CN110871099A - Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber - Google Patents
Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber Download PDFInfo
- Publication number
- CN110871099A CN110871099A CN201911169448.5A CN201911169448A CN110871099A CN 110871099 A CN110871099 A CN 110871099A CN 201911169448 A CN201911169448 A CN 201911169448A CN 110871099 A CN110871099 A CN 110871099A
- Authority
- CN
- China
- Prior art keywords
- carboxylated
- photocatalytic degradation
- calcium
- phosphate
- nanofibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002121 nanofiber Substances 0.000 title claims abstract description 57
- 238000013033 photocatalytic degradation reaction Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 22
- 239000002105 nanoparticle Substances 0.000 claims abstract description 22
- 238000009987 spinning Methods 0.000 claims abstract description 22
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000007787 solid Substances 0.000 claims abstract description 16
- 238000006243 chemical reaction Methods 0.000 claims abstract description 15
- 238000002360 preparation method Methods 0.000 claims abstract description 12
- -1 silver ions Chemical class 0.000 claims abstract description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims abstract description 9
- 229910052709 silver Inorganic materials 0.000 claims abstract description 8
- 239000004332 silver Substances 0.000 claims abstract description 8
- 229910001961 silver nitrate Inorganic materials 0.000 claims abstract description 8
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 6
- 231100000719 pollutant Toxicity 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims abstract description 3
- 239000007864 aqueous solution Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 19
- 159000000007 calcium salts Chemical class 0.000 claims description 16
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 15
- 239000000661 sodium alginate Substances 0.000 claims description 15
- 235000010413 sodium alginate Nutrition 0.000 claims description 15
- 229940005550 sodium alginate Drugs 0.000 claims description 15
- 239000000243 solution Substances 0.000 claims description 15
- 239000000648 calcium alginate Substances 0.000 claims description 14
- 235000010410 calcium alginate Nutrition 0.000 claims description 14
- 229960002681 calcium alginate Drugs 0.000 claims description 14
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 claims description 14
- 239000000017 hydrogel Substances 0.000 claims description 14
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 claims description 13
- 229910019142 PO4 Inorganic materials 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 229940106681 chloroacetic acid Drugs 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 10
- 229910000389 calcium phosphate Inorganic materials 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 229910000161 silver phosphate Inorganic materials 0.000 claims description 8
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 claims description 8
- 239000010452 phosphate Substances 0.000 claims description 7
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 6
- 239000001506 calcium phosphate Substances 0.000 claims description 6
- 229960001714 calcium phosphate Drugs 0.000 claims description 6
- 235000011010 calcium phosphates Nutrition 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 229940051841 polyoxyethylene ether Drugs 0.000 claims description 6
- 229920000056 polyoxyethylene ether Polymers 0.000 claims description 6
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 claims description 4
- 229910000388 diammonium phosphate Inorganic materials 0.000 claims description 4
- 235000019838 diammonium phosphate Nutrition 0.000 claims description 4
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000001488 sodium phosphate Substances 0.000 claims description 4
- 229910000404 tripotassium phosphate Inorganic materials 0.000 claims description 4
- 235000019798 tripotassium phosphate Nutrition 0.000 claims description 4
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 4
- 229910000406 trisodium phosphate Inorganic materials 0.000 claims description 4
- 235000019801 trisodium phosphate Nutrition 0.000 claims description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 3
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 claims description 3
- 239000001110 calcium chloride Substances 0.000 claims description 3
- 229910001628 calcium chloride Inorganic materials 0.000 claims description 3
- 229940062672 calcium dihydrogen phosphate Drugs 0.000 claims description 3
- 239000004227 calcium gluconate Substances 0.000 claims description 3
- 229960004494 calcium gluconate Drugs 0.000 claims description 3
- 235000013927 calcium gluconate Nutrition 0.000 claims description 3
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 claims description 3
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 claims description 3
- 235000019691 monocalcium phosphate Nutrition 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 229910017053 inorganic salt Inorganic materials 0.000 claims description 2
- 230000008961 swelling Effects 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 230000021523 carboxylation Effects 0.000 claims 4
- 238000006473 carboxylation reaction Methods 0.000 claims 4
- 239000000956 alloy Substances 0.000 claims 3
- 229910045601 alloy Inorganic materials 0.000 claims 3
- 239000012752 auxiliary agent Substances 0.000 claims 3
- 230000001112 coagulating effect Effects 0.000 claims 2
- 238000007254 oxidation reaction Methods 0.000 claims 2
- 150000007942 carboxylates Chemical class 0.000 claims 1
- 238000010041 electrostatic spinning Methods 0.000 claims 1
- 238000004108 freeze drying Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 claims 1
- 230000035484 reaction time Effects 0.000 claims 1
- 238000009210 therapy by ultrasound Methods 0.000 claims 1
- 238000001523 electrospinning Methods 0.000 abstract description 9
- 238000005345 coagulation Methods 0.000 description 10
- 230000015271 coagulation Effects 0.000 description 10
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 8
- 230000001699 photocatalysis Effects 0.000 description 7
- 239000011941 photocatalyst Substances 0.000 description 6
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 235000010443 alginic acid Nutrition 0.000 description 3
- 229960001126 alginic acid Drugs 0.000 description 3
- 239000000783 alginic acid Substances 0.000 description 3
- 229920000615 alginic acid Polymers 0.000 description 3
- 150000004781 alginic acids Chemical class 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000002957 persistent organic pollutant Substances 0.000 description 3
- 238000005215 recombination Methods 0.000 description 3
- 230000006798 recombination Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-L Phosphate ion(2-) Chemical compound OP([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-L 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- KCIDZIIHRGYJAE-YGFYJFDDSA-L dipotassium;[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] phosphate Chemical compound [K+].[K+].OC[C@H]1O[C@H](OP([O-])([O-])=O)[C@H](O)[C@@H](O)[C@H]1O KCIDZIIHRGYJAE-YGFYJFDDSA-L 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000003905 indoor air pollution Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/26—Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/342—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/343—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Catalysts (AREA)
- Artificial Filaments (AREA)
Abstract
本发明公开了一种含Ag3PO4和羧化g‑C3N4的光催化降解纳米纤维的制备方法。首先对g‑C3N4进行化学氧化,在其基面上生成羟基和羧基,为了进一步提高g‑C3N4表面的羧基含量,将化学氧化后的g‑C3N4与氯乙酸反应得到羧化g‑C3N4。将羧化g‑C3N4充分分散到水中,加入硝酸银,使银离子充分吸附到羧化g‑C3N4表面,然后加入过量可溶性磷酸盐,在羧化g‑C3N4表面生成Ag3PO4纳米粒子。然后在体系中加入纺丝助剂并充分溶解得到纺丝液,经过静电纺丝工艺得到含Ag3PO4和羧化g‑C3N4的光催化降解纳米纤维。该纳米纤维可以直接在湿态下使用,也能烧结得到无机纳米纤维,均具有良好的光催化降解性能和重复使用性能,在光催化降解固体、液体和气体污染物领域有良好的应用前景。The invention discloses a preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated g-C 3 N 4 . First, chemically oxidize g - C 3 N 4 to generate hydroxyl and carboxyl groups on its basal plane. In order to further increase the carboxyl group content on the surface of g-C 3 N 4 The reaction yields carboxylated g-C 3 N 4 . Fully disperse the carboxylated g - C 3 N 4 into water, add silver nitrate to make the silver ions fully adsorbed to the surface of the carboxylated g -C 3 N 4 Ag 3 PO 4 nanoparticles were generated on the surface. Then, a spinning aid was added to the system and fully dissolved to obtain a spinning solution, and a photocatalytic degradation nanofiber containing Ag 3 PO 4 and carboxylated g-C 3 N 4 was obtained through an electrospinning process. The nanofibers can be directly used in the wet state or sintered to obtain inorganic nanofibers, both of which have good photocatalytic degradation performance and reuse performance, and have good application prospects in the field of photocatalytic degradation of solid, liquid and gas pollutants.
