CN110875101A - Anisotropic conductive film structure and manufacturing method thereof - Google Patents
Anisotropic conductive film structure and manufacturing method thereof Download PDFInfo
- Publication number
- CN110875101A CN110875101A CN201811007132.1A CN201811007132A CN110875101A CN 110875101 A CN110875101 A CN 110875101A CN 201811007132 A CN201811007132 A CN 201811007132A CN 110875101 A CN110875101 A CN 110875101A
- Authority
- CN
- China
- Prior art keywords
- resin
- conductive film
- anisotropic conductive
- intermediate layer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 55
- 238000010438 heat treatment Methods 0.000 claims abstract description 10
- 229920005989 resin Polymers 0.000 claims description 46
- 239000011347 resin Substances 0.000 claims description 46
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 15
- 239000003822 epoxy resin Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 229920000647 polyepoxide Polymers 0.000 claims description 14
- 239000000853 adhesive Substances 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 12
- 239000004848 polyfunctional curative Substances 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 8
- 239000010931 gold Substances 0.000 claims description 8
- 229910052737 gold Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 7
- 239000004925 Acrylic resin Substances 0.000 claims description 7
- 229920000178 Acrylic resin Polymers 0.000 claims description 7
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 7
- 229920001568 phenolic resin Polymers 0.000 claims description 7
- 239000005011 phenolic resin Substances 0.000 claims description 7
- 239000013034 phenoxy resin Substances 0.000 claims description 7
- 229920006287 phenoxy resin Polymers 0.000 claims description 7
- 229920006337 unsaturated polyester resin Polymers 0.000 claims description 7
- 239000004831 Hot glue Substances 0.000 claims description 6
- -1 alicyclic amine Chemical class 0.000 claims description 6
- 229920005749 polyurethane resin Polymers 0.000 claims description 6
- 239000004640 Melamine resin Substances 0.000 claims description 4
- 229920000877 Melamine resin Polymers 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- 150000008065 acid anhydrides Chemical class 0.000 claims description 4
- 150000004982 aromatic amines Chemical class 0.000 claims description 4
- 239000004519 grease Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920002050 silicone resin Polymers 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 239000012745 toughening agent Substances 0.000 claims description 4
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 claims description 3
- 239000012943 hotmelt Substances 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920000459 Nitrile rubber Polymers 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 claims description 2
- 239000000539 dimer Substances 0.000 claims description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 239000003292 glue Substances 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 229910052760 oxygen Inorganic materials 0.000 claims 1
- 229920002635 polyurethane Polymers 0.000 claims 1
- 239000004814 polyurethane Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010292 electrical insulation Methods 0.000 abstract description 5
- 230000000903 blocking effect Effects 0.000 abstract 1
- 239000010408 film Substances 0.000 description 82
- 239000010410 layer Substances 0.000 description 62
- 239000011521 glass Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007731 hot pressing Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- HBGPNLPABVUVKZ-POTXQNELSA-N (1r,3as,4s,5ar,5br,7r,7ar,11ar,11br,13as,13br)-4,7-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1h-cyclopenta[a]chrysen-9-one Chemical compound C([C@@]12C)CC(=O)C(C)(C)[C@@H]1[C@H](O)C[C@]([C@]1(C)C[C@@H]3O)(C)[C@@H]2CC[C@H]1[C@@H]1[C@]3(C)CC[C@H]1C(=C)C HBGPNLPABVUVKZ-POTXQNELSA-N 0.000 description 1
- PFRGGOIBYLYVKM-UHFFFAOYSA-N 15alpha-hydroxylup-20(29)-en-3-one Natural products CC(=C)C1CCC2(C)CC(O)C3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 PFRGGOIBYLYVKM-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-UHFFFAOYSA-N Dicyclopentadiene Chemical compound C1C2C3CC=CC3C1C=C2 HECLRDQVFMWTQS-UHFFFAOYSA-N 0.000 description 1
- SOKRNBGSNZXYIO-UHFFFAOYSA-N Resinone Natural products CC(=C)C1CCC2(C)C(O)CC3(C)C(CCC4C5(C)CCC(=O)C(C)(C)C5CCC34C)C12 SOKRNBGSNZXYIO-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 239000004842 bisphenol F epoxy resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 239000002103 nanocoating Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1345—Conductors connecting electrodes to cell terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0026—Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
技术领域technical field
本发明关于一种异方性导电膜结构及其制作方法,尤其是利用被异方性导电膜以及非导电性薄膜包夹的中间层以阻挡异方性导电膜中未被垂直加压的导电粒子,达成水平方向上的电气绝缘,同时能让已被垂直加压的导电粒子流到被垂直加压的导电粒子中,并相互接触以达到垂直方向上的电气导通,而且中间层还可进一步阻挡非导电性薄膜在加热加压下流到异方性导电膜内,进而提高导电粒子颗数与密度,大幅提升导电率,具有提升生产效率的具体功效。The present invention relates to an anisotropic conductive film structure and a manufacturing method thereof, in particular to use an intermediate layer sandwiched by an anisotropic conductive film and a non-conductive film to block the conductive layers in the anisotropic conductive film that are not vertically pressed The particles can achieve electrical insulation in the horizontal direction, and at the same time allow the vertically pressurized conductive particles to flow into the vertically pressed conductive particles and contact each other to achieve electrical conduction in the vertical direction, and the intermediate layer can also It further prevents the non-conductive film from flowing into the anisotropic conductive film under heating and pressure, thereby increasing the number and density of conductive particles, greatly improving the conductivity, and has the specific effect of improving production efficiency.
