CN110868128B - 提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 - Google Patents
提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 Download PDFInfo
- Publication number
- CN110868128B CN110868128B CN201911189333.2A CN201911189333A CN110868128B CN 110868128 B CN110868128 B CN 110868128B CN 201911189333 A CN201911189333 A CN 201911189333A CN 110868128 B CN110868128 B CN 110868128B
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- synchronous motor
- circuit
- linear synchronous
- magnet linear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000001514 detection method Methods 0.000 claims abstract description 46
- 230000003044 adaptive effect Effects 0.000 claims abstract description 43
- 230000036461 convulsion Effects 0.000 claims abstract description 35
- 238000002955 isolation Methods 0.000 claims description 14
- 230000033001 locomotion Effects 0.000 claims description 12
- 239000013078 crystal Substances 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 8
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 abstract description 2
- 230000004044 response Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/06—Linear motors
- H02P25/064—Linear motors of the synchronous type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Linear Motors (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明提供一种提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法,涉及永磁直线同步电动机控制技术领域。该装置包括电源模块、检测电路模块、DSP处理器模块、IPM智能功率模块、永磁同步电机以及上位机模块。本发明通过模型前馈控制补偿系统的参数不确定性,提高系统的响应速度。采用自适应加加速度控制器抑制系统中外部扰动、摩擦力等不确定性因素,自适应律使鲁棒增益收敛于有界范围内,提高系统的鲁棒性;自适应加加速度控制器的输出信号积分后形成了反馈控制律,削弱了控制律中开关函数激励未建模动态引起的高频谐振,保证了控制信号的稳定性和连续性,改善永磁直线同步电动机伺服系统的控制精度。