Description
技术领域technical field
本发明涉及一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法,属于功能材料、光催化和纳米纤维领域。The invention relates to a preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 , belonging to the fields of functional materials, photocatalysis and nanofibers.
本发明涉及光催化降解、过滤膜、纳米纤维等技术领域。具体涉及一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法。The invention relates to the technical fields of photocatalytic degradation, filter membranes, nanofibers and the like. Specifically, it relates to a preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 .
背景技术Background technique
光催化降解就是利用辐射、光催化剂在反应体系中产生的活性极强的自由基,再通过自由基与有机污染物之间的加合、取代、电子转移等过程将污染物全部降解为无机物的过程。近年来,光催化技术在难降解废水处理领域受到广泛关注,被认为是控制水体中难降解有机污染物最具发展前景的技术之一,目前已被广泛应用于纺织、染料、焦化、医药等废水的处理。将光催化降解应用于工业废水与饮用水的治理成为相关研究的焦点【J.Membrane.Sci,2012,392-393:192-203】。在众多应用于光催化降解的半导体材料中,TiO2由于其高活性,高化学稳定性,光稳定性,无毒和低价等优良性能被认为是最合适的光催化剂【J.Hazard.Mater,2011,185:77-85】。在传统的废水处理过程中,TiO2纳米粒子通常以悬浮系统的形式被利用,因为其粒子具有较大的表面积。然而,废水中悬浮的TiO2纳米粒子的分离必然会增加营运成本并且造成二次污染,因而大大限制了其实际应用。传统的光催化剂TiO2由于其禁带宽度较宽,只对紫外光响应,而这部分光占比不到太阳光的5%,对可见光利用率低,并且电子-空穴对复合率高且具有量子效率低等缺点。Photocatalytic degradation is the use of highly active free radicals generated by radiation and photocatalysts in the reaction system, and then through the addition, substitution, and electron transfer between free radicals and organic pollutants. All pollutants are degraded into inorganic substances. the process of. In recent years, photocatalytic technology has received extensive attention in the field of refractory wastewater treatment and is considered to be one of the most promising technologies for controlling refractory organic pollutants in water bodies. It has been widely used in textiles, dyes, coking, medicine, etc. Treatment of wastewater. The application of photocatalytic degradation to the treatment of industrial wastewater and drinking water has become the focus of related research [J. Membrane. Sci, 2012, 392-393: 192-203]. Among the many semiconductor materials used for photocatalytic degradation, TiO2 is considered as the most suitable photocatalyst due to its excellent properties such as high activity, high chemical stability, photostability, non-toxicity and low price [J.Hazard.Mater] , 2011, 185:77-85]. In conventional wastewater treatment processes, TiO2 nanoparticles are usually utilized in the form of suspended systems due to the large surface area of their particles. However, the separation of suspended TiO2 nanoparticles in wastewater will inevitably increase operating costs and cause secondary pollution, thus greatly limiting its practical application. Due to its wide band gap, the traditional photocatalyst TiO 2 only responds to ultraviolet light, and this part of the light accounts for less than 5% of sunlight, the utilization rate of visible light is low, and the electron-hole pair recombination rate is high and It has disadvantages such as low quantum efficiency.
