CN110879589A - A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy - Google Patents
A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy Download PDFInfo
- Publication number
- CN110879589A CN110879589A CN201911276265.3A CN201911276265A CN110879589A CN 110879589 A CN110879589 A CN 110879589A CN 201911276265 A CN201911276265 A CN 201911276265A CN 110879589 A CN110879589 A CN 110879589A
- Authority
- CN
- China
- Prior art keywords
- fault
- strategy
- backstepping
- controller
- estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 56
- 238000013461 design Methods 0.000 claims abstract description 63
- 238000012545 processing Methods 0.000 claims abstract description 5
- 238000009795 derivation Methods 0.000 claims abstract description 4
- 230000003044 adaptive effect Effects 0.000 claims description 30
- 230000006870 function Effects 0.000 claims description 25
- 238000013016 damping Methods 0.000 claims description 6
- 238000004590 computer program Methods 0.000 claims description 4
- 238000013178 mathematical model Methods 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000004880 explosion Methods 0.000 abstract description 3
- 238000011160 research Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明属于控制技术领域,尤其涉及一种基于反步策略与滑膜策略的机械臂容错控制方法。The invention belongs to the technical field of control, and in particular relates to a fault-tolerant control method of a robotic arm based on a backstepping strategy and a synovial strategy.
背景技术Background technique
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.
发明人在研究中发现,随着机器人的发展,机械臂控制系统的研究也得到了广泛的关注。控制器故障是工程应用中普遍出现的问题,如果机械臂的控制器发生故障时不能得到及时有效的处理,后果将不堪设想。The inventor found in the research that with the development of robots, the research on the control system of the manipulator has also received extensive attention. Controller failure is a common problem in engineering applications. If the controller of the robotic arm fails to be dealt with in a timely and effective manner, the consequences will be disastrous.
近年来,为了保证工程的可靠性和安全性,机械臂容错控制研究成为了一个备受关注又具有挑战的课题。一方面,以反步设计为代表的结构设计技术在20世纪80年代被提出,而自反步设计被研究者引入到机械臂系统以来,它逐渐成为研究机械臂系统相关问题的一种不可或缺的基础性方法。In recent years, in order to ensure the reliability and safety of engineering, the research on fault-tolerant control of manipulators has become a subject that has attracted much attention and is challenging. On the one hand, the structural design technology represented by backstepping design was proposed in the 1980s, and since backstepping design was introduced to the manipulator system by researchers, it has gradually become an inexorable method for studying problems related to manipulator systems. lack of basic methods.
另一方面,近年来,滑模协议以其响应速度快、物理实现简单等优点逐渐受到学者们的关注,并产生了一系列的研究成果;由滑模控制发展而来的一阶滑膜微分器是解决典型的反步设计方法在虚拟控制器的求导时出现的“复杂性爆炸”困难的一个重要途径,然而这种方法并未应用到解决机械臂的控制器发生故障的研究中。On the other hand, in recent years, the sliding mode protocol has gradually attracted the attention of scholars due to its advantages of fast response speed and simple physical implementation, and has produced a series of research results; the first-order synovial differential developed from sliding mode control It is an important way to solve the difficulty of "complexity explosion" in the derivation of virtual controller in typical backstepping design method. However, this method has not been applied to the research of solving the failure of the controller of the manipulator.
发明内容SUMMARY OF THE INVENTION
为克服上述现有技术的不足,本发明提供了一种基于反步策略与滑膜策略的机械臂容错控制方法,并且借助自适应方法与双曲函数特性而设计的机械臂容错控制策略。In order to overcome the above-mentioned shortcomings of the prior art, the present invention provides a fault-tolerant control method of a manipulator based on a backstepping strategy and a synovial strategy, and a fault-tolerant control strategy of the manipulator designed by means of an adaptive method and hyperbolic function characteristics.
为实现上述目的,本发明的一个或多个实施例提供了如下技术方案:To achieve the above object, one or more embodiments of the present invention provide the following technical solutions:
一种基于反步策略与滑膜策略的机械臂容错控制方法,包括:A fault-tolerant control method of a manipulator based on a backstepping strategy and a synovial strategy, including:
建立机械臂系统的故障动态模型;Establish a dynamic model of the failure of the robotic arm system;
基于上述模型,利用反步设计方法,构造虚拟控制器;Based on the above model, using the backstepping design method to construct a virtual controller;
利用一阶滑膜微分器对虚拟控制器的导数进行有效的估计;Use first-order synovial differentiator to effectively estimate the derivative of virtual controller;
运用自适应估计对系统模型存在的未知参数及故障参数进行处理;Use adaptive estimation to deal with unknown parameters and fault parameters existing in the system model;
再次利用反步设计方法,借助自适应估计、滑膜估计的结果,并通过双曲函数设计最终的控制器。Using the backstepping design method again, the final controller is designed by means of the results of the adaptive estimation, the synovial estimation, and the hyperbolic function.
