI2, IXI14, IXI 21.
In the liquid crystal composition provided by the invention, the liquid crystal base system can further comprise one or more compounds represented by the general formula X:
wherein R is17、R18Each independently represents C1~C12Linear alkyl, linear alkoxy, C2~C12The linear alkenyl group of (a), cyclopropylmethylene group, cyclopropylmethylenoxy group, cyclopentyl group, cyclopentylidene group, cyclopentyloxy group or cyclopentylmethenoxy group; l is7Represents O or S.
The compound represented by the general formula X provided by the invention has very large negative dielectric anisotropy, and can effectively improve the negative dielectric anisotropy of the liquid crystal composition.
Specifically, the compound represented by the general formula X is selected from one or more of XA to XF:
wherein R is17Represents C1~C7Linear alkyl or alkoxy (more preferably represents C)1~C5Linear alkyl or linear alkoxy groups of (a).
Preferably, the compound represented by the general formula X is selected from one or more of XA1 to XI 4:
more preferably, the compound represented by the general formula X is selected from one or more of XA36, XA37, XA38, XB9, XB10, XC9, XC10, XD9, XD10, XE36, XE37, XE38, XF9, XF10, XG9, XG10, XH9, XH 10; particularly preferably, the compound represented by the general formula X is selected from one or more of XA37, XA38, XB9, XB10, XC9, XC10, XD9, XD10, XE37, XE38, XF9, XF10, XG9, XG10, XH9, XH 10.
The amount of the polymerizable compound represented by the general formula I accounts for 0.1-5% of the total mass of the liquid crystal basic system, and preferably 0.2-0.5%.
Specifically, the liquid crystal composition provided by the invention comprises a liquid crystal basic system and at least one polymerizable compound represented by a general formula I; the liquid crystal base system comprises the following components in percentage by mass (consisting of the following components in percentage by mass):
(1) 10-75% of a compound represented by general formula II-V; (2)0 to 45% of a compound represented by the general formula VI; (3)1 to 70% of a compound represented by the general formula VII; (4)0 to 30% of a compound represented by the general formula VIII; (5)0 to 40% of a compound represented by the general formula IX; (6)0 to 40% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.1-5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 15-70% of a compound represented by general formula II-V; (2)0 to 35% of a compound represented by the general formula VI; (3) 4-65% of a compound represented by formula VII; (4)0 to 25% of a compound represented by the general formula VIII; (5)0 to 30% of a compound represented by the general formula IX; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 22-65% of compounds represented by general formulas II-V; (2)0 to 29% of a compound represented by the general formula VI; (3) 6-58% of a compound represented by the general formula VII; (4)0 to 21% of a compound represented by the general formula VIII; (5)0 to 25% of a compound represented by the general formula IX; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)25 to 65% of compounds represented by general formulas III to V; (2)0 to 35% of a compound represented by the general formula VI; (3) 4-55% of a compound represented by formula VII; (4)0 to 20% of a compound represented by the general formula VIII; (5)0 to 10% of a compound represented by the general formula IX; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 32-58% of a compound represented by general formula II-V; (2)0 to 29% of a compound represented by the general formula VI; (3) 6-53% of a compound represented by formula VII; (4)0 to 15% of a compound represented by general formula VIII; (5)0 to 5% of a compound represented by the general formula IX; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 1-36% of a compound represented by general formula II; (2) 5-60% of a compound represented by general formulae III-V; (3)0 to 20% of a compound represented by the general formula VI; (4) 21-63% of a compound represented by formula VII; (5)0 to 25% of a compound represented by the general formula VIII; (6)0 to 30% of a compound represented by the general formula IX; (7)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 2-33% of a compound represented by general formula II; (2) 10-56% of a compound represented by general formulae III-V; (3)0 to 16% of a compound represented by the general formula VI; (4)26 to 58% of a compound represented by the general formula VII; (5)0 to 21% of a compound represented by the general formula VIII; (6)0 to 