光催化反应的本质是氧化还原反应,当半导体光催化材料受到光照射时会吸收光能,一旦能量超过其阈值材料将受到激发,从而产生光生电子(e-)和空穴(h+),电子和空穴迁移到催化材料表面,其中电子被溶解氧所捕获形成超氧自由基(·O2-),而空穴则将吸附在催化剂表面,将水和氢氧根离子氧化成羟基自由基(·OH),这两类物质均具有很强的氧化性,从而将材料表面的污染物/细菌氧化成CO2和H2O,最终起到防污、除菌和净化功能。g-C3N4是一种典型的聚合物半导体,其结构中的CN原子以sp2杂化形成高度离域的π共轭体系。其中Npz轨道组成g-C3N4的最高占据分子轨道(HOMO),Cpz轨道组成最低未占据分子轨道(LUMO),禁带宽度~2.7eV,可以吸收太阳光谱中波长小于475的蓝紫光。g-C3N4具有非常合适的半导体带边位置,满足光解水产氢的热力学要求。g-C3N4具有良好的热稳定性和化学稳定性,对环境友好,无二次污染等特点。它作为新型非金属光催化材料与传统的TiO2光催化剂相比,g-C3N4吸收光谱范围更宽,不需要紫外光仅在普通可见光下就能起到光催化作用;同时,比起TiO2,g-C3N4更能有效活化分子氧,产生超氧自由基用于有机官能团的光催化转化和有机污染物的光催化降解,更适用于室内空气污染治理和有机物降解。Ag3PO4是一类新发展起来的可见光催化剂,具有良好的可见光催化活性。Ag3PO4的导带能势和价带能势分别为0.45V和2.9V,与g-C3N4的导带能势(-1.13V)和价带能势(1.57V)具有良好的匹配性,因此两者复合可以有效提高光生电子/空穴的分离效率,提高复合材料的可见光催化活性。The essence of the photocatalytic reaction is a redox reaction. When the semiconductor photocatalytic material is irradiated by light, it will absorb light energy. Once the energy exceeds its threshold, the material will be excited to generate photogenerated electrons (e - ) and holes (h + ), Electrons and holes migrate to the surface of the catalytic material, where the electrons are captured by dissolved oxygen to form superoxide radicals (·O 2- ), while the holes will be adsorbed on the surface of the catalyst to oxidize water and hydroxide ions to hydroxyl free radicals Base (·OH), both of which have strong oxidizing properties, thus oxidizing the pollutants/bacteria on the surface of the material into CO 2 and H 2 O, and finally play the functions of antifouling, sterilization and purification. gC3N4 is a typical polymer semiconductor, and the CN atoms in its structure are sp hybridized to form a highly delocalized π - conjugated system. Among them, the Npz orbital constitutes the highest occupied molecular orbital (HOMO) of gC3N4 , and the Cpz orbital constitutes the lowest unoccupied molecular orbital (LUMO). gC 3 N 4 has a very suitable semiconducting band-edge position, which meets the thermodynamic requirements of photo-splitting water for hydrogen production. gC 3 N 4 has good thermal and chemical stability, is environmentally friendly, and has no secondary pollution. As a new type of non-metallic photocatalytic material, compared with the traditional TiO 2 photocatalyst, gC 3 N 4 has a wider absorption spectrum, and does not require ultraviolet light and can only play a photocatalytic role under ordinary visible light; at the same time, compared with TiO 2 2 , gC 3 N 4 can more effectively activate molecular oxygen, generate superoxide radicals for photocatalytic conversion of organic functional groups and photocatalytic degradation of organic pollutants, and is more suitable for indoor air pollution control and organic matter degradation. Ag 3 PO 4 is a newly developed visible light catalyst with good visible light catalytic activity. The conduction band energy potential and valence band energy potential of Ag 3 PO 4 are 0.45V and 2.9V, respectively, which have a good match with the conduction band energy potential (-1.13V) and valence band energy potential (1.57V) of gC 3 N 4 Therefore, the combination of the two can effectively improve the separation efficiency of photogenerated electrons/holes and improve the visible light catalytic activity of the composite material.
静电纺丝制备的纳米纤维支架具有很高的表面体积比,能够增强细胞吸附、载药、光催化功能。静电纺丝是近年来最受关注、最有可能实现产业化制备纳米纤维的方法。静电纺纤维膜的纤维直径小、比表面积大、孔隙率适,已被广泛用于各种工程化和各种人体组织。静电纺丝最早由德国的Formhals在1934年首次发现并第一个申请了专利。Nanofibrous scaffolds prepared by electrospinning have a high surface-to-volume ratio, which can enhance cell adsorption, drug loading, and photocatalytic functions. Electrospinning is the method that has received the most attention in recent years and is most likely to achieve industrialized preparation of nanofibers. Electrospun fiber membranes have small fiber diameters, large specific surface areas, and moderate porosity, and have been widely used in various engineering and various human tissues. Electrospinning was first discovered and patented by Formhals in Germany in 1934.
本发明公开了一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法。首先对g-C3N4进行化学氧化,在其基面上生成羟基和羧基,为了进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应得到羧化g-C3N4。将羧化g-C3N4充分分散到水中,加入硝酸银,使银离子充分吸附到羧化g-C3N4表面,然后加入过量可溶性磷酸盐,在羧化g-C3N4表面生成Ag3PO4纳米粒子。然后在体系中加入纺丝助剂并充分溶解得到纺丝液,经过静电纺丝工艺得到含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。该纳米纤维可以直接在湿态下使用,也能烧结得到无机纳米纤维,均具有良好的光催化降解性能和重复使用性能,在光催化降解固体、液体和气体污染物领域有良好的应用前景。The invention discloses a preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 . Firstly, gC3N4 is chemically oxidized to generate hydroxyl and carboxyl groups on its basal plane. In order to further increase the carboxyl group content on the surface of gC3N4 , the chemically oxidized gC3N4 is reacted with chloroacetic acid to obtain carboxylated gC3N4 . N 4 . Fully disperse carboxylated gC 3 N 4 in water, add silver nitrate to make silver ions fully adsorbed to the surface of carboxylated gC 3 N 4 , and then add excess soluble phosphate to generate Ag 3 PO 4 on the surface of carboxylated gC 3 N 4 Nanoparticles. Then the spinning auxiliaries were added into the system and fully dissolved to obtain the spinning solution, and the photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 were obtained through the electrospinning process. The nanofibers can be directly used in the wet state or sintered to obtain inorganic nanofibers, both of which have good photocatalytic degradation performance and reuse performance, and have good application prospects in the field of photocatalytic degradation of solid, liquid and gas pollutants.
发明内容SUMMARY OF THE INVENTION
针对现有技术的不足,本发明拟解决的技术问题是传统光催化剂TiO2禁带宽度较宽、只对紫外光响应、对可见光利用率低、并且电子-空穴对复合率高且具有量子效率低等问题。In view of the deficiencies of the prior art, the technical problems to be solved by the present invention are that the traditional photocatalyst TiO 2 has a wider band gap, only responds to ultraviolet light, has a low utilization rate of visible light, and has a high electron-hole pair recombination rate and has quantum low efficiency, etc.
本发明解决所述传统光催化剂TiO2禁带宽度较宽、只对紫外光响应、对可见光利用率低、并且电子-空穴对复合率高且具有量子效率低等问题的技术方案是提供一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法。The technical solution of the present invention to solve the problems of the traditional photocatalyst TiO2 having a wide band gap, only responding to ultraviolet light, low utilization rate of visible light, high electron-hole pair recombination rate and low quantum efficiency is to provide a A preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 .