进一步的技术方案,机械臂系统的故障动态模型:A further technical solution, the failure dynamic model of the robotic arm system:
其中:J表示发动机的转动惯量,M是刚性连杆的质量,q是刚性连杆的角度,B是阻尼系数,l是轴向中心的长度,g是重力加速;其中:Where: J is the moment of inertia of the engine, M is the mass of the rigid connecting rod, q is the angle of the rigid connecting rod, B is the damping coefficient, l is the length of the axial center, and g is the acceleration of gravity; where:
u(t)为实际控制输入,0<k-≤kj≤1、为故障参数,v(t)为设计控制器.和分别代表故障开始时间和结束时间,并且和m为故障发生的总个数,s是start,e是end。u(t) is the actual control input, 0<k-≤k j ≤1, is the fault parameter, and v(t) is the design controller. and represent the failure start time and end time, respectively, and and m is the total number of failures, s is start, and e is end.
将该系统进一步表示为以下数学模型:The system is further represented as the following mathematical model:
其中:x1=q、表示未知参数。where: x 1 =q, Indicates an unknown parameter.
实际工程中,机械臂的设计目标为:设计控制器(u)使得系统转动角度(q)能够在控制的作用之下达到期望的转动角度(r)。现实应用中,控制器产生的力量往往会发生不可预测的故障情况,因此需要考虑设计控制器在发生故障情况下如何利用自身系统相关信息实现设计目标,进而提出了本方案中的容错控制。在建模时就已将机械臂系统的相关信息进行量化,因而在本设计方案中补偿器(v)的设计即可直接借用系统量化信息(发动机的转动惯量、刚性连杆的质量、阻尼系数、轴向中心的长度)的相关量来设计对机械臂输出量(即转动角度q)的有效控制,最终将实际效果与期望的控制目标(r)之间的差值控制在了一定范围之内的效果。In practical engineering, the design goal of the manipulator is to design the controller (u) so that the system rotation angle (q) can reach the desired rotation angle (r) under the action of the control. In practical applications, the force generated by the controller often causes unpredictable failures. Therefore, it is necessary to consider how the design controller uses its own system-related information to achieve the design goal in the event of a failure, and then the fault-tolerant control in this scheme is proposed. The relevant information of the manipulator system has been quantified during modeling, so in this design scheme, the design of the compensator (v) can directly borrow the system quantification information (the moment of inertia of the engine, the mass of the rigid link, the damping coefficient) , the length of the axial center) to design the effective control of the manipulator output (ie the rotation angle q), and finally control the difference between the actual effect and the desired control target (r) within a certain range. effect within.
进一步的技术方案,应用反步设计方法构造虚拟控制器;A further technical solution is to construct a virtual controller by applying a backstepping design method;
引入坐标变换:Introduce coordinate transformation:
y1=x1-r(t),y2=x2-l(t)y 1 =x 1 -r(t), y 2 =x 2 -l(t)
选择李雅普诺夫预备函数:Choose a Lyapunov preparatory function:
构造虚拟控制器为:Construct the virtual controller as:
其中:r(t)为追踪信号,l(t)为虚拟控制器,c1为设计参数。Among them: r(t) is the tracking signal, l(t) is the virtual controller, and c 1 is the design parameter.
进一步的技术方案,利用一阶滑膜微分器对虚拟控制器的导数进行有效的估计:一阶滑膜微分器形为:A further technical solution is to use the first-order synovial differentiator to effectively estimate the derivative of the virtual controller: the first-order synovial differentiator has the form:
h0、h1为微分器系统的两个状态,C0、C1为系统的两个设计参数。h 0 and h 1 are the two states of the differentiator system, and C 0 and C 1 are the two design parameters of the system.
进一步的技术方案,运用自适应控制对参数进行处理:A further technical solution uses adaptive control to process parameters:
系统固有的未知参数的自适应更新率设计为:The adaptive update rate of the unknown parameters inherent in the system is designed as:
其中:为θ=(θ1,θ2)T的估计,Г、Λ为二维的设计矩阵。in: is the estimation of θ=(θ 1 , θ 2 ) T , and Г and Λ are two-dimensional design matrices.
进一步的技术方案,系统控制器故障参数相关量的自适应更新率:A further technical solution, the adaptive update rate of the relevant quantities of the system controller fault parameters:
首先给出相关的符号定义:First, the relevant symbol definitions are given:
两者的自适应更新率设计为:The adaptive update rate of both is designed as:
其中: 分别为p的估计,γ1、γ2、c2、σ1、σ2为调节参数。in: respectively The estimation of p, γ 1 , γ 2 , c 2 , σ 1 , and σ 2 are adjustment parameters.