25% of a compound represented by the general formula IX; (7)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)0 to 10% of a compound represented by the general formula II; (2) 10-55% of a compound represented by the general formula III; (3) 3-20% of a compound represented by formula IV; (4)0 to 26% of a compound represented by the general formula V; (5)25 to 56% of a compound represented by the general formula VII; (6)0 to 20% of a compound represented by the general formula VIII; (7)0 to 10% of a compound represented by the general formula IX; (8)0 to 10% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)0 to 6% of a compound represented by the general formula II; (2)14 to 51% of a compound represented by the general formula III; (3) 4-16% of a compound represented by formula IV; (4)0 to 23% of a compound represented by the general formula V; (5) 30-53% of a compound represented by formula VII; (6)0 to 15% of a compound represented by general formula VIII; (7)0 to 5% of a compound represented by the general formula IX; (8)0 to 5% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)0 to 10% of a compound represented by the general formula II; (2) 20-55% of a compound represented by the general formula III; (3) 3-20% of a compound represented by formula IV; (4) 35-56% of a compound represented by formula VII; (5)0 to 20% of a compound represented by the general formula VIII; (6)0 to 7% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)0 to 6% of a compound represented by the general formula II; (2) 24-51% of a compound represented by the general formula III; (3) 4-16% of a compound represented by formula IV; (4) 40-53% of a compound represented by formula VII; (5)0 to 15% of a compound represented by general formula VIII; (6)0 to 4% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 10-42% of a compound represented by the general formula III; (2) 5-18% of a compound represented by formula IV; (3) 3-26% of a compound represented by formula V; (4) 25-55% of a compound represented by formula VII; (5)0 to 15% of a compound represented by general formula VIII; (6)0 to 10% of a compound represented by the general formula IX; (7)0 to 10% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)14 to 37% of a compound represented by the general formula III; (2) 8-14% of a compound represented by formula IV; (3) 5-23% of a compound represented by formula V; (4)30 to 50% of a compound represented by the general formula VII; (5)0 to 11% of a compound represented by the general formula VIII; (6)0 to 5% of a compound represented by the general formula IX; (7)0 to 5% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 1-38% of a compound represented by general formula II; (2) 5-45% of a compound represented by general formula III; (3) 20-65% of a compound represented by formula VII; (4)0 to 25% of a compound represented by the general formula VIII; (5)0 to 30% of a compound represented by the general formula IX; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 2-33% of a compound represented by general formula II; (2) 10-39% of a compound represented by the general formula III; (3)26 to 58% of a compound represented by the general formula VII; (4)0 to 21% of a compound represented by the general formula VIII; (5)0 to 25% of a compound represented by the general formula IX; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 17-55% of compounds represented by general formulas II-V; (2)3 to 33% of a compound represented by the general formula VI; (3) 4-65% of a compound represented by formula VII; (4)0 to 15% of a compound represented by general formula VIII; (5)0 to 30% of a compound represented by the general formula IX; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 22-51% of compounds represented by general formulas II-V; (2) 4-29% of a compound represented by formula VI; (3) 6-58% of a compound represented by the general formula VII; (4)0 to 12% of a compound represented by the general formula VIII; (5)0 to 25% of a compound represented by the general formula IX; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)27 to 70% of a compound represented by general formula II to general formula V; (2) 21-65% of a compound represented by formula VII; (3)0 to 25% of a compound represented by the general formula VIII; (4)0 to 20% of a compound represented by the general formula IX; (5)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 32-65% of compounds represented by general formulas II-V; (2)26 to 58% of a compound represented by the general formula VII; (3)0 to 21% of a compound represented by the general formula VIII; (4)0 to 15% of a