本发明提供了一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法,其特征是包括以下步骤:The invention provides a preparation method of photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 , which is characterized by comprising the following steps:
a)用重铬酸钾和硫酸的混合水溶液对g-C3N4进行化学氧化,在g-C3N4基面上引入羟基和羧基,为进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应生成羧化g-C3N4,离心并洗涤去掉残留的无机盐和酸,冷冻干燥得到羧化g-C3N4固体粉末;控制氯乙酸的浓度,反应温度和反应时间使羧化g-C3N4中羧基的质量百分比含量为0.1%-10%;a) Chemically oxidize gC 3 N 4 with a mixed aqueous solution of potassium dichromate and sulfuric acid, and introduce hydroxyl and carboxyl groups on the gC 3 N 4 base surface . The gC 3 N 4 reacted with chloroacetic acid to generate carboxylated gC 3 N 4 , centrifuged and washed to remove residual inorganic salts and acids, and freeze-dried to obtain carboxylated gC 3 N 4 solid powder; control the concentration of chloroacetic acid, the reaction temperature and the reaction The time makes the mass percentage content of carboxyl groups in the carboxylated gC 3 N 4 to be 0.1%-10%;
b)将步骤a)得到的羧化g-C3N4固体粉末分散到去离子水中,调节pH值呈弱碱性,超声使羧化g-C3N4均匀分散在水中,控制羧化g-C3N4在水中的质量百分比浓度为0.01%-5%;在羧化g-C3N4的水分散液中加入质量百分比浓度0.1%-5%的硝酸银水溶液,使银离子充分吸附到羧化g-C3N4表面,然后加入过量可溶性磷酸盐,在羧化g-C3N4表面生成Ag3PO4纳米粒子,得到含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液;b) Disperse the carboxylated gC 3 N 4 solid powder obtained in step a) into deionized water, adjust the pH value to be weakly alkaline, ultrasonically disperse the carboxylated gC 3 N 4 in water uniformly, and control the carboxylated gC 3 N 4 The mass percentage concentration in water is 0.01%-5%; silver nitrate aqueous solution with a mass percentage concentration of 0.1%-5% is added to the aqueous dispersion of carboxylated gC 3 N 4 to make silver ions fully adsorbed to the carboxylated gC 3 N 4 surface, and then add excess soluble phosphate to generate Ag 3 PO 4 nanoparticles on the surface of carboxylated gC 3 N 4 to obtain a mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles;
c)向步骤b)得到的含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液中加入纺丝助剂和海藻酸钠并充分溶解得到纺丝液,纺丝助剂和海藻酸钠的质量百分比为0.5-5∶0.5-10;c) Add spinning aid and sodium alginate to the mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles obtained in step b) and fully dissolve to obtain spinning solution, spinning aid and alginic acid The mass percentage of sodium is 0.5-5:0.5-10;
d)配制质量百分比浓度0.2%-20%的可溶性钙盐的水溶液,作为凝固浴;d) preparing an aqueous solution of soluble calcium salt with a mass percentage concentration of 0.2%-20% as a coagulation bath;
e)将步骤b)得到的纺丝液,采用静电纺丝工艺得到纳米纤维;将该纳米纤维放入步骤d)得到的凝固浴中浸泡5-240min,可溶性钙盐与海藻酸钠反应生成海藻酸钙水凝胶的同时,也与羧化g-C3N4上的羧基交联,生成有机无机杂化结构,再加上羧化g-C3N4的物理增强作用,从而提高了海藻酸钙水凝胶的机械强度,降低了其溶胀性能;同时可溶性钙盐与纳米纤维中过量可溶性磷酸盐反应生成磷酸钙,可防止Ag3PO4流失;最后用去离子水浸泡洗涤除去纳米纤维中残留的无机盐,得到一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。e) The spinning solution obtained in step b) is electrospinned to obtain nanofibers; the nanofibers are soaked in the coagulation bath obtained in step d) for 5-240min, and the soluble calcium salt reacts with sodium alginate to form seaweed At the same time, the calcium alginate hydrogel is also cross-linked with the carboxyl groups on the carboxylated gC 3 N 4 to generate an organic-inorganic hybrid structure, coupled with the physical enhancement of the carboxylated gC 3 N 4 , thereby improving the calcium alginate hydrogel. The mechanical strength of the gel reduces its swelling performance; at the same time, the soluble calcium salt reacts with the excess soluble phosphate in the nanofibers to form calcium phosphate, which can prevent the loss of Ag 3 PO 4 ; finally, soak and wash in deionized water to remove the remaining nanofibers. Inorganic salt, a photocatalytic degradation nanofiber containing Ag3PO4 and carboxylated gC3N4 was obtained .
本发明所述一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维的制备方法,其特征是所述的可溶性磷酸盐为磷酸氢二铵、磷酸氢二钠、磷酸氢二钾、磷酸三钾、磷酸三钠中的任意一种或两种及以上混合物;所述的纺丝助剂为聚乙烯醇、聚氧乙烯醚、聚丙烯酰胺中的任意一种或两种混合物;所述的可溶性钙盐为氯化钙、硝酸钙、磷酸二氢钙、葡萄糖酸钙中的任意一种或两种及以上混合物。The method for preparing photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 according to the present invention is characterized in that the soluble phosphate is diammonium hydrogen phosphate, disodium hydrogen phosphate, hydrogen phosphate Any one or two or more mixtures of dipotassium, tripotassium phosphate, and trisodium phosphate; the spinning aid is any one or two of polyvinyl alcohol, polyoxyethylene ether, and polyacrylamide mixture; the soluble calcium salt is any one or a mixture of two or more selected from calcium chloride, calcium nitrate, calcium dihydrogen phosphate and calcium gluconate.
本发明制备的含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维能直接在湿态下使用,也能烧结得到无机纳米纤维使用,均具有良好的光催化降解和重复使用性能,在光催化降解固体、液体和气体污染物方面有良好的应用前景。The photocatalytic degradation nanofibers containing Ag 3 PO 4 and carboxylated gC 3 N 4 prepared by the invention can be directly used in wet state, and can also be sintered to obtain inorganic nano fibers for use, and both have good photocatalytic degradation and reuse performance. , has good application prospects in photocatalytic degradation of solid, liquid and gaseous pollutants.