进一步的技术方案,构造李雅普诺夫函数:A further technical solution, constructing the Lyapunov function:
其中: 分别为对应的估计误差,利用自适应估计、滑膜估计的结果,并设计带有双曲函数的控制器:in: are the corresponding estimation errors, using the results of adaptive estimation and synovial estimation, and design a controller with a hyperbolic function:
根据系统未知参数自适应更新率的设置、虚拟控制器经过一阶滑膜微分器的估计设置,对李雅普诺夫预备函数求导可得其导数满足:According to the setting of the adaptive update rate of the unknown parameters of the system and the estimation setting of the virtual controller through the first-order synovial differentiator, the derivative of the Lyapunov preparatory function can be obtained to satisfy:
其中:k、Δ均为相关参数的代替符号。Among them: k and Δ are the substitute symbols of relevant parameters.
本发明公开了一种基于反步策略与滑膜策略的机械臂容错控制器设计策略,所述控制器利用上述一种基于反步策略与滑膜策略的机械臂容错控制方法涉及获得。The invention discloses a design strategy of a manipulator fault-tolerant controller based on a backstepping strategy and a synovial strategy.
以上一个或多个技术方案存在以下有益效果:One or more of the above technical solutions have the following beneficial effects:
(1)本公开将机械臂转动角度的追踪目标的要求进行降低,只需要追踪目标函数一阶导数存在且有界即可,并不需要得出其显示形式。(1) The present disclosure reduces the requirement for the tracking target of the rotation angle of the manipulator, only the first derivative of the tracking target function needs to exist and is bounded, and it is not necessary to obtain its display form.
(2)本公开设计中的Λ矩阵代替传统方案中的参数使得未知参数的自适应效果增强,改善了以往使用参数估计效果不佳的现象。(2) The Λ matrix in the design of the present disclosure replaces the parameters in the traditional scheme, so that the adaptive effect of the unknown parameters is enhanced, and the phenomenon that the previous parameter estimation effect is not good is improved.
(3)本公开将一阶滑膜微分器应用到反步设计中,有效的避免了虚拟控制器求导的“爆炸复杂性”问题的产生。(3) The present disclosure applies the first-order synovial differentiator to the backstepping design, which effectively avoids the "explosive complexity" problem of virtual controller derivation.
(4)本公开将一阶滑膜微分器与反步设计结合的方法首次应用到机械臂系统容错控制中,将控制器故障进行了有效的补偿,保证了对机械臂系统中转动角度控制的稳定性,提高了机械臂系统控制的安全性。(4) This disclosure applies the method of combining the first-order synovial differentiator and the backstepping design to the fault-tolerant control of the robotic arm system for the first time, effectively compensating for the controller fault, and ensuring the accuracy of the rotation angle control in the robotic arm system. The stability improves the safety of the robotic arm system control.
(5)本公开首次将双曲函数tanh(x)应用到机械臂系统的容错控制中,有效的提高了追踪误差的精确度。(5) The present disclosure applies the hyperbolic function tanh(x) to the fault-tolerant control of the robotic arm system for the first time, which effectively improves the accuracy of the tracking error.
(6)本公开构造模型时,将系统参数设为未知的情况,有效的增大了研究对象的广泛性。(6) When the present disclosure constructs the model, the system parameters are Setting it as an unknown situation effectively increases the breadth of the research objects.
附图说明Description of drawings
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings forming a part of the present invention are used to provide further understanding of the present invention, and the exemplary embodiments of the present invention and their descriptions are used to explain the present invention, and do not constitute an improper limitation of the present invention.
图1为本公开实施例子机械臂系统的原理结构图;FIG. 1 is a schematic structural diagram of a robotic arm system according to an embodiment of the present disclosure;
图2为本公开实施例子的机械臂转动角度q追踪目标信号r误差图;2 is an error diagram of a manipulator rotation angle q tracking target signal r according to an embodiment of the disclosure;
图3为本公开实施例子的一阶滑膜微分器的估计误差图;3 is an estimation error diagram of a first-order synovial differentiator according to an embodiment of the present disclosure;
图4(a)-图4(d)为本公开实施例子的未知参数以及故障参数相关量的自适应估计图;FIG. 4(a)-FIG. 4(d) are adaptive estimation diagrams of unknown parameters and related quantities of fault parameters according to an embodiment of the present disclosure;
图5为本公开实施例子的流程图。FIG. 5 is a flowchart of an embodiment of the present disclosure.
具体实施方式Detailed ways
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the invention. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present invention. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。Embodiments of the invention and features of the embodiments may be combined with each other without conflict.