compound represented by the general formula IX; (5)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)18 to 70% of a compound represented by general formula II to general formula V; (2)0 to 35% of a compound represented by the general formula VI; (3) 3-63% of a compound represented by formula VII; (4)0 to 30% of a compound represented by the general formula IX; (5)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 22-65% of compounds represented by general formulas II-V; (2)0 to 29% of a compound represented by the general formula VI; (3) 6-58% of a compound represented by the general formula VII; (4)0 to 25% of a compound represented by the general formula IX; (5)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)27 to 59% of compounds represented by general formulas II to V; (2)0 to 18% of a compound represented by the general formula VI; (3) 21-55% of a compound represented by formula VII; (4)1 to 25% of a compound represented by general formula VIII; (5)0 to 18% of a compound represented by the general formula IX; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 32-59% of compounds represented by general formulas II-V; (2)0 to 14% of a compound represented by the general formula VI; (3)26 to 51% of a compound represented by the general formula VII; (4)2 to 21% of a compound represented by general formula VIII; (5)0 to 14% of a compound represented by the general formula IX; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)27 to 70% of a compound represented by general formula II to general formula V; (2)0 to 33% of a compound represented by the general formula VI; (3) 3-65% of a compound represented by formula VII; (4)0 to 25% of a compound represented by the general formula VIII; (6)0 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 32-65% of compounds represented by general formulas II-V; (2)0 to 29% of a compound represented by the general formula VI; (3) 6-58% of a compound represented by the general formula VII; (4)0 to 21% of a compound represented by the general formula VIII; (6)0 to 25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 18-65% of compounds represented by general formulas II-V; (2)0 to 20% of a compound represented by the general formula VI; (3) 21-65% of a compound represented by formula VII; (4)0 to 25% of a compound represented by the general formula VIII; (5) 1-30% of a compound represented by formula IX; (6)0 to 18% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 22-60% of a compound represented by general formula II-V; (2)0 to 16% of a compound represented by the general formula VI; (3)26 to 58% of a compound represented by the general formula VII; (4)0 to 21% of a compound represented by the general formula VIII; (5) 2-25% of a compound represented by formula IX; (6)0 to 14% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1)27 to 70% of a compound represented by general formula II to general formula V; (2)0 to 18% of a compound represented by the general formula VI; (3) 21-63% of a compound represented by formula VII; (4)0 to 25% of a compound represented by the general formula VIII; (5)0 to 18% of a compound represented by the general formula IX; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 33-65% of compounds represented by general formulas II-V; (2)0 to 14% of a compound represented by the general formula VI; (3)26 to 58% of a compound represented by the general formula VII; (4)0 to 21% of a compound represented by the general formula VIII; (5)0 to 14% of a compound represented by the general formula IX; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 18-55% of compounds represented by general formulas II-V; (2)0 to 33% of a compound represented by the general formula VI; (3) 5-55% of a compound represented by formula VII; (4)0 to 18% of a compound represented by the general formula VIII; (5)0 to 30% of a compound represented by the general formula IX; (6)1 to 30% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-1.0% of the total mass of the liquid crystal basic system.
More preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 22-53% of compounds represented by general formulas II-V; (2)0 to 29% of a compound represented by the general formula VI; (3)6 to 50% of a compound represented by the general formula VII; (4)0 to 14% of a compound represented by the general formula VIII; (5)0 to 25% of a compound represented by the general formula IX; (6) 2-25% of a compound represented by the general formula X; the amount of the polymerizable compound represented by the general formula I accounts for 0.2-0.5% of the total mass of the liquid crystal basic system.