Description
技术领域
本发明涉及永磁直线同步电动机控制技术领域,尤其涉及一种提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法。
背景技术
传统的驱动技术主要采用“旋转电动机+滚珠丝杠”的旋转驱动方式。然而,由于中间存在着变换环节,将导致运动惯量大、刚度降低、速度变慢、稳定性变差等不良后果。为了避免上述传统驱动方式带来的不便,以永磁直线同步电动机为代表的直线电机,采用直接驱动方式而广泛地应用于半导体加工、电子设备制造等现代精密定位系统。与传统驱动方式相比,直接驱动方式加速过程缩短,传动刚度提高,不存在中间环节的磨损问题;由于负载直接作用于动子,即使在长行程传动时,系统性能特征也可以保持不变。因此直驱方式逐渐成为高速精密驱动和传动领域的研究热点。
然而,永磁直线同步电动机直接驱动的方式虽然简化了机械传动机构,但是也增加了其在高精度控制上的难度。永磁直线同步电动机伺服系统易受到外部负载力变化的影响;对系统模型参数的变化和未建模动态比较敏感;齿槽效应和端部效应使得电磁推力成周期性变化;运行过程中,会产生与动子运动速度相关的非线性摩擦力。这些不确定性因素将直接作用于永磁直线同步电动机,降低了电机伺服系统的性能,增加了控制方面的难度。因此,如何对上述不确定性因素进行补偿以满足高速度高精度的控制要求,将对加快研发前沿技术具有重要意义。
发明内容
针对现有技术的不足,本发明提供一种提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法,以实现直线电机伺服系统的高精度定位目标。
本发明所采取的技术方案是:
一方面,本发明提供高永磁直线同步电动机鲁棒跟踪控制精度的装置,包括电源模块、检测电路模块、DSP处理器模块、IPM智能功率模块、永磁直线同步电动机以及上位机模块;
所述电源模块包括三相交流电源、整流电路以及IPM逆变电路;所述整流电路的输入端与三相交流电源相连,输出端与所述IPM逆变电路的输入端相连;IPM逆变电路输出端连接所述永磁直线同步电动机;
所述DSP处理器模块包括DSP处理器及外围电路,所述DSP处理器的PWM端口经过IPM保护隔离驱动电路连接至IPM逆变电路的输入端;所述外围电路包括电平转换电路、Fault信号采集电路、DSP晶振电路、JTAG接口电路、DSP复位电路;所述电平转换电路将电源电压转换为DSP处理器供电的工作电压;所述Fault信号采集电路与DSP处理器外部中断引脚连接,所述DSP晶振电路为DSP处理器提供30MHz的工作频率,晶振电路的引脚1和引脚4分别连接DSP的X1接口和X2接口;所述JTAG接口电路的引脚1、2、3、7、9、11、13、14分别接DSP的引脚79、78、76、77、87、87、85、86;所述复位电路用于将整个电路恢复至起始状态,复位电路中1脚接DSP的80脚;
所述检测模块包括电流检测电路、霍尔传感器、位置速度检测电路和光栅尺;所述电流检测电路的输入端通过所述霍尔传感器连接IPM逆变电路的输出端,电流检测电路的输出端连接所述DSP处理器的电流信号输入端;所述位置速度检测电路的输入端通过所述光栅尺连接永磁直线同步电机的输出端,位置速度检测电路的输出端连接DSP处理器的位置速度信号输入端;
所述IPM隔离保护驱动电路的输入端与所述DSP处理器的PWM端口相连,输出端与IPM逆变电路的输入端相连;
所述永磁直线同步电动机的输入端与所述IPM逆变电路输出端连接;