背景技术Background technique
在电子工业领域中,需要将不同的电子组件电气连接至电路板上的电子线路,而最常用的方式是使用焊料以达成焊接,比如具低温熔化特性且具有较佳导电度的铅锡合金焊料,可先藉加热处理而使焊料熔化而同时接触电子组件及电子线路,接着在冷却后固化焊料而稳固的连接电子组件及电子线路。随着终端产品对轻、薄、短、小的需求并为达到省电的特性,尤其是集成电路(Integrated Circuit,IC)的电子组件,需要进一步缩小,而对于表面黏着组件(Surface Mount Device,SMD),一般使用高温炉以加速焊接处理提高产量。In the field of the electronics industry, it is necessary to electrically connect different electronic components to the electronic circuits on the circuit board, and the most common way is to use solder to achieve soldering, such as lead-tin alloy solder with low temperature melting characteristics and better conductivity , the solder can be melted by heat treatment to contact the electronic components and electronic circuits at the same time, and then the solder is solidified after cooling to firmly connect the electronic components and electronic circuits. With the demand for light, thin, short, and small end products and to achieve power saving characteristics, especially the electronic components of integrated circuits (ICs) need to be further reduced, and for surface mount components (Surface Mount Device, SMD), a high temperature furnace is generally used to speed up the welding process and increase the yield.
对于产品日益精进的LED以及LED显示器领域,不仅显示面板的尺寸不断增加,而且分辨率也不断提高,使得连接至面板以提供驱动信号而驱动每个像素的驱动IC(DriverIC)需要更多紧密排列的电子组件接脚,藉以满足显示面板的微细间距(Fine Pitch)的需求。In the field of LED and LED displays with increasingly sophisticated products, not only the size of the display panel is increasing, but also the resolution is increasing, so that the driver IC (DriverIC) connected to the panel to provide driving signals to drive each pixel needs to be more closely arranged The pins of electronic components are used to meet the fine pitch requirements of display panels.
现有技术一般的平面显示器,例如液晶显示器,已取代传统的阴极射线管(CRT)显示器,并广泛地应用于计算机统、电视、影像显示与监视装置以及其他消费性影音装置。然而,随着平面显示器的分辨率不断提高,平面显示器中的驱动集成电路(IC)的接脚数目也愈多,一般可达数百甚至上千个接脚以上。尤其是,市场上对于平面显示器轻薄短小的需求,使得驱动集成电路中相邻线距(Pitch)必须细窄化。因为受制于非常有限的可利用面积且无法使用高温锡焊的传统焊接方式,所以目前液晶模块(LCM)的主流电气连接技术是使用异方性导电膜(Anisotropic Conductive Film,ACF),例如玻璃覆晶封装(Chip onGlass,COG)或薄膜覆晶封装(Chip on Film,COF)的制程中,利用ACF以达成特定方向的电气连接。Conventional flat-panel displays, such as liquid crystal displays, have replaced conventional cathode ray tube (CRT) displays and are widely used in computer systems, televisions, video display and monitoring devices, and other consumer audio-visual devices. However, with the continuous improvement of the resolution of the flat panel display, the number of pins of the driver integrated circuit (IC) in the flat panel display is also increased, generally reaching hundreds or even thousands of pins. In particular, the demand for thin, thin, and short flat panel displays in the market makes the adjacent pitches (Pitch) in the driving integrated circuit must be narrowed. Due to the very limited available area and the inability to use the traditional soldering method of high temperature soldering, the current mainstream electrical connection technology for liquid crystal modules (LCM) is to use anisotropic conductive film (ACF), such as glass-covered In the process of chip on glass (COG) or chip on film (COF), ACF is used to achieve electrical connection in a specific direction.