具体实施方式Detailed ways
下面介绍本发明的具体实施例,但本发明不受实施例的限制。Specific embodiments of the present invention are described below, but the present invention is not limited by the embodiments.
实施例1.Example 1.
a)用重铬酸钾和硫酸的混合水溶液对g-C3N4进行化学氧化,在g-C3N4基面上引入羟基和羧基,为进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应生成羧化g-C3N4,离心并洗涤去掉残留的无机盐和酸,冷冻干燥得到羧化g-C3N4固体粉末;控制氯乙酸的浓度,反应温度和反应时间使羧化g-C3N4中羧基的质量百分比含量为0.1%;a) Chemically oxidize gC 3 N 4 with a mixed aqueous solution of potassium dichromate and sulfuric acid, and introduce hydroxyl and carboxyl groups on the gC 3 N 4 base surface . The gC 3 N 4 reacted with chloroacetic acid to generate carboxylated gC 3 N 4 , centrifuged and washed to remove residual inorganic salts and acids, and freeze-dried to obtain carboxylated gC 3 N 4 solid powder; control the concentration of chloroacetic acid, the reaction temperature and the reaction The time makes the mass percentage content of carboxyl groups in carboxylated gC 3 N 4 to be 0.1%;
b)将步骤a)得到的羧化g-C3N4固体粉末分散到去离子水中,调节pH值呈弱碱性,超声使羧化g-C3N4均匀分散在水中,控制羧化g-C3N4在水中的质量百分比浓度为0.01%;在羧化g-C3N4的水分散液中加入质量百分比浓度0.1%的硝酸银水溶液,使银离子充分吸附到羧化g-C3N4表面,然后加入过量磷酸氢二铵,在羧化g-C3N4表面生成Ag3PO4纳米粒子,得到含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液;b) Disperse the carboxylated gC 3 N 4 solid powder obtained in step a) into deionized water, adjust the pH value to be weakly alkaline, ultrasonically disperse the carboxylated gC 3 N 4 in water uniformly, and control the carboxylated gC 3 N 4 The mass percentage concentration in water is 0.01%; the 0.1% mass percentage concentration of silver nitrate aqueous solution is added to the aqueous dispersion of carboxylated gC 3 N 4 to make silver ions fully adsorbed to the surface of carboxylated gC 3 N 4 , and then an excess amount is added. Diammonium hydrogen phosphate generates Ag 3 PO 4 nanoparticles on the surface of carboxylated gC 3 N 4 to obtain a mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles;
c)向步骤b)得到的含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液中加入聚乙烯醇和海藻酸钠并充分溶解得到纺丝液,聚乙烯醇和海藻酸钠的质量百分比为0.5∶0.5;c) Add polyvinyl alcohol and sodium alginate to the mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles obtained in step b) and fully dissolve to obtain spinning solution, the mass percentage of polyvinyl alcohol and sodium alginate is 0.5:0.5;
d)配制质量百分比浓度0.2%的氯化钙的水溶液,作为凝固浴;d) prepare an aqueous solution of calcium chloride with a mass percentage concentration of 0.2% as a coagulation bath;
e)将步骤b)得到的纺丝液,采用静电纺丝工艺得到纳米纤维;将该纳米纤维放入步骤d)得到的凝固浴中浸泡5min,可溶性钙盐与海藻酸钠反应生成海藻酸钙水凝胶的同时,也与羧化g-C3N4上的羧基交联,生成有机无机杂化结构,再加上羧化g-C3N4的物理增强作用,从而提高了海藻酸钙水凝胶的机械强度,降低了其溶胀性能;同时可溶性钙盐与纳米纤维中过量磷酸氢二铵反应生成磷酸钙,可防止Ag3PO4流失;最后用去离子水浸泡洗涤除去纳米纤维中残留的无机盐,得到一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。e) using the spinning solution obtained in step b) to obtain nanofibers by electrospinning; placing the nanofibers in the coagulation bath obtained in step d) and soaking for 5 minutes, the soluble calcium salt reacts with sodium alginate to generate calcium alginate At the same time of the hydrogel, it is also cross-linked with the carboxyl groups on the carboxylated gC3N4 to generate an organic - inorganic hybrid structure, coupled with the physical enhancement of the carboxylated gC3N4 , thereby improving the calcium alginate hydrogel. At the same time, the soluble calcium salt reacts with excess diammonium hydrogen phosphate in the nanofibers to form calcium phosphate, which can prevent the loss of Ag 3 PO 4 ; finally, soak and wash in deionized water to remove the residual inorganic in the nanofibers. salt, resulting in a photocatalytically degraded nanofiber containing Ag3PO4 and carboxylated gC3N4 .
实施例2.Example 2.