Or, preferably, in said liquid crystal base system:
when the compound represented by formula II is used in an amount of 0 and the compound represented by formula IV or V or VIII is used in an amount of 0, the compound represented by formula IX is also used in an amount of 0;
or the dosage of the compounds represented by the general formula II and the general formula VII is not 0 at the same time;
or, when the compound represented by the general formula II and the general formula X is used in an amount of 0, the compound represented by the general formula VI is also used in an amount of 0;
or, when the amount of the compound represented by the general formula III and the general formula IV is 0, the amount of the compound represented by the general formula IX is 0;
or, the amount of the compound represented by the formula III is not 0 when different from the amount of the compound represented by any one of the formula V, the formula VII, the formula VIII, the formula IX or the formula X;
or when the compound represented by the general formula III and the general formula VI is used in an amount of 0, the compound represented by the general formula II, IV, V, VII, VIII, IX and X is not used in an amount of 0;
or the dosage of the compounds represented by the general formula IV and the general formula VII is not 0 at the same time;
or when the dosage of the compounds represented by the general formulas IV and VIII is 0, the dosage of the compound represented by the general formula V is 0;
or when the dosage of the compounds represented by the general formula IV and the general formula X is 0, the dosage of the compounds represented by the general formula IV is also 0;
or, the dosage of the compounds represented by the general formula V and the general formula VII is not 0 at the same time;
or, the amount of the compound represented by the general formula VI and the compound represented by the general formula VII are not 0 at the same time;
or, the amount of the compound represented by any one of the general formula VII and the general formula VIII, the general formula IX or the general formula X is not 0 at the same time; more preferably, the liquid crystal base system includes (consists only of) compounds represented by general formulae II to X; the liquid crystal base system comprises (consists of compounds represented by the following general formulas II to X):
(1) 8-15% of a compound represented by formula II; (2) 0% of a compound represented by the general formula III; (3) 5-10% of a compound represented by formula IV; (4) 20-25% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 30-35% of a compound represented by formula VII; (7) 10-15% of a compound represented by formula VIII; (8) 5-10% of a compound represented by formula IX; (9) 5-8% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-50% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0-20% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-50% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-15% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 40-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 25-30% of a compound represented by formula VI; (6) 5-50% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0-20% of a compound represented by formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-50% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 50-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-50% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 1-55% of a compound represented by formula III; (3) 2-20% of a compound represented by formula IV; (4) 3-5% of a compound represented by formula V; (5) 3-5% of a compound represented by formula VI; (6) 5-55% of a compound represented by formula VII; (7) 5-15% of a compound represented by formula VIII; (8) 5-10% of a compound represented by formula IX; (9) 5-10% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 12-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0-23% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 30-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-15% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 14-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0-25% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 30-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0-5% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 10-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-25% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 30-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 5-10% of a compound represented by formula II; (2) 0% of a compound represented by the general formula III; (3) 0% of a compound represented by the general formula IV; (4) 25-35% of a compound represented by formula V; (5) 5-10% of a compound represented by formula VI; (6) 30-35% of a compound represented by formula VII; (7) 5-15% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 5-15% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-33% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-25% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-15% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0-20% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7)0 to 22% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-28% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-28% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-5% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-33% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-10% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-28% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 30-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0-20% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-5% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-10% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-25% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-25% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0-5% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X; still more preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 0% of a compound represented by the general formula II; (2) 50-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 45-50% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 40-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-50% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 50-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 45-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-28% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-18% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 10-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-25% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 30-55% of a compound represented by formula VII; (7) 0-15% of a compound represented by general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 30-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 00% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 10-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-30% of a compound represented by formula VI; (6) 5-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-25% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-5% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-10% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 0% of a compound represented by the general formula VII; (7) 35-60% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0-5% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-45% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0-15% of a compound represented by formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X; still more preferably, the liquid crystal base system comprises (consists of) the following components in mass percent:
(1) 0% of a compound represented by the general formula II; (2) 35-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0% of a compound represented by the general formula II; (2) 20-55% of a compound represented by formula III; (3) 0-18% of a compound represented by formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 40-55% of a compound represented by formula VII; (7) 0-18% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 30-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0% of a compound represented by formula IX; (9) 0-5% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-30% of a compound represented by formula II; (2) 25-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 35-60% of a compound represented by formula VII; (7) 0% of a compound represented by the general formula VIII; (8) 0-15% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X;
or the like, or, alternatively,
(1) 0-35% of a compound represented by formula II; (2) 15-55% of a compound represented by formula III; (3) 0% of a compound represented by the general formula IV; (4) 0% of a compound represented by the general formula V; (5) 0% of a compound represented by formula VI; (6) 25-60% of a compound represented by formula VII; (7) 0-25% of a compound represented by formula VIII; (8) 0% of a compound represented by formula IX; (9) 0% of a compound represented by the general formula X.