本发明提出的总体思路:The general idea proposed by the present invention:
参见附图5所示,基于反步设计方法与一阶滑膜微分器方法相结合,并且借助自适应方法与双曲函数特性而设计的机械臂容错控制策略。首先根据机械臂系统的内部运行机理,建立机械臂系统数学模型;其次根据反步设计方法,构造虚拟控制器;借助一阶滑膜微分器对虚拟控制器的导数进行有效的估计;运用自适应估计对系统存在的未知参数,包括系统固有的未知参数以及故障参数进行适当的估计处理;再次回到反步设计方法,借助自适应估计、滑膜估计的结果,并借助双曲函数设计最终的控制器,有效的实现机械臂系统机械臂容错控制的目标。该方法不仅有效地避免了“复杂爆炸性”问题的产生以及减弱了追踪信号的要求,还增强了研究目标的范围并且提高了自适应效率。Referring to FIG. 5 , a fault-tolerant control strategy of the manipulator is designed based on the combination of the backstepping design method and the first-order synovial differentiator method, and with the help of the adaptive method and hyperbolic function characteristics. Firstly, according to the internal operation mechanism of the robot arm system, the mathematical model of the robot arm system is established; secondly, the virtual controller is constructed according to the backstepping design method; the derivative of the virtual controller is effectively estimated with the help of the first-order synovial differentiator; Estimate the unknown parameters existing in the system, including the inherent unknown parameters and fault parameters of the system, and perform appropriate estimation processing; go back to the backstepping design method again, use the results of adaptive estimation and synovial estimation, and use the hyperbolic function to design the final design. The controller can effectively achieve the goal of fault-tolerant control of the manipulator system. This method not only effectively avoids the "complex explosion" problem and weakens the requirement of tracking signals, but also enhances the range of research targets and improves the efficiency of adaptation.
实施例一Example 1
参见附图1所示,本实施例公开了一种基于反步策略与滑膜策略的机械臂容错控制方法,首先,根据机械臂系统的内部运行机理,建立机械臂系统的故障动态模型:Referring to FIG. 1, the present embodiment discloses a fault-tolerant control method of a robotic arm based on a backstepping strategy and a synovial strategy. First, a fault dynamic model of the robotic arm system is established according to the internal operating mechanism of the robotic arm system:
其中:J表示发动机的转动惯量,M是刚性连杆(rigid link)的质量,q是刚性连杆(rigid link)的角度,B是阻尼系数,l是轴向中心的长度,g是重力加速。其中:Where: J is the moment of inertia of the engine, M is the mass of the rigid link, q is the angle of the rigid link, B is the damping coefficient, l is the length of the axial center, and g is the acceleration of gravity . in:
这里:0<k_≤kj≤1、为故障参数,v(t)为设计控制器,和分别代表故障开始时间和结束时间,并且和 Here: 0<k_≤k j ≤1, is the fault parameter, v(t) is the design controller, and represent the failure start time and end time, respectively, and and
实际工程中,机械臂系统的设计输入力量v(t)往往会发生一些故障,使得设计输入力量与实际输入力量u(t)不一致,又充分考虑到v(t)与u(t)存在一定的关系,因此将其建模为 In practical engineering, the design input force v(t) of the robotic arm system often has some failures, which makes the design input force inconsistent with the actual input force u(t), and it is fully considered that there is a certain relationship between v(t) and u(t). , so it is modeled as
kj是设计的控制器的常量系数,有大小限制:大于零,小于等于1,因其未知,故称为一个未知的故障参数,每一个j可以表示kj为大小不同的常数,m和其他设计方案中n的作用相同;k j is the constant coefficient of the designed controller, and there is a size limit: greater than zero, less than or equal to 1, because it is unknown, it is called an unknown fault parameter, each j can represent k j as a constant of different sizes, m and The role of n in other designs is the same;
也是一个未知的常量故障参数,但是其大小没有限制,表示与v(t)无关的故障量,但一般情况下的值并不会太大; is also an unknown constant fault parameter, but its size is not limited, representing the amount of fault independent of v(t), but in the general case The value of is not too large;
当kj=1,则为控制器并没有发生故障。When k j =1, The controller is not faulty.
j=1,2,...,m:表示每个时间段内两个故障参数的大小可以不同,共有m个故障时间段。j=1, 2, ..., m: indicates that the magnitudes of the two fault parameters in each time period can be different, and there are m fault time periods in total.
和表示故障参数为多个连续的常数组成随时可变得故障。 and Indicates that the fault parameter is composed of multiple continuous constants that can become faulty at any time.
将该系统进一步表示成能够使用反步设计方法的数学模型:The system is further represented as a mathematical model that can use the backstepping design method:
其中:x1=q,表示未知参数;并且根据实际情况x1为系统的输出信号。where: x 1 =q, Represents unknown parameters; and x 1 is the output signal of the system according to the actual situation.
实际工程中,对于能直接测量或者能得到的信号,称为输出信号。在本发明的系统中,能直接获得的信号为机械臂的角度q,又因建模时令x1=q,则x1是机械臂系统的输出信号。In practical engineering, the signal that can be directly measured or obtained is called the output signal. In the system of the present invention, the signal that can be directly obtained is the angle q of the manipulator, and since x 1 =q in modeling, then x 1 is the output signal of the manipulator system.
