CN110879022A - Small-size guided missile detects strutting arrangement - Google Patents
Small-size guided missile detects strutting arrangement Download PDFInfo
- Publication number
- CN110879022A CN110879022A CN201911165190.1A CN201911165190A CN110879022A CN 110879022 A CN110879022 A CN 110879022A CN 201911165190 A CN201911165190 A CN 201911165190A CN 110879022 A CN110879022 A CN 110879022A
- Authority
- CN
- China
- Prior art keywords
- light source
- missile
- clamping
- detected
- source assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F42—AMMUNITION; BLASTING
- F42B—EXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
- F42B35/00—Testing or checking of ammunition
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
本发明实施例公开了一种小型导弹检测支撑装置,包括:夹持支撑工装、旋转光源组件以及电控箱;所述夹持支撑工装,用于固定不同型号的被检测的导弹;所述旋转光源组件:用于生成检测导弹目标捕获与跟踪能力的运动光源;所述电控箱,与所述旋转光源组件电连接,用于控制旋转光源组件,并接收远控主机的电控制信号。通过设置夹持支撑工装,用于固定不同型号的被检测的导弹,并设置旋转光源组件和电控箱对固定在夹持支撑工装上的导弹进行检测,因夹持支撑工装可以固定不同型号的导弹,因此达到通用性强的目的。
The embodiment of the present invention discloses a small missile detection and support device, comprising: a clamping and supporting tool, a rotating light source assembly and an electric control box; the clamping and supporting tool is used for fixing different types of detected missiles; the rotating Light source assembly: used to generate a moving light source for detecting missile target capture and tracking capabilities; the electric control box is electrically connected to the rotating light source assembly for controlling the rotating light source assembly and receiving electrical control signals from the remote control host. By setting the clamping support tooling, it is used to fix the detected missiles of different types, and the rotating light source assembly and the electric control box are set to detect the missiles fixed on the clamping support tooling, because the clamping support tooling can fix different types of missiles. missiles, thus achieving the purpose of strong versatility.
Description
技术领域technical field
本发明属于测量技术领域,更具体地,涉及一种小型导弹检测支撑装置。The invention belongs to the technical field of measurement, and more particularly relates to a small missile detection support device.
背景技术Background technique
导弹测试是导弹研制、生产、使用过程中的重要工作项目,用于检查、验证导弹系统的功能和主要技术性能,进行故障定位,在必要和允许的情况下调整不合格的参数或更换有故障的部件,以保证工厂生产的导弹技术状态、功能性能符合要求,以求交付部队使用的导弹处于良好的备战状态。导弹检测支撑装置是导弹在总装测试过程中所必要的设备,但是目前小型导弹检测支撑装置主要存在如下缺点:Missile test is an important work item in the process of missile development, production and use. It is used to check and verify the function and main technical performance of the missile system, locate faults, and adjust unqualified parameters or replace faulty ones when necessary and permitted. To ensure that the technical status and functional performance of the missiles produced by the factory meet the requirements, so that the missiles delivered to the troops are in a good state of readiness. The missile detection support device is a necessary equipment for the missile in the final assembly test process, but the current small missile detection support device mainly has the following shortcomings:
1、主体支撑设备大,不方便运输;1. The main support equipment is large, which is inconvenient for transportation;
2、设备夹持支撑工装夹紧导弹时,经常出现导弹表面刮伤、漆皮受损的情况,严重的可能导致舱段报废;2. When the equipment clamps the support tool to clamp the missile, the surface of the missile is often scratched and the paint is damaged, which may cause the cabin to be scrapped in serious cases;
3、设备通用性不强,不可以同时共用不同种类的导弹;3. The versatility of the equipment is not strong, and different types of missiles cannot be shared at the same time;
4、设备检测不稳定,性能检测的精度不高,支撑不稳定,不方便4. The equipment detection is unstable, the performance detection accuracy is not high, the support is unstable, and it is inconvenient
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例提供了一种小型导弹检测支撑装置,至少解决现有技术中通用性不强的问题。In view of this, the embodiments of the present invention provide a small missile detection support device, which at least solves the problem of poor versatility in the prior art.