所述上位机利用编程语言编写软件控制程序,控制程序首先对检测模块采集到的数据进行采样处理,然后通过将采集到的数据和位置参考指令信号做差得到永磁直线同步电动机的跟踪误差,并建立滤波误差向量作为自适应加加速度控制器的输入变量,执行自适应加加速度控制算法,最后将以自适应加加速度控制算法为核心的软件程序,通过SCI串口总线与DSP处理器的SCI串口引脚相连接下载到DSP处理器中运行,驱动伺服系统运行。
另一方面,本发明提供一种提高永磁直线同步电动机鲁棒跟踪控制精度的方法,通过前述提高永磁直线同步电动机鲁棒跟踪控制精度的装置实现,包括以下步骤:
步骤1:输入永磁直线同步电动机的参考位置信号,永磁直线同步电动机接收到位置信号开始运动;
步骤2:永磁直线同步电动机运动后,检测电路工作,光栅尺经位置速度检测电路输出正交方波脉冲信号和零位脉冲信号,共三路脉冲信号;脉冲信号均送至DSP的正交编码脉冲输入单元EQEP,通过四倍频处理来提高编码器分辨率,同时通用定时器设置成定向增减计数模式,从两相正交方波脉冲信号的脉冲个数得到动子的位置偏移,由两相脉冲的超前关系得到动子的转向,从而得出动子的位置和速度;利用霍尔传感器采集动子电流,利用霍尔传感器采集动子电流,确定永磁直线同步电动机动子的实际位置、速度及电流;
步骤3:利用采集到的电动机动子的位置速度以及电流,在DSP处理器中计算出滤波误差向量,利用模型前馈控制补偿系统的参数不确定性,然后采用自适应加加速度控制器抑制系统的外部扰动、端部效应、非线性摩擦力,接着通过指数型自适应律,使鲁棒增益收敛于有界范围内,提高系统的鲁棒性,自适应加加速度控制器的输出信号积分后形成系统的反馈控制律,保证了系统的连续性和稳定性,将前馈控制律与反馈控制律相结合,最终计算得出电机的控制信号,即永磁直线同步电动机的控制电流;
步骤3.1:建立永磁直线同步电动机的电磁推力方程及机械运动方程;
建立d-q轴模型:对于永磁直线同步电动机,采用磁场定向控制,取永磁体磁极轴线为d轴,而超前d轴90°电角度为q轴,构成d-q坐标系;
令电流内环d轴电流分量id=0,使定子电流矢量和永磁体磁场在空间上正交,则永磁直线同步电动机的电磁推力方程为:
式中,Fe为电磁推力;τ为极距;λPM为永磁体磁链;id、iq、Ld、Lq分别为d、q轴的电流和电感;采用id=0控制,动子电流与定子电流在空间上正交,电磁推力方程简化为
式中,Kf为电磁推力系数;
永磁直线同步电动机的机械运动方程为
当控制系统的系统参数变化、外部扰动及非线性摩擦力的干扰时,此时的动态方程应为
式中,θ1=(M+ΔM)/Kf,θ2=(B+ΔB)/Kf,d=F/Kf,u=iq为伺服系统的控制律;
步骤3.2:根据步骤2中检测的实际位置,定义滤波误差向量为
z=[e1 e2 e3]T (5)
式中
式中,xd为参考位置信号,e1为位置跟踪误差,k1>0,k2>0为反馈增益。引入滤波误差可获得额外的设计自由度,将式(5)代入式(4)得
θ1(t)e3=Ydθ+S+d-u (7)
因此,根据式(7)提出一种二自由度控制结构,永磁直线同步电动机伺服系统的控制律为:
u=u1+u2 (9)
式中,u1为基于模型的前馈控制律,用于补偿系统参数变化的不确定性,表示为:
式中:
式中,Ks为正常数,E0为初始条件产生的误差
E0=-(Ks+1)[k2e1(0)+e2(0)] (18)
式中,*表示卷积运算。
步骤4:DSP处理器产生相应的六路PWM脉冲信号,分别驱动永磁直线同步电动机运行;
通过IPM保护隔离驱动电路将DSP处理器输出的PWM信号转换成驱动信号,固定的220V三相交流电经整流电路后,变为稳定的直流电送至IPM逆变电路,IPM逆变电路根据DSP处理器产生的六路PWM脉冲信号来控制IPM逆变电路中六个IGBT的导通与关断,得到满足需要的三相交流电,驱动永磁直线同步电动机,实现永磁直线同步电动机伺服系统的控制,进而驱动伺服加工系统,实现精密加工。
采用上述技术方案所产生的有益效果在于:
本发明提供的提高永磁直线同步电动机鲁棒跟踪精度的装置及方法,通过模型前馈控制补偿系统的参数不确定性,提高系统的响应速度。采用自适应加加速度控制器抑制系统中外部扰动、摩擦力等不确定性因素,自适应律使鲁棒增益收敛于有界范围内,提高系统的鲁棒性;自适应加加速度控制器的输出信号积分后形成了反馈控制律,削弱了控制律中开关函数激励未建模动态引起的高频谐振,保证了控制信号的稳定性和连续性。不仅提高了定位精度,而且能够产生平稳的控制信号,明显地提高系统的控制性能,减小跟踪误差,避免高频震荡,改善永磁直线同步电动机伺服系统的控制精度。
此外,采用高性能的霍尔传感器和光栅尺,提高了采集信号的精度,使用TMS320F28335芯片做为核心处理器提高了伺服系统处理数据的能力,提高了伺服系统的加工精度。
附图说明
图1为本发明实施例提供的用永磁直线同步电动机伺服控制系统的装置结构图;
图2为本发明实施例提供的一台永磁直线同步电动机主电路原理图;
图3为本发明实施例提供的电流检测电路的电路原理图;
图4为本发明实施例提供的位置速度检测电路的电路原理图;
图5为本发明实施例提供的DSP处理器外围电路连接原理图;
图6为本发明实施例提供的DSP电源的电平变换电路的电路原理图;
图7为本发明实施例提供的Fault信号采集电路的电路原理图;
图8为本发明实施例提供的DSP晶振电路的电路原理图;
图9为本发明实施例提供的JTAG接口电路的电路原理图;
图10为本发明实施例提供的DSP复位电路的电路原理图;
图11为本发明实施例提供的IPM保护隔离驱动电路的电路原理图;
图12为本发明实施例提供的提高永磁直线同步电动机鲁棒跟踪控制精度的方法流程图;
图13为本发明实施例提供的提高永磁直线同步电动机鲁棒跟踪控制精度的算法原理图;
图14为本发明实施例提供的基于滑模控制器的永磁直线同步电动机控制系统跟踪误差曲线图;
图15为本发明一种实施方式基于自适应加加速度器的永磁直线同步电动机控制系统跟踪误差曲线图。
具体实施方式
下面结合附图对本发明具体实施方式加以详细的说明。
一方面,本发明提供高永磁直线同步电动机鲁棒跟踪控制精度的装置,如图1所示,包括电源模块、检测电路模块、DSP处理器模块、IPM智能功率模块、永磁直线同步电动机以及上位机模块;
所述电源模块包括三相交流电源、整流电路以及IPM逆变电路;所述整流电路的输入端与三相交流电源相连,输出端与所述IPM逆变电路的输入端相连;IPM逆变电路输出端连接所述永磁直线同步电动机;整流电路与三相交流电源相连,将变化的三相交流电转化为单向稳定的直流电;IPM逆变电路将把功率开关器件和驱动电路集成在一起,使用IGBT作为功率开关元件,内部包含驱动电路的集成结构,其中设定了最佳的IGBT驱动条件,驱动电路与IGBT间的距离很短,输出阻抗很低,可以将整流电路输出的直流电逆变为交流电,并将其输出端连接永磁直线同步电动机,从而为永磁直线同步电动机供电。
整流电路中的整流桥阳极连接到IPM逆变电路的N端,其阴极连接到IPM逆变电路的P端,IPM逆变电路输出的三相电流通过输出端子U、V、W接至永磁同步直线电动机。P、N为变频器的整流变换平滑滤波后的IPM逆变电路输入端子,P为正端,N为负端。整流单元采用桥式不可控制整流方式,大电容滤波,这样可以获得适合于IPM工作的恒定电压。
本实施例中,通过常开触点开关A和常闭触点开关B,分别控制电机的启停。
电路工作时,三相交流电经变压器将220V电压转变为有效值大小约为IPM逆变电路输入端电压大小的三相交流电,然后经整流桥晶体管电路,得到脉动的直流电压,接着通过电容滤波,使直流电压变得平滑,然后将稳定的电压加在IPM逆变电路的PN两端。此时已经变换完成的直流电通过IPM逆变电路,逆变为变频三相交流电,从而驱动永磁直线同步电动机。其中IPM逆变电路中的IGBT是由控制电路输出的PWM脉冲序列控制其通断的,目的是为了得到满足要求的幅值相位的三相交流电。