具体而言,异方性导电膜是以树脂及导电粒子(或导电粉体)组合而成,可用以连接二种不同基材和线路,而且异方性导电膜具有上下(Z轴)电气导通的特性,且左右平面(X、Y轴)具有绝缘性,通常可在加热下并利用Z轴方向上的外部加压处理,使所包含的分离导电粒子相互接触而达到Z轴方向的电气导通且同时平面方向电气绝缘的目的,可避免相邻接脚发生短路。然而在前述基础上,随着可利用接触面积的缩小,必须增加导电粉体的含量或增大导电粉体的粒径,藉以降低电阻而能维持足够的导通电量,但是会大幅提高封装线路之间发生短路的机率,因此,业界引入了结合ACF与非导电性薄膜(Non-ConductiveFilm,NCF)30’的双层复合式结构。Specifically, the anisotropic conductive film is composed of resin and conductive particles (or conductive powder), which can be used to connect two different substrates and circuits, and the anisotropic conductive film has upper and lower (Z-axis) electrical conductivity. It has the characteristics of openness, and the left and right planes (X, Y axes) have insulating properties. Usually, under heating and external pressure treatment in the Z axis direction, the separated conductive particles contained in it can be brought into contact with each other to achieve electrical conductivity in the Z axis direction. The purpose of conduction and electrical insulation in the plane direction at the same time can avoid short circuit between adjacent pins. However, on the basis of the above, with the reduction of the available contact area, it is necessary to increase the content of the conductive powder or increase the particle size of the conductive powder, so as to reduce the resistance and maintain sufficient conduction power, but it will greatly increase the packaging circuit. Therefore, the industry introduces a double-layer composite structure combining ACF and a non-conductive film (Non-Conductive Film, NCF) 30'.
进一步而言,结合ACF与NCF的双层复合式结构在实际投入热压处理制程的时候,会由于材料特性的关,使得NCF保持极高的流动性,很容易侵入ACF内,进一步推挤ACF内所包含有的树脂’与导电粒子,使得单位面积中的导电粒子颗数与密度大幅降低,造成导电率难以提升的限制。再者,为了维持特定电气特性与效能,必须在电接触部份使用高质量的基材、组件、导线以及异方性导电膜,导致制程成本大幅增加,而且还降低整体的生产效率。Further, when the double-layer composite structure combining ACF and NCF is actually put into the hot pressing process, due to the material properties, the NCF maintains a very high fluidity, and it is easy to penetrate into the ACF and further push the ACF. The resin' and conductive particles contained in it greatly reduce the number and density of conductive particles per unit area, resulting in the limitation that the conductivity is difficult to improve. Furthermore, in order to maintain specific electrical characteristics and performance, high-quality substrates, components, wires, and anisotropic conductive films must be used in the electrical contact portion, resulting in a substantial increase in process costs and a reduction in overall production efficiency.
因此,需样一种新创的异方性导电膜结构及其制作方法,利用被异方性导电膜以及非导电性薄膜包夹的中间层以阻挡异方性导电膜中未被垂直加压的导电粒子,达成水平方向上的电气绝缘,同时能让已被垂直加压的导电粒子流到被垂直加压的导电粒子中,并相互接触以达到垂直方向上的电气导通,而且中间层还可进一步阻挡非导电性薄膜在加热加压下流到异方性导电膜内,进而提高导电粒子颗数与密度,大幅提升导电率,具有提升生产效率的具体功效。Therefore, there is a need for a novel anisotropic conductive film structure and a manufacturing method thereof, which utilizes an intermediate layer sandwiched by an anisotropic conductive film and a non-conductive film to block the anisotropic conductive film from not being vertically pressurized The conductive particles can achieve electrical insulation in the horizontal direction, and at the same time, the conductive particles that have been pressed vertically can flow into the conductive particles that are vertically pressed, and contact each other to achieve electrical conduction in the vertical direction, and the intermediate layer It can further prevent the non-conductive film from flowing into the anisotropic conductive film under heating and pressure, thereby increasing the number and density of conductive particles, greatly improving the conductivity, and having the specific effect of improving production efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的在于提供一种异方性导电膜结构,包括依序堆栈的异方性导电膜、中间层以及非导电性薄膜,用以提供电气连接功能。具体而言,异方性导电膜具有上表面及下表面,且包括第一树脂以及多个导电粒子,其中导电粒子是均匀分布于第一树脂中,且导电粒子包括高分子核心体以及导电壳层,而导电壳层是包覆高分子核心体的外表面。The main purpose of the present invention is to provide an anisotropic conductive film structure including sequentially stacked anisotropic conductive films, an intermediate layer and a non-conductive thin film for providing electrical connection function. Specifically, the anisotropic conductive film has an upper surface and a lower surface, and includes a first resin and a plurality of conductive particles, wherein the conductive particles are uniformly distributed in the first resin, and the conductive particles include a polymer core and a conductive shell layer, and the conductive shell layer is to coat the outer surface of the polymer core.