本发明实施例提供了一种小型导弹检测支撑装置,包括:An embodiment of the present invention provides a small missile detection support device, including:
夹持支撑工装、旋转光源组件以及电控箱;Clamping and supporting tooling, rotating light source assembly and electric control box;
所述夹持支撑工装用于固定不同型号的被检测的导弹;The clamping and supporting tooling is used for fixing different types of detected missiles;
所述旋转光源组件用于生成检测导弹目标捕获与跟踪能力的运动光源;The rotating light source assembly is used to generate a moving light source for detecting the ability of missile target capture and tracking;
所述电控箱,与所述旋转光源组件电连接,用于控制旋转光源组件,并接收远控主机的电控制信号。The electric control box is electrically connected with the rotating light source assembly, and is used for controlling the rotating light source assembly and receiving the electric control signal of the remote control host.
可选的,装置还包括支撑台和激光对位设备,Optionally, the device further includes a support table and a laser alignment device,
所述夹持支撑工装、旋转光源组件、电控箱以及激光对位设备均设置在所述支撑台上;The clamping support tool, the rotating light source assembly, the electric control box and the laser alignment equipment are all arranged on the support table;
所述激光对位设备用于与被检测的导弹上的基准对准,保证被检测的导弹稳定并准确的对准旋转基准点。The laser alignment device is used for aligning with the reference on the detected missile to ensure that the detected missile is stably and accurately aligned with the rotational reference point.
可选的,所述夹持支撑工装的内壁上装有硅胶垫;Optionally, a silicone pad is installed on the inner wall of the clamping support tool;
所述夹持支撑工装的底部设置多组梯形丝杠微调机构,所述梯形丝杠微调机构用于对所述夹持支撑工装进行横向调节,使被检测的导弹与光源在同一轴线上;A plurality of sets of trapezoidal lead screw fine-tuning mechanisms are arranged at the bottom of the clamping support tooling, and the trapezoidal lead screw fine-tuning mechanisms are used to laterally adjust the clamping and supporting tooling, so that the detected missile and the light source are on the same axis;
所述梯形丝杠微调机构上安装有机械数显仪表,用来显示梯形丝杠微调机构横向调节的度量。A mechanical digital display instrument is installed on the trapezoidal lead screw fine-tuning mechanism, which is used to display the measurement of the lateral adjustment of the trapezoidal lead screw fine-tuning mechanism.
可选的,所述旋转光源组件包括电机、减速器、编码器、摆臂、推力轴承、环形导轨以及光源,所述减速器和编码器与所述电机电连接,所述电机通过推力轴承与摆臂机械连接,所述光源设置在摆臂上,在所述电机的作用下光源沿环形导轨旋转。Optionally, the rotating light source assembly includes a motor, a reducer, an encoder, a swing arm, a thrust bearing, an annular guide rail and a light source, the reducer and the encoder are electrically connected to the motor, and the motor is connected to the motor through a thrust bearing. The swing arm is mechanically connected, the light source is arranged on the swing arm, and the light source rotates along the annular guide rail under the action of the motor.
可选的,所述摆臂的旋转角度为±50°。Optionally, the rotation angle of the swing arm is ±50°.
可选的,通过电机、减速器与摆臂控制光源运动的速度和位置,用于测量被检测的导弹导引头的目标捕获与跟踪能力。Optionally, the speed and position of the movement of the light source are controlled by the motor, the reducer and the swing arm to measure the target acquisition and tracking capability of the detected missile seeker.
可选的,所述电控箱内安装有电机驱动器、供电电源与信号转接板;所述信号转接板接收编码器反馈的电信号,同时接收远控主机的电控制信号,通过电机驱动器控制电机的位置和速度,所述供电电源为电机驱动器供电。Optionally, a motor driver, a power supply and a signal adapter board are installed in the electric control box; the signal adapter board receives the electrical signal fed back by the encoder, and at the same time receives the electrical control signal of the remote control host, through the motor driver. The position and speed of the motor are controlled, and the power supply powers the motor driver.
可选的,所述光源上设置上下微调孔,通过上下微调孔和设置在所述光源背面的安装槽口对光源进行上下调节。Optionally, upper and lower fine-tuning holes are provided on the light source, and the light source is adjusted up and down through the upper and lower fine-tuning holes and the installation notch provided on the back of the light source.