所述检测模块包括电流检测电路、霍尔传感器、位置速度检测电路和光栅尺;所述电流检测电路的输入端通过所述霍尔传感器连接IPM逆变电路的输出端,电流检测电路的输出端连接所述DSP处理器的电流信号输入端;所述位置速度检测电路的输入端通过所述光栅尺连接永磁直线同步电机的输出端,位置速度检测电路的输出端连接DSP处理器的位置速度信号输入端;
电流检测电路如图3所示,电流检测电路是把永磁直线同步电动机的三相动子电流经传感器后进入DSP处理器转换成是数字形式并进行一系列的变换。由于本实施例的系统是三相平衡系统,即三相电流矢量和为零,因此只需要检测其中两相电流,就可以得到三相电流。本实施例采用LTS25-NP型传感器来检测电流。
位置速度检测电路的输入端通过光栅尺连接永磁直线同步电动机的输出端,位置速度检测电路的输出端与DSP处理器的EQEP端口相连,用于通过光栅尺采集永磁直线同步电动机动子的位置、速度信号,并转化为DSP处理器能识别的数字量。
位置速度检测电路如图4所示,将两相正交的方波脉冲信号A和B,通过高速光耦LTV-341W,送至DSP处理器两个捕获单元EQEP1(90引脚)和EQEP2(91引脚)。DSP处理器内部捕获单元可使用软件定义为正交编码脉冲输入单元,之后可以对脉冲进行计数,根据脉冲序列可以判断永磁直线同步电动机的运动方向、位置和速度。
在电机运动的过程中,光栅尺检测电机的实际位置和速度,霍尔传感器来检测实际电流大小。位置、速度和电流三个检测量通过检测电路送入DSP处理器。
DSP处理器接收来自电流检测电路和位置速度检测电路的输出信号,经DSP处理器对该两路信号的处理,将结果信号经IPM保护隔离驱动电路输出给IPM逆变电路。DSP处理器部分包括DSP处理器及其外围电路,将参考位置信号与光栅尺检测的永磁直线同步电动机位置信号做差,得到永磁直线同步电动机的跟踪误差,并根据跟踪误差建立滤波误差向量,作为自适应加加速度控制器的输入量,通过模型前馈控制补偿系统的参数不确定性,然后采用加加速度控制抑制系统的外部扰动、端部效应、非线性摩擦力等不确定性,接着通过指数型自适应律,使鲁棒增益收敛于有界范围内,提高系统的鲁棒性,自适应加加速度控制器的输出信号积分后形成系统的反馈控制律,保证了系统的连续性和稳定性,最终计算得出电机的控制信号,产生PWM信号,对永磁直线同步电动机进行伺服驱动;
DSP处理器的PWM端口经过IPM保护隔离驱动电路连接至IPM逆变电路的另一路输入端。本实施例中,DSP处理器的型号为TMS320F28335,其外围电路连接结构原理图如图5所示。DSP处理器外围电路包括电平转换电路,如图6所示,Fault信号采集电路,如图7所示,DSP晶振电路,如图8所示,JTAG接口电路,如图9所示,DSP复位电路,如图10所示,,电平转换电路将5V电源电压转换为DSP处理器供电的3.3V工作电压。Fault信号采集电路与DSP处理器外部中断引脚连接,由DSP处理器中断程序来处理故障。DSP晶振电路为DSP处理器提供30MHz的工作频率,晶振电路的引脚1和引脚4分别连接DSP的X1(104引脚)接口和X2(102引脚)接口。JTAG接口电路用于测试芯片的电气特性,检测芯片是否有问题,JTAG接口电路的引脚1、2、3、7、9、11、13、14分别接DSP的引脚79、78、76、77、87、87、85、86。复位电路用于将整个电路恢复至起始状态,复位电路中1脚接DSP的80脚。
IPM隔离驱动保护电路,用于光电隔离,并用于驱动IPM逆变电路中的六个IGBT工作。IPM保护隔离驱动电路,如图11所示,用IPM保护隔离驱动电路代替功率器件作为电源功率器件。电流通过IPM处理后,通入永磁直线同步电动机中,电机实现运动。