此外,中间层具有上表面及下表面,且中间层的下表面迭设于异方性导电膜的上面表,而非导电性薄膜包括第二树脂,且具有上表面及下表面,而非导电性薄膜的下表面迭设于中间层的上面表。In addition, the intermediate layer has an upper surface and a lower surface, and the lower surface of the intermediate layer is stacked on the upper surface of the anisotropic conductive film, and the non-conductive film includes a second resin and has an upper surface and a lower surface, and is non-conductive The lower surface of the flexible film is stacked on the upper surface of the intermediate layer.
再者,当异方性导电膜结构受到加热及垂直加压时,异方性导电膜中被垂直加压的部分所包含的导电粒子会被挤压而流到中间层中,而异方性导电膜中未被垂直加压的部分所包含的导电粒子会被中间层阻挡而留在异方性导电膜中,尤其,中间层可进一步阻挡非导电性薄膜在加热加压下流到异方性导电膜内,进而提高导电粒子颗数与密度,大幅提升导电率。Furthermore, when the anisotropic conductive film structure is heated and vertically pressurized, the conductive particles contained in the vertically pressurized portion of the anisotropic conductive film will be squeezed and flow into the intermediate layer, and the anisotropic conductive film will flow into the intermediate layer. The conductive particles contained in the portion of the conductive film that are not vertically pressed will be blocked by the intermediate layer and remain in the anisotropic conductive film, especially, the intermediate layer can further prevent the non-conductive film from flowing to the anisotropic film under heating and pressure. In the conductive film, the number and density of conductive particles are increased, and the conductivity is greatly improved.
此外,本发明的另一目的在于提供一种异方性导电膜结构的制作方法,包含:形成异方性导电膜,包括第一树脂以及多个导电粒子,所述导电粒子是均匀分布于第一树脂中,且导电粒子包括高分子核心体以及导电壳层,而高分子核心体是被导电壳层包覆;形成中间层,是位于异方性导电膜上,且包括相互混合的中间层本体以及接着剂;以及形成非导电性薄膜,是位于中间层上,且包括第二树脂。再者,上述的导电壳层包含镍层及金层,其中金层的下表面覆盖、包围镍层的上表面。In addition, another object of the present invention is to provide a method for fabricating an anisotropic conductive film structure, comprising: forming an anisotropic conductive film, including a first resin and a plurality of conductive particles, the conductive particles are uniformly distributed on the first resin In a resin, the conductive particles include a polymer core body and a conductive shell layer, and the polymer core body is covered by the conductive shell layer; an intermediate layer is formed, which is located on the anisotropic conductive film and includes intermixed intermediate layers a body and an adhesive; and forming a non-conductive film on the intermediate layer and including a second resin. Furthermore, the above-mentioned conductive shell layer includes a nickel layer and a gold layer, wherein the lower surface of the gold layer covers and surrounds the upper surface of the nickel layer.
附图说明Description of drawings
图1为本发明第一实施例的异方性导电膜结构的剖面分解示意图。FIG. 1 is a schematic exploded cross-sectional view of an anisotropic conductive film structure according to a first embodiment of the present invention.
图2、图3为本发明第一实施例异方性导电膜结构的应用示意图。FIG. 2 and FIG. 3 are schematic diagrams of the application of the anisotropic conductive film structure according to the first embodiment of the present invention.
图4为本发明第二实施例异方性导电膜结构的制作方法的流程图。FIG. 4 is a flow chart of a method for fabricating an anisotropic conductive film structure according to a second embodiment of the present invention.
其中,附图标记说明如下:Among them, the reference numerals are described as follows:
10 异方性导电膜10 Anisotropic Conductive Film
11 第一树脂11 The first resin
12 导电粒子12 Conductive particles
12A 高分子核心体12A polymer core
12B 导电壳层12B Conductive Shell
12C 高分子披覆层12C polymer coating
20 中间层20 middle layer
30 非导电性薄膜30 Non-conductive film
40 芯片40 chips
41 芯片导线41 Chip leads
50 玻璃板50 glass plates
51 玻璃板导线51 Glass Plate Leads
D1 向下方向D1 down direction
D2 向上方向D2 up direction
S10、S20、S30 步骤S10, S20, S30 steps
具体实施方式Detailed ways
以下藉由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。本发明亦可藉由其他不同的具体实例加以施行或应用,本发明说明书中的各项细节亦可基于不同观点与应用在不悖离本发明的精神下进行各种修饰与变更。The embodiments of the present invention are described below by means of specific embodiments, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied by other different specific examples, and various modifications and changes can be made to the details in the description of the present invention based on different viewpoints and applications without departing from the spirit of the present invention.