Preferably, the liquid crystal composition of the present invention is composed of the compound represented by the general formula I and the liquid crystal base system.
Any of the liquid crystal base systems described above in the present invention can refer to the same concept.
The method for producing the liquid crystal composition of the present invention is not particularly limited, and a production can be carried out by mixing a plurality of compounds by a conventional method such as a method of mixing different components at a high temperature and dissolving each other, in which a liquid crystal composition is dissolved and mixed in a solvent for the compound, and then the solvent is distilled off under reduced pressure; alternatively, the liquid crystal composition of the present invention can be prepared by a conventional method, for example, by dissolving the component having a smaller content in the main component having a larger content at a higher temperature, or by dissolving each of the components in an organic solvent, for example, acetone, chloroform or methanol, and then mixing the solutions to remove the solvent.
The liquid crystal composition provided by the invention has a fast reaction speed, can shorten the time for polymerizing the polymerizable compound, greatly shortens the time required by the polymerization process of the liquid crystal display, improves the yield of the liquid crystal display, shortens the exposure time of the liquid crystal display in the environment and improves the quality and performance of the liquid crystal display. Therefore, the invention also provides the application of the liquid crystal composition in PSVA and SAVA display mode liquid crystal display devices; the method is particularly suitable for PSVA liquid crystal display devices.
The method for preparing the liquid crystal device by adopting the liquid crystal composition provided by the invention specifically comprises the following steps: the liquid crystal composition containing the polymerizable compound provided by the invention is poured into a liquid crystal screen, and then polymerized by UV light irradiation, and voltage is continuously applied in the irradiation process. The polymerizable compound in the liquid crystal composition is polymerized under the irradiation of UV light, so that the liquid crystal is promoted to form stable alignment. In order to fully polymerize the monomers, the voltage was removed after a period of time following which the voltage was continued to be applied and irradiated with UV light. As a preferred embodiment of the present invention, UV (313nm, 5 mw/cm) may be used2) Irradiating the liquid crystal composition for 60s under a voltage of 10V, removing the voltage, and further UV (365nm, 6 mw/cm)2) Irradiating with light for 60 min.
Detailed Description
The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention.
In the present invention, the percentages are by weight, the temperature is given in degrees Celsius, △ n represents the optical anisotropy (25 ℃), △ ε represents the dielectric anisotropy, unless otherwise stated(25℃,1000Hz);V10Represents a threshold voltage, which is a characteristic voltage (V, 25 ℃) at which the relative transmittance changes by 10%; γ 1 represents rotational viscosity (mpa.s, 25 ℃); cp represents the clearing point (. degree. C.) of the liquid crystal composition; k11、K22、K33Respectively represent the splay, twist and bend elastic constants (pN, 25 ℃); VHR represents the voltage holding ratio (%, 60 ℃, 1V, 0.5 Hz).
In the following examples, the group structures in the liquid crystal compounds are represented by codes shown in Table 1.
Table 1: radical structure code of liquid crystal compound
Take the following compound structure as an example:
In the following examples, the liquid crystal composition was prepared by a thermal dissolution method, comprising the steps of: weighing the liquid crystal compound by a balance according to the weight percentage, wherein the weighing and adding sequence has no specific requirements, generally weighing and mixing the liquid crystal compound in sequence from high melting point to low melting point, heating and stirring at 60-100 ℃ to uniformly melt all the components, filtering, performing rotary evaporation, and finally packaging to obtain the target sample.