所述永磁直线同步电动机的输入端与所述IPM逆变电路输出端连接,永磁直线同步电动机主电路原理图如图2所示;
所述上位机利用编程语言编写软件控制程序,控制程序首先对检测模块采集到的数据进行采样处理,然后通过将采集到的数据和位置参考指令信号做差得到永磁直线同步电动机的跟踪误差,并建立滤波误差向量作为自适应加加速度控制器的输入变量,执行自适应加加速度控制算法,最后将以自适应加加速度控制算法为核心的软件程序,通过SCI串口总线与DSP处理器的SCI串口引脚相连接下载到DSP处理器中运行,驱动伺服系统运行。
本实施例中利用C语言编写的控制程序通过Code Composer Studio 6.1.3软件编写并存储于上位机,控制程序首先对检测电路采集到的数据进行处理,然后通过将采集到的数据和参考指令信号做差并建立滤波误差向量作为自适应加加速度控制器的输入变量,执行自适应加加速度控制算法,最后将以自适应加加速度控制算法为核心的C语言程序,通过SCI串口总线与DSP处理器的SCI串口引脚相连接下载到DSP处理器中运行,驱动伺服系统运行。
另一方面,本发明提供一种提高永磁直线同步电动机鲁棒跟踪控制精度的方法,通过前述提高永磁直线同步电动机鲁棒跟踪控制精度的装置实现,如图12及图13所示,包括以下步骤:
步骤1:输入永磁直线同步电动机的参考位置信号,永磁直线同步电动机接收到位置信号开始运动;
步骤2:永磁直线同步电动机运动后,检测电路工作,光栅尺经位置速度检测电路输出正交方波脉冲信号和零位脉冲信号,共三路脉冲信号;脉冲信号均送至DSP的正交编码脉冲输入单元EQEP,通过四倍频处理来提高编码器分辨率,同时通用定时器设置成定向增减计数模式,从两相正交方波脉冲信号的脉冲个数得到动子的位置偏移,由两相脉冲的超前关系得到动子的转向,从而得出动子的位置和速度;利用霍尔传感器采集动子电流,利用霍尔传感器采集动子电流,确定永磁直线同步电动机动子的实际位置、速度及电流;
步骤3:利用采集到的电动机动子的位置速度以及电流,在DSP处理器中计算出滤波误差向量,利用模型前馈控制补偿系统的参数不确定性,然后采用自适应加加速度控制器抑制系统的外部扰动、端部效应、非线性摩擦力,接着通过指数型自适应律,使鲁棒增益收敛于有界范围内,提高系统的鲁棒性,自适应加加速度控制器的输出信号积分后形成系统的反馈控制律,保证了系统的连续性和稳定性,将前馈控制律与反馈控制律相结合,最终计算得出电机的控制信号,即永磁直线同步电动机的控制电流;
步骤3.1:建立永磁直线同步电动机的电磁推力方程及机械运动方程;
建立d-q轴模型:对于永磁直线同步电动机,采用磁场定向控制,取永磁体磁极轴线为d轴,而超前d轴90°电角度为q轴,构成d-q坐标系;
令电流内环d轴电流分量id=0,使定子电流矢量和永磁体磁场在空间上正交,则永磁直线同步电动机的电磁推力方程为:
式中,Fe为电磁推力;τ为极距;λPM为永磁体磁链;id、iq、Ld、Lq分别为d、q轴的电流和电感;采用id=0控制,动子电流与定子电流在空间上正交,电磁推力方程简化为
式中,Kf为电磁推力系数;
永磁直线同步电动机的机械运动方程为
当控制系统的系统参数变化、外部扰动及非线性摩擦力的干扰时,此时的动态方程应为
式中,θ1=(M+ΔM)/Kf,θ2=(B+ΔB)/Kf,d=F/Kf,u=iq为伺服系统的控制律;
步骤3.2:根据步骤2中检测的实际位置,定义滤波误差向量为
z=[e1 e2 e3]T (5)
式中
式中,xd为参考位置信号,e1为位置跟踪误差,k1>0,k2>0为反馈增益。引入滤波误差可获得额外的设计自由度,将式(5)代入式(4)得
θ1(t)e3=Ydθ+S+d-u (7)