须知,本说明书所附图式绘示的结构、比例、大小、组件数量等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应落在本发明所揭示的技术内容得能涵盖的范围内。It should be noted that the structure, proportion, size, number of components, etc. shown in the drawings in this specification are only used to cooperate with the content disclosed in the specification for the understanding and reading of those who are familiar with the technology, and are not intended to limit the scope of the present invention. The limited conditions of implementation, so it has no technical significance. Any structural modification, ratio change or size adjustment, without affecting the effect that the present invention can produce and the purpose that can be achieved, should fall within the scope of the present invention. The technical content disclosed by the invention must be within the scope of coverage.
请参考图1,本发明第一实施例异方性导电膜结构的剖面分解示意图。如图1所示,本发明第一实施例的异方性导电膜结构包括依序堆栈的异方性导电膜10、中间层20以及非导电性薄膜30,而中间层20是夹在异方性导电膜10以及非导电性薄膜30之间,进一步而言,中间层20的下表面是迭设于异方性导电膜10的上面表,而非导电性薄膜30的下表面是迭设于中间层20的上面表。再者,异方性导电膜10包含第一树脂11以及多个导电粒子12,其中所述导电粒子12是均匀分布于第一树脂11中,尤其,每个导电粒子12包括高分子核心体12A以及导电壳层12B,而导电壳层12B是包覆整个高分子核心体12A的外表面。此外,非导电性薄膜30是包括第二树脂。Please refer to FIG. 1 , which is a schematic exploded cross-sectional view of an anisotropic conductive film structure according to a first embodiment of the present invention. As shown in FIG. 1 , the anisotropic conductive film structure according to the first embodiment of the present invention includes an anisotropic
具体而言,第一树脂11包括第一树脂本体以及第一硬化剂,其中第一树脂本体的重量百分比为60%~80%,而第一硬化剂的重量百分比为20%~30%。此外,第一树脂本体是包括环氧树脂、苯氧树脂、压克力树脂、聚氨酯树脂、尿素树脂、美耐皿树脂、不饱和聚酯树脂、硅脂树脂、酚醛树脂的其中至少之一,而第一硬化剂是包括脂肪胺、脂环胺、芳香胺、聚酰胺、酸酐、叔胺的其中至少之一。Specifically, the
再者,导电壳层12B可为包含镍层及金层的多层结构,其中金层的下表面覆盖、包围整个镍层的上表面。Furthermore, the
上述的中间层20包括相互混合的中间层本体以及接着剂,其中中间层本体是包括环氧树脂、硅脂树脂、聚氨酯树脂、不饱和聚酯树脂、苯氧树脂、压克力树脂的其中至少之一,而接着剂是包括热熔胶、热熔感压胶、热熔胶条、压克力结构胶、环氧脂胶、酚醛树脂、尿素甲醛树脂、聚乙烯-醋酸乙烯树脂的其中至少之一。较佳的,中间层20的厚度是介于1至7微米之间,而异方性导电膜10的厚度是介于2至9微米之间。The above-mentioned
进一步,非导电性薄膜30的第二树脂包括第二树脂本体以及第二硬化剂,其中第二树脂本体的重量百分比为32%~63%,而第二硬化剂的重量百分比为30%~45%,且第二树脂本体是包括环氧树脂、苯氧树脂、压克力树脂、聚氨酯树脂、尿素树脂、美耐皿树脂、不饱和聚酯树脂、硅脂树脂、酚醛树脂的其中至少之一,而第二硬化剂是包括脂肪胺、脂环胺、芳香胺、聚酰胺、酸酐、叔胺的其中至少之一。此外,第二树脂可再包括增韧剂,用以增强韧性,其中增韧剂是包括羧基终端丁二烯丙烯腈、橡胶改质环氧树脂、并拢二聚体酸的其中至少之一。较佳的,非导电性薄膜30的厚度是介于10至40微米之间。Further, the second resin of the
此外,上述的环氧树脂可包含双酚A型环氧树脂(Bisphenol A,BPA)、双酚F型环氧树脂(Bisphenol F,BPF)、双环戊二烯型环氧树脂(Dicyclopentadiene,DCPD)及骈苯(naphthalene)型环氧树脂的其中至少之一。In addition, the above-mentioned epoxy resin may include bisphenol A epoxy resin (Bisphenol A, BPA), bisphenol F epoxy resin (Bisphenol F, BPF), dicyclopentadiene epoxy resin (Dicyclopentadiene, DCPD) and at least one of naphthalene epoxy resins.