The preparation method of the liquid crystal display device comprises the steps of injecting a liquid crystal composition containing a polymerizable compound into a glass interlayer with an electrode, polymerizing the polymerizable compound under the irradiation of UV light of 300-320 nm under the application of voltage to form a stable pretilt angle, removing the voltage, and completely reacting the residual polymerizable compound under the irradiation of UV light of 320-400 nm.
In the following examples, the weight percentages of the components in the liquid crystal composition and the performance parameters of the liquid crystal composition are shown in the following tables.
Example 1
Table 2: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 2
Table 3: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
filling the prepared PSVA mixtureInto a standard VA test cell using UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 3
Table 4: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 4
Table 5: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 5
Table 6: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 6
Table 7: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 7
Table 8: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 8
Table 9: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 9
Table 10: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 10
Table 11: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
filling the prepared PSVA mixture into a standard VA test boxUsing UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 11
Table 12: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 12
Table 13: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 13
Table 14: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 14
Table 15: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under voltage of 10V, and removing voltageIn the presence of UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 15
Table 16: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 16
Table 17: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min with light to fully react residual polymerizable compound, and testing liquid crystal in the test boxThe pretilt angle in (1) is 88.0 deg.
Example 17
Table 18: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 18
Table 19: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating with light for 60min to sufficiently remove residual polymerizable compoundThe reaction was complete and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 19
Table 20: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 20
Table 21: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Light irradiation 60min, the residual polymerizable compound was fully reacted, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 21
Table 22: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 22
Table 23: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 23
Table 24: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 24
Table 25: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 25
Table 26: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 26
Table 27: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 27
Table 28: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 28
Table 29: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 29
Table 30: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 30
Table 31: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 31
Table 32: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 32
Table 33: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.9 °.
Example 33
Table 34: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 34
Table 35: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 35
Table 36: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 36
Table 37: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 37
Table 38: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 38
Table 39: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 39
Table 40: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 40
Table 41: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.3 °.
EXAMPLE 41
Table 42: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 42
Table 43: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 43
Table 44: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 44
Table 45: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 45
Table 46: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 46
Table 47: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 47
Table 48: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 48
Table 49: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 49
Table 50: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 50
Table 51: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 51
Table 52: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 52
Table 53: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 53
Table 54: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 54
Table 55: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 55
Table 56: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 56
Table 57: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.2 °.
Example 57
Table 58: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.2 °.
Example 58
Table 59: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 59
Table 60: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 60
Table 61: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 61
Table 62: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 62
Table 63: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 63
Table 64: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 64
Table 65: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 65
Table 66: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 66
Table 67: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 67
Table 68: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 68
Table 69: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 69
Table 70: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 70
Table 71: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 71
Table 72: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the formulated PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw)/cm2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 72
Table 73: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 73
Table 74: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating with light for 60min, and chargingThe residual polymerizable compound was completely reacted and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 74
Table 75: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 75
Table 76: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 76
Table 77: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.1 °.
Example 77
Table 78: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 78
Table 79: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 79
Table 80: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 80
Table 81: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 81
Table 82: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 82
Table 83: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 83
Table 84: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 84
Table 85: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 85
Table 86: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 86
Table 87: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 87
Table 88: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 88
Table 89: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 89
Table 90: the weight percentage and performance parameters of each component in the liquid crystal composition
The nematic liquid crystal composition is added with the following polymerizable compounds in the mass percentage of 0.3 percent:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 90
Table 91: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 91
Table 92: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 92
Table 93: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of polymerizable compounds with the following structures into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 93
Table 94: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 94
Table 95: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.25 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 95
Table 96: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.35 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 86.5 °.
Example 96
Table 97: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.4 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 86.0 °.
Example 97
Table 98: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 98
Table 99: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 99
Table 100: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating with light for 60min to completely react residual polymerizable compound, and measuringThe pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 100
Table 101: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.3 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 101
Table 102: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.25 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 102
Table 103: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.25 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.3 °.