实际中,机械臂系统中的一些信息(刚性连杆的质量、阻尼系数、轴向中心的长度)有可能是不可得的,因此在工程设计中要充分考虑到这些可能未知的量,在建模时用来表示未知参数,并在以下的设计步骤中通过自适应的方式将其进行估计。In practice, some information in the manipulator system (mass of rigid link, damping coefficient, length of axial center) may not be available, so these possibly unknown quantities should be fully considered in engineering design. for mold to represent the unknown parameters, which are estimated adaptively in the following design steps.
应用反步设计方法构造虚拟控制器:Apply the backstepping design method to construct a virtual controller:
由反步设计方法可知应首先引入坐标变换:It can be seen from the backstepping design method that the coordinate transformation should be introduced first:
y1=x1-r(t),y2=x2-l(t)y 1 =x 1 -r(t), y 2 =x 2 -l(t)
构造合适的李雅普诺夫预备函数,这里选择:Construct a suitable Lyapunov preparatory function, here choose:
为了使得最终的李雅普诺夫预备函数满足一定的条件,这里构造虚拟控制器为:In order to make the final Lyapunov preparation function meet certain conditions, the virtual controller is constructed here as:
其中:r(t)为目标信号,l(t)为虚拟控制器,c1为一个大于1的设计参数。也可根据实际追踪目标设计追踪信号,比如将追踪信号设为0,则系统的输出效果即为在0附近,本方案的仿真实例的追踪误差参见附图2所示。Among them: r(t) is the target signal, l(t) is the virtual controller, and c 1 is a design parameter greater than 1. The tracking signal can also be designed according to the actual tracking target. For example, if the tracking signal is set to 0, the output effect of the system is near 0. The tracking error of the simulation example of this scheme is shown in FIG. 2 .
参见附图3所述,借助一阶滑膜微分器对反步设计方法构造的虚拟控制器的导数进行有效的估计Referring to Fig. 3, the derivative of the virtual controller constructed by the backstepping design method is effectively estimated by means of a first-order synovial differentiator
一阶滑膜微分器形为:The first-order synovial differentiator has the form:
这里:sign为符号函数;C0、C1为两个设计参数,其设置与虚拟控制器有关,具体大小需要调试;h0、h1为一阶滑膜微分器系统的两个状态。根据一阶滑膜微分器的相关知识可以得知,只要调节参数C0、C1,以及一阶滑膜微分器中两个系统状态h0、h1的初始值h0(0)、h1(0)的大小,就可将虚拟控制器l(t)的导数用η0有效的估计出。Here: sign is a sign function; C 0 , C 1 are two design parameters, the settings of which are related to the virtual controller, and the specific size needs to be debugged; h 0 , h 1 are the two states of the first-order synovial differentiator system. According to the relevant knowledge of the first-order synovial differentiator, it can be known that as long as the parameters C 0 and C 1 are adjusted, as well as the initial values h 0 (0), h of the two system states h 0 and h 1 in the first-order synovial differentiator 1 (0), the derivative of the virtual controller l(t) can be effectively estimated with η 0 .
参见附图4(a)-图4(d)所示,运用自适应控制对故障参数或系统存在的未知参数进行适当的处理,通过调节自适应率以及一节滑膜微分器中的参数,对所设的需要估计的未知量进行估计处理:Referring to Fig. 4(a)-Fig. 4(d), the adaptive control is used to properly process the fault parameters or the unknown parameters existing in the system. By adjusting the adaptive rate and the parameters in a section of the synovial differentiator, Estimate the set unknowns that need to be estimated:
系统固有的未知参数的自适应更新率设计为:The adaptive update rate of the unknown parameters inherent in the system is designed as:
其中:为θ=(θ1,θ2)T的估计,Г、Λ为二维的设计矩阵,为了便于操作方便,此处两个设计矩阵以对角矩阵为优,并且Λ矩阵元素的大小与系统参数有关,需要具体调试。in: is the estimation of θ=(θ 1 , θ 2 ) T , Г and Λ are two-dimensional design matrices. For the convenience of operation, the two design matrices here are preferably diagonal matrices, and the size of the Λ matrix elements is related to the system The parameters are related and need to be debugged.