可选的,所述夹持支撑工装内设置环形滑轨,所述环形滑轨,用于在夹持状态下将被检测的导弹旋转90°,从而在偏航与俯仰两个方向上切换,满足被检测的导弹在两方向上锁定与跟踪性能的测试要求。Optionally, an annular slide rail is provided in the clamping support tool, and the annular slide rail is used to rotate the detected missile by 90° in the clamping state, so as to switch between the two directions of yaw and pitch, Meet the test requirements of the detected missile's locking and tracking performance in both directions.
可选的,所述支撑台下方安装钣金抽屉,用于放置不同型号弹径的夹持支撑工装;Optionally, a sheet metal drawer is installed under the support table for placing clamping support tooling of different types of elastic diameters;
所述支撑台四角安装万向轮,在进行检测操作时,通过万向轮的锁紧机构将支撑台的位置固定;Universal wheels are installed at the four corners of the support platform, and the position of the support platform is fixed by the locking mechanism of the universal wheel during the detection operation;
所述支撑台的四角安装吊环,所述支撑台的两侧设置把手。The four corners of the support table are provided with lifting rings, and the two sides of the support table are provided with handles.
本发明通过设置夹持支撑工装,用于固定不同型号的被检测的导弹,并设置旋转光源组件和电控箱对固定在夹持支撑工装上的导弹进行检测,因夹持支撑工装可以固定不同型号的导弹,因此达到通用性强的目的。In the present invention, a clamping and supporting tool is provided for fixing different types of detected missiles, and a rotating light source assembly and an electric control box are arranged to detect the missiles fixed on the clamping and supporting tool, because the clamping and supporting tool can be fixed in different ways. type of missile, so it achieves the purpose of strong versatility.
而在夹持支撑工装内设置硅胶垫,实现柔性接触,保证夹持导弹的牢固性,同时对导弹的漆面不会产生刮伤。夹持支撑工装底部梯形丝杠微调机构,可以横向调节夹持支撑工装,提高性能检测的精度,保证了支撑稳定,方便位置调节。A silicone pad is arranged in the clamping support tool to achieve flexible contact and ensure the firmness of the clamping missile, and at the same time, the paint surface of the missile will not be scratched. The trapezoidal lead screw fine-tuning mechanism at the bottom of the clamping support tool can laterally adjust the clamping support tool, improve the accuracy of performance detection, ensure stable support, and facilitate position adjustment.
本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。Other features and advantages of the present invention will be described in detail in the detailed description that follows.
附图说明Description of drawings
通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显,其中,在本发明示例性实施方式中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present invention will become more apparent from the more detailed description of the exemplary embodiments of the present invention in conjunction with the accompanying drawings, wherein the same reference numerals generally represent the exemplary embodiments of the present invention. same parts.
图1示出了本发明的一个实施例的小型导弹检测支撑装置的结构示意图;FIG. 1 shows a schematic structural diagram of a small missile detection support device according to an embodiment of the present invention;
图2示出了本发明的一个实施例的旋转光源组件的结构示意图。FIG. 2 shows a schematic structural diagram of a rotating light source assembly according to an embodiment of the present invention.
图中附图标记如下:The reference numbers in the figure are as follows:
1.微调方向,2.微调手轮,3.微调平台,4.钣金抽屉,5.支撑台,6.平台把手,7.激光检测组件旋转方向,8.吊环,9.夹持支撑工装,10.激光对位设备,11.旋转手轮,12.把手,13.旋转光源组件,14激光检测仪器,15.电控箱,16.激光检测头,17.导弹中心线。1. Fine-tuning direction, 2. Fine-tuning handwheel, 3. Fine-tuning platform, 4. Sheet metal drawer, 5. Support table, 6. Platform handle, 7. Rotation direction of laser detection component, 8. Lifting ring, 9. Clamping support tool , 10. Laser alignment equipment, 11. Rotating handwheel, 12. Handle, 13. Rotating light source assembly, 14. Laser detection instrument, 15. Electric control box, 16. Laser detection head, 17. Missile centerline.
具体实施方式Detailed ways
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。Preferred embodiments of the present invention will be described in more detail below. While the preferred embodiments of the present invention are described below, it should be understood that the present invention may be embodied in various forms and should not be limited by the embodiments set forth herein.