a)用重铬酸钾和硫酸的混合水溶液对g-C3N4进行化学氧化,在g-C3N4基面上引入羟基和羧基,为进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应生成羧化g-C3N4,离心并洗涤去掉残留的无机盐和酸,冷冻干燥得到羧化g-C3N4固体粉末;控制氯乙酸的浓度,反应温度和反应时间使羧化g-C3N4中羧基的质量百分比含量为2.5%;a) Chemically oxidize gC 3 N 4 with a mixed aqueous solution of potassium dichromate and sulfuric acid, and introduce hydroxyl and carboxyl groups on the gC 3 N 4 base surface . The gC 3 N 4 reacted with chloroacetic acid to generate carboxylated gC 3 N 4 , centrifuged and washed to remove residual inorganic salts and acids, and freeze-dried to obtain carboxylated gC 3 N 4 solid powder; control the concentration of chloroacetic acid, the reaction temperature and the reaction The time makes the mass percentage content of carboxyl groups in the carboxylated gC 3 N 4 to be 2.5%;
b)将步骤a)得到的羧化g-C3N4固体粉末分散到去离子水中,调节pH值呈弱碱性,超声使羧化g-C3N4均匀分散在水中,控制羧化g-C3N4在水中的质量百分比浓度为2.5%;在羧化g-C3N4的水分散液中加入质量百分比浓度5%的硝酸银水溶液,使银离子充分吸附到羧化g-C3N4表面,然后加入过量磷酸氢二钠,在羧化g-C3N4表面生成Ag3PO4纳米粒子,得到含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液;b) Disperse the carboxylated gC 3 N 4 solid powder obtained in step a) into deionized water, adjust the pH value to be weakly alkaline, ultrasonically disperse the carboxylated gC 3 N 4 in water uniformly, and control the carboxylated gC 3 N 4 The mass percentage concentration in water is 2.5%; the aqueous solution of silver nitrate with a mass percentage concentration of 5% is added to the aqueous dispersion of carboxylated gC 3 N 4 to make the silver ions fully adsorbed to the surface of carboxylated gC 3 N 4 , and then an excess amount is added. disodium hydrogen phosphate, Ag 3 PO 4 nanoparticles are generated on the surface of carboxylated gC 3 N 4 to obtain a mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles;
c)向步骤b)得到的含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液中加入聚氧乙烯醚和海藻酸钠并充分溶解得到纺丝液,聚氧乙烯醚和海藻酸钠的质量百分比为0.5∶1;c) adding polyoxyethylene ether and sodium alginate to the mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles obtained in step b) and fully dissolving to obtain spinning solution, polyoxyethylene ether and alginic acid The mass percentage of sodium is 0.5:1;
d)配制质量百分比浓度5.0%的硝酸钙的水溶液,作为凝固浴;d) preparing an aqueous solution of calcium nitrate with a mass percentage concentration of 5.0% as a coagulation bath;
e)将步骤b)得到的纺丝液,采用静电纺丝工艺得到纳米纤维;将该纳米纤维放入步骤d)得到的凝固浴中浸泡120min,可溶性钙盐与海藻酸钠反应生成海藻酸钙水凝胶的同时,也与羧化g-C3N4上的羧基交联,生成有机无机杂化结构,再加上羧化g-C3N4的物理增强作用,从而提高了海藻酸钙水凝胶的机械强度,降低了其溶胀性能;同时可溶性钙盐与纳米纤维中过量磷酸氢二钠反应生成磷酸钙,可防止Ag3PO4流失;最后用去离子水浸泡洗涤除去纳米纤维中残留的无机盐,得到一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。e) using the spinning solution obtained in step b) to obtain nanofibers by electrospinning; placing the nanofibers in the coagulation bath obtained in step d) for 120 min, and the soluble calcium salt reacts with sodium alginate to generate calcium alginate At the same time of the hydrogel, it is also cross-linked with the carboxyl groups on the carboxylated gC3N4 to generate an organic - inorganic hybrid structure, coupled with the physical enhancement of the carboxylated gC3N4 , thereby improving the calcium alginate hydrogel. At the same time, the soluble calcium salt reacts with the excess disodium hydrogen phosphate in the nanofibers to form calcium phosphate, which can prevent the loss of Ag 3 PO 4 ; finally, soak and wash in deionized water to remove the residual inorganic in the nanofibers. salt, resulting in a photocatalytically degraded nanofiber containing Ag3PO4 and carboxylated gC3N4 .
实施例3.Example 3.
a)用重铬酸钾和硫酸的混合水溶液对g-C3N4进行化学氧化,在g-C3N4基面上引入羟基和羧基,为进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应生成羧化g-C3N4,离心并洗涤去掉残留的无机盐和酸,冷冻干燥得到羧化g-C3N4固体粉末;控制氯乙酸的浓度,反应温度和反应时间使羧化g-C3N4中羧基的质量百分比含量为10%;a) Chemically oxidize gC 3 N 4 with a mixed aqueous solution of potassium dichromate and sulfuric acid, and introduce hydroxyl and carboxyl groups on the gC 3 N 4 base surface . The gC 3 N 4 reacted with chloroacetic acid to generate carboxylated gC 3 N 4 , centrifuged and washed to remove residual inorganic salts and acids, and freeze-dried to obtain carboxylated gC 3 N 4 solid powder; control the concentration of chloroacetic acid, the reaction temperature and the reaction The time makes the mass percentage content of carboxyl groups in the carboxylated gC 3 N 4 to be 10%;
b)将步骤a)得到的羧化g-C3N4固体粉末分散到去离子水中,调节pH值呈弱碱性,超声使羧化g-C3N4均匀分散在水中,控制羧化g-C3N4在水中的质量百分比浓度为5%;在羧化g-C3N4的水分散液中加入质量百分比浓度1%的硝酸银水溶液,使银离子充分吸附到羧化g-C3N4表面,然后加入过量磷酸氢二钾和磷酸三钾,在羧化g-C3N4表面生成Ag3PO4纳米粒子,得到含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液;b) Disperse the carboxylated gC 3 N 4 solid powder obtained in step a) into deionized water, adjust the pH value to be weakly alkaline, ultrasonically disperse the carboxylated gC 3 N 4 in water uniformly, and control the carboxylated gC 3 N 4 The mass percentage concentration in water is 5%; the aqueous solution of silver nitrate with a mass percentage concentration of 1% is added to the aqueous dispersion of carboxylated gC 3 N 4 , so that silver ions are fully adsorbed to the surface of carboxylated gC 3 N 4 , and then an excess amount is added. Dipotassium hydrogen phosphate and tripotassium phosphate generate Ag 3 PO 4 nanoparticles on the surface of carboxylated gC 3 N 4 to obtain a mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles;
c)向步骤b)得到的含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液中加入聚丙烯酰胺和海藻酸钠并充分溶解得到纺丝液,聚丙烯酰胺和海藻酸钠的质量百分比为1∶10;c) adding polyacrylamide and sodium alginate to the mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles obtained in step b) and fully dissolving to obtain a spinning solution, the mixture of polyacrylamide and sodium alginate The mass percentage is 1:10;
d)配制质量百分比浓度20%的磷酸二氢钙的水溶液,作为凝固浴;d) preparing an aqueous solution of calcium dihydrogen phosphate with a mass percentage concentration of 20% as a coagulation bath;
e)将步骤b)得到的纺丝液,采用静电纺丝工艺得到纳米纤维;将该纳米纤维放入步骤d)得到的凝固浴中浸泡240min,可溶性钙盐与海藻酸钠反应生成海藻酸钙水凝胶的同时,也与羧化g-C3N4上的羧基交联,生成有机无机杂化结构,再加上羧化g-C3N4的物理增强作用,从而提高了海藻酸钙水凝胶的机械强度,降低了其溶胀性能;同时可溶性钙盐与纳米纤维中过量磷酸氢二钾和磷酸三钾反应生成磷酸钙,可防止Ag3PO4流失;最后用去离子水浸泡洗涤除去纳米纤维中残留的无机盐,得到一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。e) Electrospinning the spinning solution obtained in step b) to obtain nanofibers; put the nanofibers in the coagulation bath obtained in step d) and soak for 240min, and the soluble calcium salt reacts with sodium alginate to generate calcium alginate At the same time of the hydrogel, it is also cross-linked with the carboxyl groups on the carboxylated gC3N4 to generate an organic - inorganic hybrid structure, coupled with the physical enhancement of the carboxylated gC3N4 , thereby improving the calcium alginate hydrogel. At the same time, the soluble calcium salt reacts with excess dipotassium hydrogen phosphate and tripotassium phosphate in the nanofibers to form calcium phosphate, which can prevent the loss of Ag 3 PO 4 ; finally, the nanofibers are removed by soaking and washing in deionized water. Residual inorganic salts were obtained to obtain a photocatalytically degraded nanofiber containing Ag 3 PO 4 and carboxylated gC 3 N 4 .