Example 103
Table 104: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) In the application ofIrradiating at 10V for 40s, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 104
Table 105: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.29 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 88.2 °
Example 105
Table 106: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Light irradiationAfter 60min, the residual polymerizable compound is fully reacted, and the pretilt angle of the test liquid crystal in the test box is 87.2 DEG
Example 106
Table 107: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.6 °
Example 107
Table 108: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min by light, fully reacting residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in the test box to be87.0°
Example 108
Table 109: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.8 °
Example 109
Table 110: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.33 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating with light for 60min to fully polymerize the residueThe compound is completely reacted, and the pretilt angle of the tested liquid crystal in the test box is 87.2 DEG
Example 110
Table 111: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.35 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.0 °
Example 111
Table 112: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.36 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.5 °.
Example 112
Table 113: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.3 °.
Example 113
Table 114: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating with light for 60min to fully react residual polymerizable compoundCompletely, the pretilt angle of the test liquid crystal in the test cell was 87.3 °.
Example 114
Table 115: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.8 °.
Example 115
Table 116: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 116
Table 117: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 117
Table 118: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.2 °.
Example 118
Table 119: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.32 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 119
Table 120: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.0 °.
Example 120
Table 121: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.2 °.
Example 121
Table 122: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.31 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.1 °
Example 122
Table 123: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.31 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 123
Table 124: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.8 °
Example 124
Table 125: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min to fully react residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in a test box to be 87.4 °
Example 125
Table 126: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.3 °.
Example 126
Table 127: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.6 °.
Example 127
Table 128: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.4 °.
Example 128
Table 129: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted to completion by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 87.9 °.
Example 129
Table 130: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) Irradiating for 60min by light, fully reacting residual polymerizable compounds, and testing the pretilt angle of the liquid crystal in the test box to be 87.8°。
Example 130
Table 131: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 131
Table 132: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 132
Table 133: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.8 °.
Example 133
Table 134: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.7 °.
Example 134
Table 135: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 135
Table 136: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 136
Table 137: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 137
Table 138: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 138
Table 139: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 139
Table 140: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 140
Table 141: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 141
Table 142: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.32 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 142
Table 1433: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.29 percent by mass of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 143
Table 144: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 144
Table 145: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 145
Table 146: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 146
Table 147: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 147
Table 148: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 148
Table 149: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.28 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 149
Table 150: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.5 °.
Example 150
Table 151: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °.
Example 151
Table 45: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Example 152
Table 153: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.0 °.
Example 153
Table 154: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.4 °.
Example 154
Table 155: the weight percentage and performance parameters of each component in the liquid crystal composition
Adding 0.30 mass percent of the following polymerizable compounds selected from the structures of the general formula I into the nematic liquid crystal composition:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 40s under a voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 60min, and the pretilt angle of the test liquid crystal in the test cell was 88.3 °.
Comparative example 1:
this comparative example differs from example 1 in that the polymerizable compound added in example 1 was replaced with a polymerizable compound of the following structure:
the prepared PSVA mixture was filled into a standard VA test cell and UV (313nm, 4 mw/cm)2) Irradiating for 120s under the voltage of 10V, removing the voltage, and irradiating with UV (365nm, 5 mw/cm)2) The residual polymerizable compound was sufficiently reacted completely by irradiating light for 100min, and the pretilt angle of the test liquid crystal in the test cell was 88.6 °. Comparing example 1 with comparative example 1, the polymerizable compound provided by the present invention has a faster polymerization speed, can rapidly react, promotes the rapid alignment of liquid crystal molecules, greatly reduces the time required for the production of liquid crystal displays, and improves the production efficiency.
From the above embodiments, the liquid crystal composition provided by the present invention can rapidly reach a stable alignment state under UV light irradiation, and the production efficiency is improved.
Although the invention has been described in detail hereinabove with respect to a general description and specific embodiments thereof, it will be apparent to those skilled in the art that modifications and improvements can be made thereto based on the invention. Accordingly, such modifications and improvements are intended to be within the scope of the invention as claimed.