本技术方案的小型导弹检测支撑装置中小型是对支撑装置的限定,并不是对导弹的限定,即导弹检测支撑装置相对于现有的检测支撑装置是小型的。对于被检测的导弹,可以检测多种型号,并不限定于小型导弹。The small and medium-sized missile detection support device of the technical solution is a limitation of the support device, not a missile, that is, the missile detection support device is small compared to the existing detection support device. For the detected missiles, various types of missiles can be detected, not limited to small missiles.
如图1和图2所示,一种小型导弹检测支撑装置,包括:As shown in Figure 1 and Figure 2, a small missile detection support device includes:
夹持支撑工装9、旋转光源组件13以及电控箱15;Clamping and supporting
所述夹持支撑工装9,用于固定不同型号的被检测的导弹;The clamping and supporting
所述旋转光源组件13:用于生成检测导弹目标捕获与跟踪能力的运动光源;The rotating light source assembly 13: used to generate a moving light source for detecting the capability of capturing and tracking missile targets;
所述电控箱15,与所述旋转光源组件13电连接,用于控制旋转光源组件13,并接收远控主机的电控制信号。The
可选的,装置还包括,支撑台5和激光对位设备10,Optionally, the device further includes a support table 5 and a
所述夹持支撑工装9、旋转光源组件13、电控箱15以及激光对位设备10均设置在所述支撑台5上;The clamping
所述激光对位设备10,用于与被检测的导弹上的基准对准,保证被检测的导弹稳定并准确的对准旋转基准点。The
支撑台5采用弹体航向布局,下方安装有钣金抽屉4,可用于放置不同型号弹径的夹持支撑工装9;同时,台面四角安装有可移动万向轮,在进行检测操作时,通过轮子的锁紧机构将支撑台5的位置固定;为便于运输,支撑台5四角安装有吊环8,两侧设计有把手。The support table 5 adopts a projectile orientation layout, and a sheet metal drawer 4 is installed below it, which can be used to place clamping and
该小型导弹检测支撑装置主要设备主体采用铝合金制成,在运输过程中旋转光源组件13的摆臂通过球柱销钉锁死在支撑台5上。其他弹径型号的夹持支撑工装9锁死在机台底部的钣金抽屉4中。The main equipment body of the small missile detection support device is made of aluminum alloy, and the swing arm of the rotating
该小型导弹检测支撑装置设计有两种弹径导弹类型的夹持支撑工装9。通过底部的钣金抽屉4实现相关夹持支撑工装9的收纳与固定。测试时,可实现独立舱段的分离式检测,也可实现整弹的整体检测,使用灵活方便,通用性强。The small missile detection support device is designed with two types of caliber missile clamping
激光对位设备10可与弹上基准相重合,可用于保证导弹在人工搬运夹装时保证每次放导弹的位置准确,使得整个导弹能够稳定并准确的对准旋转基准点。The
可选的,所述夹持支撑工装9的内壁上装有硅胶垫;Optionally, a silicone pad is installed on the inner wall of the clamping
所述夹持支撑工装9的底部设置多组梯形丝杠微调机构,所述梯形丝杠微调机构用于对所述夹持支撑工装9进行横向调节,使被检测的导弹与光源在同一轴线上;在具体的实时场景中所述夹持支撑工装9的底部设置三组梯形丝杠微调机构The bottom of the
所述梯形丝杠微调机构上安装有机械数显仪表,用来显示梯形丝杠微调机构横向调节的度量。机械数显仪表可选择高精度的。A mechanical digital display instrument is installed on the trapezoidal lead screw fine-tuning mechanism, which is used to display the measurement of the lateral adjustment of the trapezoidal lead screw fine-tuning mechanism. The mechanical digital display instrument can choose high precision.