因此,根据式(7)提出一种二自由度控制结构,永磁直线同步电动机伺服系统的控制律为:
u=u1+u2 (9)
式中,u1为基于模型的前馈控制律,用于补偿系统参数变化的不确定性,表示为:
式中:
式中,Ks为正常数,E0为初始条件产生的误差
E0=-(Ks+1)[k2e1(0)+e2(0)] (18)
式中,*表示卷积运算。
由于d∈C2,由中值定理得
式中,ρ为非负递减函数;
L1=e3(Nd(t)-β1sgn(e2)) (23)
并且
令
选择Lyapunov函数
η1||y||2≤V(y,t)≤η2||y||2 (31)
对V(y,t)求导,得
将式(5)、(11)、(14)、(16)、(27)、(28)代入式(32),得
因为
将式(33)代入式(32),并结合式(21),得
令
步骤4:DSP处理器产生相应的六路PWM脉冲信号,分别驱动永磁直线同步电动机运行;
通过IPM保护隔离驱动电路将DSP处理器输出的PWM信号转换成驱动信号,固定的220V三相交流电经整流电路后,变为稳定的直流电送至IPM逆变电路,IPM逆变电路根据DSP处理器产生的六路PWM脉冲信号来控制IPM逆变电路中六个IGBT的导通与关断,得到满足需要的三相交流电,驱动永磁直线同步电动机,实现永磁直线同步电动机伺服系统的控制,进而驱动伺服加工系统,实现精密加工。
为了验证该算法的有效性,本实施例选择的永磁直线同步电动机参数如下:
电磁推力常数Kf=50.7N/A,动子质量M=6.6kg,粘滞摩擦系数B=8.0N·s/m,永磁体磁链λPM=0.09Wb,极距τ=32mm;
应用上述实施例数据采用MATLAB软件进行仿真实验。
根据提供的电机参数,及本实施例中设计自适应加加速度控制器,经MATLAB反复调试,使得效果最优,参数选择如下:k1=1,k2=60,k3=5,β1=2.5,β2=0.15,Γ=10,Ks=50。对系统输入幅值为1mm、频率为4Hz的的正弦波周期运动指令。
从仿真图14及15可以看出,基于滑模控制器的永磁直线同步电动机控制系统跟踪误差曲线如图14所示,基于自适应加加速度控制器的永磁直线同步电动机控制系统跟踪误差曲线如图15所示,滑模控制器产生的最大跟踪误差约为-3.7μm,稳态时跟踪误差保持在-1.3~1.1μm;自适应加加速度产生的最大跟踪误差约为2μm,稳态时跟踪误差保持在-0.6~0.6μm。
因此,自适应加加速度控制比滑模控制具有明显的优势,能够产生更平稳、连续的控制信号,进而减小了系统的跟踪误差,本实施例中验证了该控制方法的有效性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。
Claims (1)
1.一种提高永磁直线同步电动机鲁棒跟踪控制精度的装置,其特征在于:包括电源模块、检测电路模块、DSP处理器模块、IPM智能功率模块、永磁直线同步电动机以及上位机模块;
所述电源模块包括三相交流电源、整流电路以及IPM逆变电路;所述整流电路的输入端与三相交流电源相连,输出端与所述IPM逆变电路的输入端相连;IPM逆变电路输出端连接所述永磁直线同步电动机;
所述DSP处理器模块包括DSP处理器及外围电路,所述DSP处理器的PWM端口经过IPM保护隔离驱动电路连接至IPM逆变电路的输入端;所述外围电路包括电平转换电路、Fault信号采集电路、DSP晶振电路、JTAG接口电路、DSP复位电路;所述电平转换电路将电源电压转换为DSP处理器供电的工作电压;所述Fault信号采集电路与DSP处理器外部中断引脚连接,所述DSP晶振电路为DSP处理器提供30MHz的工作频率,晶振电路的引脚1和引脚4分别连接DSP的X1接口和X2接口;所述JTAG接口电路的引脚1、2、3、7、9、11、13、14分别接DSP的引脚79、78、76、77、87、87、85、86;所述复位电路用于将整个电路恢复至起始状态,复位电路中1脚接DSP的80脚;