在实际应用上,可参考图2、图3,本发明第一实施例异方性导电膜结构的应用示意图,本质上为利用本发明以实现玻璃覆晶封装(Chip on Glass,COG)的表面安装技术。In practical application, please refer to FIG. 2 and FIG. 3 , which are schematic diagrams of the application of the anisotropic conductive film structure according to the first embodiment of the present invention. In essence, the present invention is used to realize the surface of a chip on glass (COG) package. installation technology.
如图2所示,包含多个芯片导线41的芯片40是位于本发明异方性导电膜结构的上方,而包含玻璃板导线51的玻璃板50是位于本发明异方性导电膜结构的下方,其中所述芯片导线41以及所述玻璃板导线51是朝向本发明异方性导电膜结构。进一步,在加热下,芯片40及玻璃板50分别以向下方向D1及向上方向D2而朝向本发明异方性导电膜结构,并同时挤压。As shown in FIG. 2 , the
如图3所示,当所述芯片导线41以及所述玻璃板导线51相互靠近而分别挤压到非导电性薄膜30以及异方性导电膜10时,异方性导电膜10中未被垂直加压的部分所包含的导电粒子12是留在该异方性导电膜中而无法流到中间层20,但是,异方性导电膜10中被垂直加压的部分所包含的导电粒子12被挤压而流动,进而流到中间层20中,此时,导电粒子12相互靠近而接触,亦即导电壳层12B相互接触而形成电气连接相对应的芯片导线41以及玻璃板导线51。As shown in FIG. 3 , when the
尤其,中间层20可进一步阻挡非导电性薄膜30在加热加压下流到异方性导电膜10内,进而解决导电粒子颗数与密度因大幅降低而导致导电率难以提升的问题。In particular, the
因此,相邻芯片导线41之间之间隔区域以及相邻玻璃板导线51之间之间隔区域由于未被挤压,所以没有相互接触的导电粒子12提供电气连接,本质上在水平方向上是电气绝缘而不导通,而受到芯片导线41以及玻璃板导线51挤压的导电粒子12因相互接触而提供电气连接,所以芯片导线41以及玻璃板导线51本质上在垂直方向上是电气连接而导通,具体达到COG的目的。Therefore, since the spaced regions between
在上述的应用实例中,热压处理的条件可为摄氏200度、压力5MPa、持续时间10秒,此时,导电粒子12的平均捕捉率可以从现有技术的双层复合式结构具有的15%提升至31.21%,不仅仅存留在整体结构中有效的导电粒子12数目较多的外,也因为具有中间层20而使得导电粒子12分布的较为均匀,大幅改善电气特性。In the above application example, the conditions of the hot-pressing treatment may be 200 degrees Celsius, 5 MPa pressure, and 10 seconds duration. At this time, the average capture rate of the
此外,本发明第一实施例的异方性导电膜结构可进一步包括高分子披覆层12C,是包围导电壳层12B的整个外表面,而且具有延展性,因此,在受外加应力下,高分子披覆层12C会形变下而破裂,并露出底下的导电壳层12B的部分表面,且相邻的导电壳层12B可藉接触而形成电气连接。In addition, the anisotropic conductive film structure according to the first embodiment of the present invention may further include a
进一步参考图4,本发明第二实施例异方性导电膜结构的制作方法的流程图。如图4所示,本发明第二实施例异方性导电膜结构的制作方法包含步骤S10、S20、S30,用以制作异方性导电膜结构。Further referring to FIG. 4 , a flowchart of a method for fabricating an anisotropic conductive film structure according to a second embodiment of the present invention. As shown in FIG. 4 , the method for fabricating the anisotropic conductive film structure according to the second embodiment of the present invention includes steps S10 , S20 and S30 for fabricating the anisotropic conductive film structure.