夹持工装外圈采用铝合金材质,内圈包裹一层5mm厚优力胶柔性物,在夹持的时候保证夹紧导弹的同时不会对导弹有损害。夹持工装用螺栓与销钉锁死在微调机构上。夹持支撑工装9与导弹接触部位装有硅胶垫,实现柔性接触,保证夹持导弹的牢固性,同时对导弹的漆面不会产生刮伤;其底部设计有三组梯形丝杠微调机构,可以保证支撑工装的横向调节,调节导弹与光源在同一轴线上;在梯形丝杠上安装有高精度机械数显仪表,可将横向调节的程度量化。The outer ring of the clamping tooling is made of aluminum alloy, and the inner ring is wrapped with a layer of 5mm thick super glue flexible material, which ensures that the missile will not be damaged while clamping the missile. The clamping tool is locked on the fine-tuning mechanism with bolts and pins. The contact part of the clamping
可选的,所述旋转光源组件13包括电机、减速器、编码器、摆臂、推力轴承、环形导轨以及光源,所述减速器和编码器与所述电机电连接,所述电机通过推力轴承与摆臂机械连接,所述光源设置在摆臂上,在所述电机的作用下摆臂上的光源沿环形导轨旋转。机械连接即使用连杆或螺丝等奖两个器件连接到一起,电连接即使用导线将两个电子器件连接,从而使两者之间可以传输信号或电流。Optionally, the rotating
可选的,所述摆臂的旋转角度为±50°。环形导轨和推力轴承保证了自动旋转的稳定性;根据旋转点与导弹的设计要求设计摆臂长度,保证其旋转角度可以达到±50°。Optionally, the rotation angle of the swing arm is ±50°. The annular guide rail and thrust bearing ensure the stability of automatic rotation; the length of the swing arm is designed according to the design requirements of the rotation point and the missile to ensure that the rotation angle can reach ±50°.
可选的,通过电机、减速器与摆臂控制光源运动的速度和位置,用于测量被检测的导弹导引头的目标捕获与跟踪能力。Optionally, the speed and position of the movement of the light source are controlled by the motor, the reducer and the swing arm to measure the target acquisition and tracking capability of the detected missile seeker.
旋转光源组件13包括电机、减速器、编码器、摆臂、推力轴承、环形导轨以及光源;环形导轨和推力轴承保证了自动旋转的稳定性;根据旋转点设计摆臂长度,保证其旋转角度可以达到±50°;通过电机、减速器与摆臂,光源可根据设置的速度和位置运动,用于实现对导弹导引头的目标捕获与跟踪能力的测试。The rotating
电控箱15是小型导弹检测支撑装置的对外连接部位。通过线缆与主机相连。The
可选的,所述电控箱15内安装有电机驱动器、供电电源与信号转接板;信号转接板接收编码器反馈的电信号,同时接收远控主机的电控制信号,通过电机驱动器控制电机的位置和速度,所述供电电源为电机驱动器供电。Optionally, a motor driver, a power supply and a signal adapter board are installed in the
可选的,所述光源上设置上下微调孔,通过上下微调孔和设置在所述光源背面的安装槽口对光源进行上下调节。Optionally, upper and lower fine-tuning holes are provided on the light source, and the light source is adjusted up and down through the upper and lower fine-tuning holes and the installation notch provided on the back of the light source.
可选的,所述夹持支撑工装9内设置环形滑轨,所述环形滑轨,用于在夹持状态下将被检测的导弹旋转90°,从而在偏航与俯仰两个方向上切换,满足被检测的导弹在两方向上锁定与跟踪性能的测试要求。Optionally, an annular slide rail is provided in the
可选的,所述支撑台5下方安装钣金抽屉4,用于放置不同型号弹径的夹持支撑工装9;Optionally, a sheet metal drawer 4 is installed below the support table 5 for placing
所述支撑台5四角安装万向轮,在进行检测操作时,通过万向轮的锁紧机构将支撑台5的位置固定;万向轮为可移动的。Universal wheels are installed at the four corners of the support table 5. During the detection operation, the position of the support table 5 is fixed by the locking mechanism of the universal wheel; the universal wheel is movable.
所述支撑台5的四角安装吊环8,所述支撑台5的两侧设置平台把手6。The four corners of the support table 5 are installed with rings 8 , and the two sides of the support table 5 are provided with platform handles 6 .