实施例4.Example 4.
a)用重铬酸钾和硫酸的混合水溶液对g-C3N4进行化学氧化,在g-C3N4基面上引入羟基和羧基,为进一步提高g-C3N4表面的羧基含量,将化学氧化后的g-C3N4与氯乙酸反应生成羧化g-C3N4,离心并洗涤去掉残留的无机盐和酸,冷冻干燥得到羧化g-C3N4固体粉末;控制氯乙酸的浓度,反应温度和反应时间使羧化g-C3N4中羧基的质量百分比含量为1%;a) Chemically oxidize gC 3 N 4 with a mixed aqueous solution of potassium dichromate and sulfuric acid, and introduce hydroxyl and carboxyl groups on the gC 3 N 4 base surface . The gC 3 N 4 reacted with chloroacetic acid to generate carboxylated gC 3 N 4 , centrifuged and washed to remove residual inorganic salts and acids, and freeze-dried to obtain carboxylated gC 3 N 4 solid powder; control the concentration of chloroacetic acid, the reaction temperature and the reaction The time makes the mass percentage content of carboxyl groups in the carboxylated gC 3 N 4 to be 1%;
b)将步骤a)得到的羧化g-C3N4固体粉末分散到去离子水中,调节pH值呈弱碱性,超声使羧化g-C3N4均匀分散在水中,控制羧化g-C3N4在水中的质量百分比浓度为1%;在羧化g-C3N4的水分散液中加入质量百分比浓度2%的硝酸银水溶液,使银离子充分吸附到羧化g-C3N4表面,然后加入过量磷酸三钠,在羧化g-C3N4表面生成Ag3PO4纳米粒子,得到含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液;b) Disperse the carboxylated gC 3 N 4 solid powder obtained in step a) into deionized water, adjust the pH value to be weakly alkaline, ultrasonically disperse the carboxylated gC 3 N 4 in water uniformly, and control the carboxylated gC 3 N 4 The mass percentage concentration in water is 1%; the aqueous solution of silver nitrate with a mass percentage concentration of 2% is added to the aqueous dispersion of carboxylated gC 3 N 4 , so that silver ions are fully adsorbed to the surface of carboxylated gC 3 N 4 , and then an excess amount is added. Trisodium phosphate, Ag 3 PO 4 nanoparticles are generated on the surface of carboxylated gC 3 N 4 to obtain a mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles;
c)向步骤b)得到的含羧化g-C3N4和Ag3PO4纳米粒子的混合物水溶液中加入聚氧乙烯醚和海藻酸钠并充分溶解得到纺丝液,聚氧乙烯醚和海藻酸钠的质量百分比为5∶10;c) adding polyoxyethylene ether and sodium alginate to the mixture aqueous solution containing carboxylated gC 3 N 4 and Ag 3 PO 4 nanoparticles obtained in step b) and fully dissolving to obtain spinning solution, polyoxyethylene ether and alginic acid The mass percentage of sodium is 5:10;
d)配制质量百分比浓度5%的葡萄糖酸钙的水溶液,作为凝固浴;d) preparing an aqueous solution of calcium gluconate with a mass percentage concentration of 5% as a coagulation bath;
e)将步骤b)得到的纺丝液,采用静电纺丝工艺得到纳米纤维;将该纳米纤维放入步骤d)得到的凝固浴中浸泡60min,可溶性钙盐与海藻酸钠反应生成海藻酸钙水凝胶的同时,也与羧化g-C3N4上的羧基交联,生成有机无机杂化结构,再加上羧化g-C3N4的物理增强作用,从而提高了海藻酸钙水凝胶的机械强度,降低了其溶胀性能;同时可溶性钙盐与纳米纤维中过量磷酸三钠反应生成磷酸钙,可防止Ag3PO4流失;最后用去离子水浸泡洗涤除去纳米纤维中残留的无机盐,得到一种含Ag3PO4和羧化g-C3N4的光催化降解纳米纤维。e) using the spinning solution obtained in step b) to obtain nanofibers by electrospinning; placing the nanofibers in the coagulation bath obtained in step d) for 60 min, and the soluble calcium salt reacts with sodium alginate to generate calcium alginate At the same time of the hydrogel, it is also cross-linked with the carboxyl groups on the carboxylated gC3N4 to generate an organic - inorganic hybrid structure, coupled with the physical enhancement of the carboxylated gC3N4 , thereby improving the calcium alginate hydrogel. At the same time, the soluble calcium salt reacts with the excess trisodium phosphate in the nanofibers to form calcium phosphate, which can prevent the loss of Ag 3 PO 4 ; finally, soak and wash in deionized water to remove the residual inorganic salts in the nanofibers , a photocatalytic degradation nanofiber containing Ag 3 PO 4 and carboxylated gC 3 N 4 was obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911169448.5A CN110871099A (en) | 2019-11-26 | 2019-11-26 | Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911169448.5A CN110871099A (en) | 2019-11-26 | 2019-11-26 | Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110871099A true CN110871099A (en) | 2020-03-10 |
Family
ID=69718195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911169448.5A Withdrawn CN110871099A (en) | 2019-11-26 | 2019-11-26 | Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110871099A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114645375A (en) * | 2022-03-21 | 2022-06-21 | 东莞华工创为生物科技有限公司 | Antibacterial silver salt/g-C3N4Application of composite nanofiber membrane |
CN115198393A (en) * | 2022-07-19 | 2022-10-18 | 苏州大学 | A kind of preparation method and application of metal ion detection coaxial nanofiber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103028428A (en) * | 2013-01-16 | 2013-04-10 | 华东理工大学 | A method for preparing Ag3PO4@g-C3N4 composite visible light catalytic material |
CN103446899A (en) * | 2013-09-13 | 2013-12-18 | 天津工业大学 | Organic and inorganic surface chemically-crosslinked alginate-based hybrid hydrogel filter membrane, and preparation method thereof |
CN104772043A (en) * | 2015-04-07 | 2015-07-15 | 天津大学 | Sodium alginate-graphite phase carbon nitride nano-sheet hybridized composite membrane as well as preparation and application of composite membrane |
WO2018082175A1 (en) * | 2016-11-07 | 2018-05-11 | 杭州同净环境科技有限公司 | Composite photo-catalyst, preparation method therefor and application thereof |