系统控制器故障参数相关量的自适应更新率设计思路:便于对故障参数进行有效的自适应,这里首先给出相关的符号定义:The design idea of the adaptive update rate of the relevant quantities of the fault parameters of the system controller: It is convenient to effectively adapt the fault parameters. Here, the relevant symbol definitions are given first:
β=inf1≤j≤m{kj},β = inf 1≤j≤m {kj},
这里对相关符号定义的目的是考虑到故障参数kj的存在使得控制力量v(t)最小(即inf1≤j≤m{kj}带来的作用),以及出现导致控制力量v(t)偏差最大(即带来的作用)情况下能达到控制目标。故障最严重时能达到控制目标则一般故障发生情况下也能达到控制目标。The purpose of defining the relevant symbols here is to take into account the existence of the fault parameter k j to minimize the control force v(t) (that is, the effect of inf 1≤j≤m {k j }), and appears to result in the largest deviation of the control force v(t) (i.e. effect) can achieve the control objective. The control target can be achieved when the fault is the most serious, and the control target can also be achieved when the general fault occurs.
由于两个量的实际值是未知的,因此这里需要进行自适应估计,两者的自适应更新率设计为:Since the actual values of the two quantities are unknown, adaptive estimation is required here, and the adaptive update rates of the two are designed as:
其中: 分别为p的估计,γ1、γ2、c2、σ1、σ2为调节参数,这里c2只需大于1即可,但σ1、σ2的值需要根据系统固有参数的设置而具体调试。in: respectively For the estimation of p, γ 1 , γ 2 , c 2 , σ 1 , and σ 2 are adjustment parameters, where c 2 only needs to be greater than 1, but the values of σ 1 and σ 2 need to be specifically adjusted according to the settings of the inherent parameters of the system .
再次回到反步设计方法,根据做相应的控制理论研究基础,这里构造李雅普诺夫函数:Returning to the backstepping design method again, according to the corresponding control theory research basis, the Lyapunov function is constructed here:
其中: 分别为对应的估计误差。借助上述实施方案中自适应估计、滑膜估计的结果,并借助双曲函数(∈为任意正数)的性质设计最终的控制器:in: are the corresponding estimation errors, respectively. With the help of the results of the adaptive estimation, the synovial estimation in the above embodiment, and with the help of the hyperbolic function (∈ is any positive number) to design the final controller:
对系统建模时,首先是将系统的内部相关信息(刚性连杆的质量、阻尼系数、轴向中心的长度)进行量化处理,因此在实际工程中,为机械臂系统设计控制力量时,也要先将这些信息进行量化处理,然后再借用本方案里v(t)的设计来实现容错控制的目标。When modeling the system, the first step is to quantify the internal related information of the system (mass of the rigid link, damping coefficient, length of the axial center), so in actual engineering, when designing the control force for the robotic arm system, it is also This information should be quantified first, and then the design of v(t) in this scheme is used to achieve the goal of fault-tolerant control.
根据上述方案中系统未知参数自适应更新率的设置、虚拟控制器经过一阶滑膜微分器的估计设置,对李雅普诺夫预备函数求导可得其导数满足:According to the setting of the adaptive update rate of the unknown parameters of the system in the above scheme and the estimation setting of the virtual controller through the first-order synovial differentiator, the derivative of the Lyapunov preparatory function can be obtained to satisfy:
其中:k、Δ均为参数,根据控制领域的相关理论研究知识可得,由此实现了机械臂系统容错控制的目标。Among them: k and Δ are parameters, which can be obtained according to the relevant theoretical research knowledge in the control field, thus achieving the goal of fault-tolerant control of the robotic arm system.
由此得知,通过对系统施加所设计的控制力量v能够实现机械臂系统在发生故障的情况下,使得输出信号x1对目标信号r的有界追踪。From this, it can be known that by applying the designed control force v to the system, it is possible to realize the bounded tracking of the output signal x 1 to the target signal r in the event of a failure of the robotic arm system.
根据所设计控制器v的具体形式可知,实际的工程应用中,特别需要调节的工程参数主要为:Λ、σ1、σ2、C0、C1。虽然参数值没有范围,但这些调试参数如果设置的不正确,系统输出信号x1(即机械臂转动角度q)就得不到有效地控制,因此可以根据系统输出信号x1与目标信号r的实际追踪效果得知这些调试参数是否与其对应的实际值相近。According to the specific form of the designed controller v, in practical engineering applications, the engineering parameters that need to be adjusted are mainly: Λ, σ 1 , σ 2 , C 0 , C 1 . Although there is no range of parameter values, if these debugging parameters are set incorrectly, the system output signal x 1 (ie the rotation angle q of the manipulator) cannot be effectively controlled. The actual tracking effect knows whether these debug parameters are close to their corresponding actual values.
这里在仿真时不妨设置:追踪目标为r(t)=sin(t),初值分别为x1(0)=0.5、x2(0)=0、 h0(0)=-20、h1(0)=-2。Here, you may wish to set it during simulation: the tracking target is r(t)=sin(t), and the initial values are x 1 (0)=0.5, x 2 (0)=0, h 0 (0)=-20, h 1 (0)=-2.