小型导弹检测支撑装置的检测过程具体如下:The detection process of the small missile detection support device is as follows:
步骤1:人工将导弹(或舱段)放置在夹持支撑工装9的上;Step 1: Manually place the missile (or cabin) on the
步骤2:激光对位设备10打开并对好弹上(或舱段)的基准位置,人工调整导弹(或舱段)到相应的基准位置;Step 2: Open the
步骤3:人工将电控箱14上的通讯接口与远程主机通讯接口连接起来,在旋转光源组件12位于零位置时,读取导弹锁定状态下框架角示数,通过调整底部的微调平台3,调节框架角到0位示数后,锁定旋转手轮11;Step 3: Manually connect the communication interface on the
步骤4:旋转光源组件13开始在航向方向上以某一速度做往返运动,此时可测试导弹的搜索范围、搜索周期、目标搜索速度等性能参数;Step 4: The rotating
步骤5:利用夹持支撑工装9上的把手12将导弹旋转90°后,将导弹俯仰与航向交换,再次重复步骤4,实现俯仰方向上相关测试指标的测试;Step 5: After using the
步骤6:测试完成后将电控箱15与远控主机通讯的线缆断开,将测试合格导弹产品搬到导弹箱中,不合格放置于不良品区,完成测试;Step 6: After the test is completed, disconnect the communication cable between the
步骤7:当需要测试其它型号弹径的导弹时,拆下夹持支撑工装9,从钣金抽屉4中取出对应弹径的夹持支撑工装,安装到微调平台5上,再次重复步骤1~6,实现导弹的测试。Step 7: When you need to test missiles of other types of bullet diameters, remove the
微调平台5即三组梯形丝杠微调机构。The fine-
本发明的实施例主要有以下优点:The embodiments of the present invention mainly have the following advantages:
1、集成度高,夹持支撑工装、旋转光源组件、激光对位设备、电控箱以及支撑台有效的集成在一起,并设计有吊耳、把手等装置,充分考虑了运输的便携性。1. High integration, clamping support tooling, rotating light source components, laser alignment equipment, electric control box and support table are effectively integrated, and are designed with lifting ears, handles and other devices, fully considering the portability of transportation.
2、通过合理的涉及夹持支撑工装,保证导弹与工装之间是柔性连接,不会导弹外表面产生损伤。此外,在夹持状态下,导弹可通过旋转夹持工装,实现航向与俯仰方向的交换,满足导弹锁定与跟踪性能的全方位测试。2. By reasonably involving the clamping and supporting tooling, the flexible connection between the missile and the tooling is ensured, and the outer surface of the missile will not be damaged. In addition, in the clamped state, the missile can exchange the heading and pitch direction by rotating the clamping tooling, so as to meet the all-round test of the missile locking and tracking performance.
3、装置检测精度高且适用不同弹径的弹型。通过夹持支撑的微调梯形丝杠机构内上的旋钮,可方便的调整导弹中心线与激光检测仪器的位置到最优位置。此外,通过设计多种弹径的夹持工装,保证该装置满足其它型号弹的夹持与测试。3. The device has high detection accuracy and is suitable for different bullet diameters. By clamping the knob on the supported fine-tuning trapezoidal screw mechanism, the position of the missile centerline and the laser detection instrument can be easily adjusted to the optimal position. In addition, through the design of clamping tooling with various bullet diameters, it is ensured that the device can meet the clamping and testing of other types of bullets.
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。Various embodiments of the present invention have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911165190.1A CN110879022A (en) | 2019-11-25 | 2019-11-25 | Small-size guided missile detects strutting arrangement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911165190.1A CN110879022A (en) | 2019-11-25 | 2019-11-25 | Small-size guided missile detects strutting arrangement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110879022A true CN110879022A (en) | 2020-03-13 |
Family
ID=69730825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911165190.1A Pending CN110879022A (en) | 2019-11-25 | 2019-11-25 | Small-size guided missile detects strutting arrangement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110879022A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112113705A (en) * | 2020-05-20 | 2020-12-22 | 新乡市航宏航空机电设备有限公司 | Missile mass and mass center detection method and tool |
CN112611272A (en) * | 2020-12-25 | 2021-04-06 | 中国航天空气动力技术研究院 | Missile testing device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050241384A1 (en) * | 2004-04-30 | 2005-11-03 | Clark Stephens | Portable guidance assembly test station |
RU2395784C1 (en) * | 2009-02-09 | 2010-07-27 | Открытое акционерное общество "Акционерная Компания "Туламашзавод" | Device to test ammunition for vibration resistance |
CN102538598A (en) * | 2011-12-30 | 2012-07-04 | 洛阳理工学院 | Movement simulation system for infrared targets |
CN105806597A (en) * | 2016-03-17 | 2016-07-27 | 苏州德凡检测科技有限公司 | Multi-angle multi-directional optical testing platform |
CN106425926A (en) * | 2016-10-20 | 2017-02-22 | 成都久欣时代科技有限公司 | Pressing type guided missile warhead fixture |