CN108772092A (en) * | 2018-06-06 | 2018-11-09 | 合肥学院 | Ag3PO4/g-C3N4 composite tubular nano powder and preparation method thereof |
-
2019
- 2019-11-26 CN CN201911169448.5A patent/CN110871099A/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103028428A (en) * | 2013-01-16 | 2013-04-10 | 华东理工大学 | A method for preparing Ag3PO4@g-C3N4 composite visible light catalytic material |
CN103446899A (en) * | 2013-09-13 | 2013-12-18 | 天津工业大学 | Organic and inorganic surface chemically-crosslinked alginate-based hybrid hydrogel filter membrane, and preparation method thereof |
CN104772043A (en) * | 2015-04-07 | 2015-07-15 | 天津大学 | Sodium alginate-graphite phase carbon nitride nano-sheet hybridized composite membrane as well as preparation and application of composite membrane |
WO2018082175A1 (en) * | 2016-11-07 | 2018-05-11 | 杭州同净环境科技有限公司 | Composite photo-catalyst, preparation method therefor and application thereof |
CN108772092A (en) * | 2018-06-06 | 2018-11-09 | 合肥学院 | Ag3PO4/g-C3N4 composite tubular nano powder and preparation method thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114645375A (en) * | 2022-03-21 | 2022-06-21 | 东莞华工创为生物科技有限公司 | Antibacterial silver salt/g-C3N4Application of composite nanofiber membrane |
CN114645375B (en) * | 2022-03-21 | 2023-12-29 | 东莞华工创为生物科技有限公司 | Antibacterial silver salt/g-C 3 N 4 Application of composite nanofiber membrane |
CN115198393A (en) * | 2022-07-19 | 2022-10-18 | 苏州大学 | A kind of preparation method and application of metal ion detection coaxial nanofiber |
CN115198393B (en) * | 2022-07-19 | 2023-09-29 | 苏州大学 | A preparation method and application of coaxial nanofibers for metal ion detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111250056B (en) | Chitosan/graphite phase carbon nitride/titanium dioxide nanofiber membrane and preparation method and application thereof | |
CN103406153B (en) | Method for preparing cellulose-based macroporous gel compound Cu2O visible-light-driven photocatalyst | |
CN113289647B (en) | Biochar doped BiOBr x Cl 1-x Photocatalyst, preparation method and application | |
CN111450829B (en) | Copper oxide nano-catalytic membrane for catalyzing persulfate degradation of organic wastewater and preparation method thereof | |
CN101670282A (en) | Preparation method of load type nano titanium dioxide catalyst | |
CN110871099A (en) | Ag-containing material3PO4And carboxylated g-C3N4Preparation method of photocatalytic degradation nano-fiber | |
CN104525173A (en) | A kind of preparation method of carbon nanotube composite TiO2 green deep water treatment agent | |
CN109174199B (en) | Method for preparing Fenton-like catalyst and synchronously regenerating active carbon by microwave and application | |
CN109954506A (en) | Catalyst LaHAP and application thereof | |
CN113198515B (en) | A kind of ternary photocatalyst and its preparation method and application | |
CN111617759B (en) | Manganese dioxide nano-catalytic membrane for catalyzing ozone degradation of organic wastewater and preparation method thereof | |
CN117299206B (en) | Iron oxide/polyetherimide nanofiber catalytic membrane, preparation method and application thereof | |
CN104475100A (en) | Preparation method of carbon nano tube composite bismuth molybdate environmentally friendly and deep water treatment agent | |
CN104528866B (en) | A kind of preparation method of carbon nanotube compound bismuth tungstate green deep water conditioner | |
CN104528865B (en) | A kind of preparation method of carbon nanotube composite SrFeO3 green deep water treatment agent | |
CN102974233B (en) | There is conduction and photo-catalysis function polymer/inorganic thing particle hybrid separation membrane | |
CN113044952B (en) | Preparation method of metal organic framework nanofiber membrane and method for activating monoperoxybisulfate to treat organic wastewater by using same | |
CN110449136A (en) | The preparation method of atom level active site composite Nano catalysis fibre for indoor VOCs of degrading | |
CN113307332B (en) | Preparation method and application of activated carbon fiber modified cathode for electro-Fenton technology | |
CN115715980A (en) | Mn 3 O 4 CNTs Fenton catalyst, preparation method and application thereof | |
CN111939895B (en) | Bismuth oxide supported lead dioxide catalyst with different morphologies and preparation method and application thereof | |
CN104437639A (en) | Method of preparing green advanced water treatment chemicals with carbon nano-tube compounded tetrasulfophthalocyanine | |
CN111957320B (en) | Supported catalyst filter fiber for catalytic degradation of pollutants in water, and preparation and application thereof | |
CN111514894A (en) | Catalysis H2O2Ferric oxide nano catalytic film for degrading organic pollutants and preparation method thereof | |
TWI767812B (en) | Carbon fiber composites and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200310 |