参数分别为:B=0.5、J=M=0.25、l=1、g=10、kj=0.5、 (即β=2,p=10、θ1=-2、θ2=-10),c1=20、c2=20、E=5、Г=diag{1,1}、Λ=diag{0.4,0.013}、γ1=1、γ2=1、σ1=0.012、σ2=0.07、C0=8、C1=10。The parameters are: B=0.5, J=M=0.25, l=1, g=10, k j =0.5, (ie β=2, p=10, θ 1 =-2, θ 2 =-10), c 1 =20, c 2 =20, E=5, Г=diag{1,1}, Λ=diag{ 0.4, 0.013}, γ 1 =1, γ 2 =1, σ 1 =0.012, σ 2 =0.07, C 0 =8, C 1 =10.
仿真结果是机械臂系统输出信号x1(即机械臂转动角度q)与目标信号r的追踪误差。The simulation result is the tracking error between the output signal x 1 of the manipulator system (that is, the rotation angle q of the manipulator) and the target signal r.
在另一实施例子中,本发明公开了一种基于反步方法与滑膜方法的机械臂容错系统,包括控制器,所述控制器利用上述一种基于反步策略与滑膜策略的机械臂容错控制方法涉及获得。In another embodiment, the present invention discloses a manipulator fault-tolerant system based on the backstepping method and the synovial method, including a controller, and the controller utilizes the above-mentioned manipulator based on the backstepping strategy and the synovial strategy. The fault-tolerant control method involves acquisition.
实施例二
本实施例的目的是提供一种计算装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现以下步骤,包括:The purpose of this embodiment is to provide a computing device, including a memory, a processor and a computer program stored in the memory and running on the processor, the processor implements the following steps when executing the program, including:
建立机械臂系统的故障动态模型;Establish a dynamic model of the failure of the robotic arm system;
基于上述模型,利用反步设计方法,构造虚拟控制器;Based on the above model, using the backstepping design method to construct a virtual controller;
利用一阶滑膜微分器对虚拟控制器的导数进行有效的估计;Use first-order synovial differentiator to effectively estimate the derivative of virtual controller;
运用自适应估计对系统模型存在的未知参数及故障参数进行处理;Use adaptive estimation to deal with unknown parameters and fault parameters existing in the system model;
再次利用反步设计方法,借助自适应估计、滑膜估计的结果,并通过双曲函数设计最终的控制器。Using the backstepping design method again, the final controller is designed by means of the results of the adaptive estimation, the synovial estimation, and the hyperbolic function.
实施例三
本实施例的目的是提供一种计算机可读存储介质。The purpose of this embodiment is to provide a computer-readable storage medium.
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时执行以下步骤:A computer-readable storage medium on which a computer program is stored, the program executes the following steps when executed by a processor:
建立机械臂系统的故障动态模型;Establish a dynamic model of the failure of the robotic arm system;
基于上述模型,利用反步设计方法,构造虚拟控制器;Based on the above model, using the backstepping design method to construct a virtual controller;
利用一阶滑膜微分器对虚拟控制器的导数进行有效的估计;Use first-order synovial differentiator to effectively estimate the derivative of virtual controller;
运用自适应估计对系统模型存在的未知参数及故障参数进行处理;Use adaptive estimation to deal with unknown parameters and fault parameters existing in the system model;
再次利用反步设计方法,借助自适应估计、滑膜估计的结果,并通过双曲函数设计最终的控制器。Using the backstepping design method again, the final controller is designed by means of the results of the adaptive estimation, the synovial estimation, and the hyperbolic function.