首先,本发明第二实施例异方性导电膜结构的制作方法是由步骤S10开始,形成异方性导电膜,其中异方性导电膜是包括第一树脂以及多个导电粒子,且多个导电粒子是均匀分布于第一树脂中,而每个导电粒子包括高分子核心体以及导电壳层,并且高分子核心体是被导电壳层包覆。接着,在步骤S20中形成中间层,是位于异方性导电膜上,且包括中间层本体以及接着剂。最后,进行步骤S30,形成非导电性薄膜,是位于中间层上,且包括第二树脂。First, the method for fabricating an anisotropic conductive film structure according to the second embodiment of the present invention starts from step S10 to form an anisotropic conductive film, wherein the anisotropic conductive film includes a first resin and a plurality of conductive particles, and a plurality of conductive particles are formed. The conductive particles are uniformly distributed in the first resin, and each conductive particle includes a polymer core body and a conductive shell layer, and the polymer core body is covered by the conductive shell layer. Next, in step S20, an intermediate layer is formed, which is located on the anisotropic conductive film and includes the intermediate layer body and the adhesive. Finally, step S30 is performed to form a non-conductive thin film, which is located on the intermediate layer and includes the second resin.
由于第二实施例所制作的异方性导电膜结构是相同于第一实施例,因此,异方性导电膜、中间层以及非导电性薄膜的特性再赘述。Since the structure of the anisotropic conductive film fabricated in the second embodiment is the same as that of the first embodiment, the characteristics of the anisotropic conductive film, the intermediate layer and the non-conductive thin film will be described again.
综上所述,本发明的特点在于采用了特殊层迭结构,尤其是利用被异方性导电膜以及非导电性薄膜包夹的中间层以阻挡异方性导电膜中未被垂直加压的导电粒子,以达成水平方向上的电气绝缘目的,同时能让已被垂直加压的导电粒子流到被垂直加压的导电粒子中,并相互接触,具体达到垂直方向上的电气导通目的,尤其是,中间层可进一步阻挡非导电性薄膜在加热加压下流到异方性导电膜内,进而解决导电粒子颗数与密度因大幅降低而导致导电率难以提升的问题。此外,本发明可藉低成本的制作方式而实现,能大幅提升导电率,并降低整体的制程成本,具有提升生产效率的具体功效。To sum up, the feature of the present invention lies in the use of a special laminated structure, especially the use of the intermediate layer sandwiched by the anisotropic conductive film and the non-conductive film to block the anisotropic conductive film that is not vertically pressed. The conductive particles are used to achieve the purpose of electrical insulation in the horizontal direction, and at the same time, the conductive particles that have been vertically pressed can flow into the vertically pressed conductive particles and contact each other to achieve the purpose of electrical conduction in the vertical direction. In particular, the intermediate layer can further block the flow of the non-conductive film into the anisotropic conductive film under heating and pressure, thereby solving the problem that the conductivity is difficult to increase due to the large reduction in the number and density of conductive particles. In addition, the present invention can be realized by a low-cost manufacturing method, can greatly improve the electrical conductivity, reduce the overall process cost, and has the specific effect of improving the production efficiency.
以上所述仅为用以解释本发明的较佳实施例,并非企图据以对本发明做任何形式上的限制,因此,凡有在相同的发明精神下所作有关本发明的任何修饰或变更,皆仍应包括在本发明意图保护的范畴。The above descriptions are only used to explain the preferred embodiments of the present invention, and are not intended to limit the present invention in any form. It should still be included in the scope of the intended protection of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811007132.1A CN110875101A (en) | 2018-08-31 | 2018-08-31 | Anisotropic conductive film structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811007132.1A CN110875101A (en) | 2018-08-31 | 2018-08-31 | Anisotropic conductive film structure and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110875101A true CN110875101A (en) | 2020-03-10 |
Family
ID=69714416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811007132.1A Pending CN110875101A (en) | 2018-08-31 | 2018-08-31 | Anisotropic conductive film structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110875101A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113362988A (en) * | 2021-05-21 | 2021-09-07 | 苏州鑫导电子科技有限公司 | Anisotropic conductive filament, preparation method thereof and anisotropic conductive film with conductive filament |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02109209A (en) * | 1988-10-18 | 1990-04-20 | Stanley Electric Co Ltd | Method for forming anisotropic conductive film for electrode terminal transfer |
CN101128886A (en) * | 2005-02-24 | 2008-02-20 | 索尼化学&信息部件株式会社 | Insulation-coated electroconductive particles |
CN101901971A (en) * | 2006-04-12 | 2010-12-01 | 日立化成工业株式会社 | Adhesive film for circuit connection, connection structure of circuit components, and connection method of circuit components |
CN106318244A (en) * | 2015-07-02 | 2017-01-11 | 玮锋科技股份有限公司 | Anisotropic conductive film by nuclear layer technology |
CN106782758A (en) * | 2017-01-05 | 2017-05-31 | 京东方科技集团股份有限公司 | Conducting particles and its manufacture method and anisotropy conductiving glue |