CN107607004A (en) * | 2017-09-21 | 2018-01-19 | 北京润科通用技术有限公司 | A kind of device and method for testing seeker performance |
CN107953106A (en) * | 2017-11-20 | 2018-04-24 | 西安航天动力测控技术研究所 | Miniature missile bay section butting tooling |
CN207622621U (en) * | 2017-12-15 | 2018-07-17 | 陕西电器研究所 | Device suitable for small-sized Semi-active LASER target seeker batch testing |
-
2019
- 2019-11-25 CN CN201911165190.1A patent/CN110879022A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050241384A1 (en) * | 2004-04-30 | 2005-11-03 | Clark Stephens | Portable guidance assembly test station |
RU2395784C1 (en) * | 2009-02-09 | 2010-07-27 | Открытое акционерное общество "Акционерная Компания "Туламашзавод" | Device to test ammunition for vibration resistance |
CN102538598A (en) * | 2011-12-30 | 2012-07-04 | 洛阳理工学院 | Movement simulation system for infrared targets |
CN105806597A (en) * | 2016-03-17 | 2016-07-27 | 苏州德凡检测科技有限公司 | Multi-angle multi-directional optical testing platform |
CN106425926A (en) * | 2016-10-20 | 2017-02-22 | 成都久欣时代科技有限公司 | Pressing type guided missile warhead fixture |
CN107607004A (en) * | 2017-09-21 | 2018-01-19 | 北京润科通用技术有限公司 | A kind of device and method for testing seeker performance |
CN107953106A (en) * | 2017-11-20 | 2018-04-24 | 西安航天动力测控技术研究所 | Miniature missile bay section butting tooling |
CN207622621U (en) * | 2017-12-15 | 2018-07-17 | 陕西电器研究所 | Device suitable for small-sized Semi-active LASER target seeker batch testing |
Non-Patent Citations (1)
Title |
---|
范京道: "《智能化无人综采技术》", 31 July 2017, 煤炭工业出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112113705A (en) * | 2020-05-20 | 2020-12-22 | 新乡市航宏航空机电设备有限公司 | Missile mass and mass center detection method and tool |
CN112611272A (en) * | 2020-12-25 | 2021-04-06 | 中国航天空气动力技术研究院 | Missile testing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107957626A (en) | A kind of six-freedom parallel automatic deflection adjusting system and method towards optical mirror slip | |
CN110879022A (en) | Small-size guided missile detects strutting arrangement | |
CN104931260A (en) | An eddy current displacement sensor locating clamping mechanism specially used for a high-speed light and thin gear | |
CN205068175U (en) | Sensor mounting adjustment system and laser instrument leveling standard apparatus | |
CN215373881U (en) | Porous axiality check out test set | |
CN102501144A (en) | Positioning device and positioning method of thermal infrared imager for testing drilling and milling temperature of PCBs (printed circuit boards) | |
CN112611272B (en) | Missile testing device | |
CN109443765B (en) | RV reduction gear rigidity testing arrangement that overturns | |
CN104237572A (en) | Testing jig used for static testing | |
CN114061531B (en) | Transmission shaft axiality detection device | |
JPS608701A (en) | Portable inspecting and measuring device inspecting tooth form and tooth race of gear and inspecting and measuring method | |
CN105841926A (en) | Rapid positioning device and positioning method for optical system test | |
CN118936283A (en) | A coaxiality measuring device and method for a rotating body part | |
CN112720470A (en) | Mechanical arm TCP manual rapid calibration device and method for additive machining | |
CN214470419U (en) | Missile Test Facility | |
CN207881960U (en) | Wheel hub hill detecting system | |
CN218916406U (en) | Detection device of high-precision encoder | |
CN105698682B (en) | A kind of comprehensive measuring method of lathe spatial accuracy based on laser tracker | |
CN102426096B (en) | Detection system and detection method for feeding precision of special-shaped curve mechanism of revolving body | |
CN112815886A (en) | Wall thickness measuring system for thin-wall revolving body workpiece | |
CN220463578U (en) | Fixing device for product in high-low temperature environment | |
CN216310135U (en) | Multi-beam reflector antenna testing device | |
CN216449610U (en) | Maintenance platform for position marker of seeker | |
CN106610265A (en) | Circle center position obtaining method | |
CN220794156U (en) | Visual detection device capable of detecting size and position of silicon block |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200313 |