以上实施例的装置中涉及的各步骤与方法实施例一相对应,具体实施方式可参见实施例一的相关说明部分。术语“计算机可读存储介质”应该理解为包括一个或多个指令集的单个介质或多个介质;还应当被理解为包括任何介质,所述任何介质能够存储、编码或承载用于由处理器执行的指令集并使处理器执行本发明中的任一方法。The steps involved in the apparatus of the above embodiment correspond to the
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, they do not limit the scope of protection of the present invention. Those skilled in the art should understand that on the basis of the technical solutions of the present invention, those skilled in the art do not need to pay creative work. Various modifications or deformations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911276265.3A CN110879589A (en) | 2019-12-12 | 2019-12-12 | A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911276265.3A CN110879589A (en) | 2019-12-12 | 2019-12-12 | A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110879589A true CN110879589A (en) | 2020-03-13 |
Family
ID=69731666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911276265.3A Pending CN110879589A (en) | 2019-12-12 | 2019-12-12 | A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110879589A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113296401A (en) * | 2021-05-17 | 2021-08-24 | 哈尔滨工业大学 | Direct obstacle avoidance tracking control method based on switching strategy and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6208914B1 (en) * | 1996-11-21 | 2001-03-27 | Barron Associates, Inc. | System for improved receding-horizon adaptive and reconfigurable control |
CN104485866A (en) * | 2014-12-15 | 2015-04-01 | 南京理工大学 | Motor indirect adaptive robust output feedback control method based on high-order slip-form differentiator |
CN104950677A (en) * | 2015-06-17 | 2015-09-30 | 浙江工业大学 | Mechanical arm system saturation compensation control method based on back-stepping sliding mode control |
CN108549235A (en) * | 2018-05-14 | 2018-09-18 | 西北工业大学 | A kind of motor driving single connecting rod manipulator it is limited when neural network control method |
CN110170992A (en) * | 2019-04-02 | 2019-08-27 | 长春工业大学 | A kind of modular mechanical arm multiple faults fault tolerant control method based on Dynamic Programming |
-
2019
- 2019-12-12 CN CN201911276265.3A patent/CN110879589A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6208914B1 (en) * | 1996-11-21 | 2001-03-27 | Barron Associates, Inc. | System for improved receding-horizon adaptive and reconfigurable control |
CN104485866A (en) * | 2014-12-15 | 2015-04-01 | 南京理工大学 | Motor indirect adaptive robust output feedback control method based on high-order slip-form differentiator |
CN104950677A (en) * | 2015-06-17 | 2015-09-30 | 浙江工业大学 | Mechanical arm system saturation compensation control method based on back-stepping sliding mode control |
CN108549235A (en) * | 2018-05-14 | 2018-09-18 | 西北工业大学 | A kind of motor driving single connecting rod manipulator it is limited when neural network control method |
CN110170992A (en) * | 2019-04-02 | 2019-08-27 | 长春工业大学 | A kind of modular mechanical arm multiple faults fault tolerant control method based on Dynamic Programming |
Non-Patent Citations (1)
Title |
---|
邹思凡 等: ""改进非线性干扰观测器的机械臂自适应反演滑模控制"", 《计算机应用》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113296401A (en) * | 2021-05-17 | 2021-08-24 | 哈尔滨工业大学 | Direct obstacle avoidance tracking control method based on switching strategy and storage medium |
CN113296401B (en) * | 2021-05-17 | 2022-04-19 | 哈尔滨工业大学 | A direct obstacle avoidance tracking control method and storage medium based on switching strategy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109189085B (en) | Attitude Control Method of Spacecraft Network System Based on Event Trigger | |
CN105404304B (en) | The fault-tolerant posture collaboration tracking and controlling method of spacecraft based on normalization neutral net | |
CN106393116B (en) | Mechanical arm fractional order iterative learning control method with Initial state learning and system | |
CN114800489B (en) | Manipulator compliance control method, storage medium and robot based on combination of deterministic learning and compound learning | |
CN108388114B (en) | A composite control method of flexible manipulator based on output redefinition | |
CN109116737B (en) | Fault Assessment and Fault Tolerant Consistency Control Algorithm for Multi-Agent Systems under Observer | |
CN112817231A (en) | High-precision tracking control method for mechanical arm with high robustness | |
CN108803326A (en) | Industrial machinery arm linear active disturbance rejection tracking and controlling method with interference and time delay | |
CN107942684A (en) | Mechanical arm trace tracking method based on the adaptive non-singular terminal sliding formwork of fractional order | |
CN110421569A (en) | A kind of inverting sliding formwork machinery arm controller design method based on finite time disturbance observer | |
WO2022247169A1 (en) | Admittance control method for robot, admittance control system, and robot | |
CN113433825B (en) | Self-adaptive fault-tolerant control method and system of single-link mechanical arm and storage medium | |
CN107505835A (en) | A kind of method, apparatus and system of control machinery hands movement | |
CN115256386A (en) | A Neural Adaptive Control Method for Uncertain Manipulators Considering Tracking Error Constraints | |
CN114995502A (en) | Spacecraft formation flight attitude tracking control method | |
CN115319800B (en) | A design method for a time-predetermined controller of a dual-joint robotic arm | |
CN110879589A (en) | A fault-tolerant control method and system for a manipulator based on backstepping strategy and synovial strategy | |
CN107263455B (en) | The Position Tracking Control method of two degrees of freedom SCARA robot | |
CN107765548A (en) | Flat pad high-precision motion control method based on double observers | |
CN107255926A (en) | A kind of method of rapid solving redundancy mechanical arm joint angle offset problem | |
CN115042178A (en) | Robot reinforcement learning method, device, equipment and medium for ensuring contact safety | |
CN118331075A (en) | Parameter estimation method of flexible mechanism model based on adaptive extended state observer | |
CN108646563B (en) | A fixed-time parameter identification and position synchronization control method for a multi-manipulator system based on mean value coupling | |
CN117283565A (en) | Flexible joint mechanical arm control method based on Actor-Critic network full-state feedback | |
CN108406766B (en) | A Synchronous Control Method of Multi-Manipulator System Based on Composite Integral Sliding Mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200313 |