WO2017141863A1 (en) * | 2016-02-15 | 2017-08-24 | デクセリアルズ株式会社 | Anisotropic conductive film, manufacturing method therefor, and connection structure |
CN107735909A (en) * | 2015-07-13 | 2018-02-23 | 迪睿合株式会社 | Anisotropic conductive film and connection structural bodies |
JP2018078118A (en) * | 2018-01-23 | 2018-05-17 | デクセリアルズ株式会社 | Conductive adhesive film, and method for producing connection body |
CN209328538U (en) * | 2018-08-31 | 2019-08-30 | 玮锋科技股份有限公司 | Anisotropic conductive film structure |
-
2018
- 2018-08-31 CN CN201811007132.1A patent/CN110875101A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02109209A (en) * | 1988-10-18 | 1990-04-20 | Stanley Electric Co Ltd | Method for forming anisotropic conductive film for electrode terminal transfer |
CN101128886A (en) * | 2005-02-24 | 2008-02-20 | 索尼化学&信息部件株式会社 | Insulation-coated electroconductive particles |
CN101901971A (en) * | 2006-04-12 | 2010-12-01 | 日立化成工业株式会社 | Adhesive film for circuit connection, connection structure of circuit components, and connection method of circuit components |
CN106318244A (en) * | 2015-07-02 | 2017-01-11 | 玮锋科技股份有限公司 | Anisotropic conductive film by nuclear layer technology |
CN107735909A (en) * | 2015-07-13 | 2018-02-23 | 迪睿合株式会社 | Anisotropic conductive film and connection structural bodies |
WO2017141863A1 (en) * | 2016-02-15 | 2017-08-24 | デクセリアルズ株式会社 | Anisotropic conductive film, manufacturing method therefor, and connection structure |
CN106782758A (en) * | 2017-01-05 | 2017-05-31 | 京东方科技集团股份有限公司 | Conducting particles and its manufacture method and anisotropy conductiving glue |
JP2018078118A (en) * | 2018-01-23 | 2018-05-17 | デクセリアルズ株式会社 | Conductive adhesive film, and method for producing connection body |
CN209328538U (en) * | 2018-08-31 | 2019-08-30 | 玮锋科技股份有限公司 | Anisotropic conductive film structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113362988A (en) * | 2021-05-21 | 2021-09-07 | 苏州鑫导电子科技有限公司 | Anisotropic conductive filament, preparation method thereof and anisotropic conductive film with conductive filament |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180063956A1 (en) | Bonded assembly and display device including the same | |
US20120106111A1 (en) | Anisotropic electrically and thermally conductive adhesive with magnetic nano-particles | |
US8846142B2 (en) | Conductive particle, anisotropic conductive interconnection material that uses the conductive particle, and method for producing the conductive particle | |
KR102368746B1 (en) | Connection body and connection body production method | |
CN105531836A (en) | Light-emitting device, anisotropic conductive adhesive, and manufacturing method of light-emitting device | |
KR102386367B1 (en) | Connection body, connection body production method, connection method, anisotropic conductive adhesive | |
TWI775373B (en) | Manufacturing method of connecting structure | |
CN106318244A (en) | Anisotropic conductive film by nuclear layer technology | |
CN209328538U (en) | Anisotropic conductive film structure | |
KR102688696B1 (en) | Electronic component, anisotropic connection structure, method for designing electronic component | |
TWI689417B (en) | Anisotropic conductive film structure and manufacturing method thereof | |
CN110875101A (en) | Anisotropic conductive film structure and manufacturing method thereof | |
CN100416343C (en) | Structure for increasing reliability of metal connection | |
JP2010251336A (en) | Anisotropic conductive film and method for manufacturing connection structure using the same | |
KR101157599B1 (en) | Conductive particle for anisotropic conductive film and anisotropic conductive film including the conductive particle | |
JP2005216973A (en) | Semiconductor device | |
KR100735211B1 (en) | Anisotropic conductive film with conductive particles with excellent connection reliability | |
Palm et al. | Comparison of different flex materials in high density flip chip on flex applications | |
JP2004006417A (en) | Connecting element and connection structure of electrode using this | |
KR100514425B1 (en) | Bonding material, semiconductor device, method of manufacturing semiconductor device, circuit board and electronic device | |
TWM572307U (en) | Anisotropic conductive film structure | |
JP6257303B2 (en) | Manufacturing method of connecting body, connecting method, and connecting body | |
KR100946597B1 (en) | Electroconductive particle structure with excellent pressing property, its manufacturing method, and anisotropic conductive film using the same | |
CN101459151A (en) | Welding substrate, electronic package construction applying the welding substrate and package method thereof | |
CN113785027B (en) | Adhesive composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200310 |
|
WD01 | Invention patent application deemed withdrawn after publication |