所述检测电路模块包括电流检测电路、霍尔传感器、位置速度检测电路和光栅尺;所述电流检测电路的输入端通过所述霍尔传感器连接IPM逆变电路的输出端,电流检测电路的输出端连接所述DSP处理器的电流信号输入端;所述位置速度检测电路的输入端通过所述光栅尺连接永磁直线同步电动机的输出端,位置速度检测电路的输出端连接DSP处理器的位置速度信号输入端;
所述IPM保护隔离驱动电路的输入端与所述DSP处理器的PWM端口相连,输出端与IPM逆变电路的输入端相连;
所述永磁直线同步电动机的输入端与所述IPM逆变电路输出端连接;
所述上位机利用编程语言编写软件控制程序,控制程序首先对检测电路模块采集到的数据进行采样处理,然后通过将采集到的数据和位置参考指令信号做差得到永磁直线同步电动机的跟踪误差,并建立滤波误差向量作为自适应加加速度控制器的输入变量,执行自适应加加速度控制算法,最后将以自适应加加速度控制算法为核心的软件程序,通过SCI串口总线与DSP处理器的SCI串口引脚相连接下载到DSP处理器中运行,驱动伺服系统运行;
一种提高永磁直线同步电动机鲁棒跟踪控制精度的方法,通过前述提高永磁直线同步电动机鲁棒跟踪控制精度的装置实现,包括以下步骤:
步骤1:输入永磁直线同步电动机的参考位置信号,永磁直线同步电动机接收到位置信号开始运动;
步骤2:永磁直线同步电动机运动后,检测电路工作,光栅尺经位置速度检测电路输出正交方波脉冲信号和零位脉冲信号,共三路脉冲信号;脉冲信号均送至DSP的正交编码脉冲输入单元EQEP,通过四倍频处理来提高编码器分辨率,同时通用定时器设置成定向增减计数模式,从两相正交方波脉冲信号的脉冲个数得到动子的位置偏移,由两相脉冲的超前关系得到动子的转向,从而得出动子的位置和速度;利用霍尔传感器采集动子电流,利用霍尔传感器采集动子电流,确定永磁直线同步电动机动子的实际位置、速度及电流;
步骤3:利用采集到的电动机动子的位置速度以及电流,在DSP处理器中计算出滤波误差向量,利用模型前馈控制补偿系统的参数不确定性,然后采用自适应加加速度控制器抑制系统的外部扰动、端部效应、非线性摩擦力,接着通过指数型自适应律,使鲁棒增益收敛于有界范围内,提高系统的鲁棒性,自适应加加速度控制器的输出信号积分后形成系统的反馈控制律,保证了系统的连续性和稳定性,将前馈控制律与反馈控制律相结合,最终计算得出电机的控制信号,即永磁直线同步电动机的控制电流;
步骤3.1:建立永磁直线同步电动机的电磁推力方程及机械运动方程;
建立d-q轴模型:对于永磁直线同步电动机,采用磁场定向控制,取永磁体磁极轴线为d轴,而超前d轴90°电角度为q轴,构成d-q坐标系;
令电流内环d轴电流分量id=0,使定子电流矢量和永磁体磁场在空间上正交,则永磁直线同步电动机的电磁推力方程为:
式中,Fe为电磁推力;τ为极距;λPM为永磁体磁链;id、iq、Ld、Lq分别为d、q轴的电流和电感;采用id=0控制,动子电流与定子电流在空间上正交,电磁推力方程简化为
式中,Kf为电磁推力系数;
永磁直线同步电动机的机械运动方程为
当控制系统的系统参数变化、外部扰动及非线性摩擦力的干扰时,此时的动态方程应为
式中,θ1=(M+ΔM)/Kf,θ2=(B+ΔB)/Kf,d=F/Kf,u=iq为伺服系统的控制律;
步骤3.2:根据步骤2中检测的实际位置,定义滤波误差向量为
z=[e1 e2 e3]T (5)
式中
式中,xd为参考位置信号,e1为位置跟踪误差,k1>0,k2>0为反馈增益,引入滤波误差可获得额外的设计自由度,将式(5)代入式(4)得
θ1(t)e3=Ydθ+S+d-u (7)
因此,根据式(7)提出一种二自由度控制结构,永磁直线同步电动机伺服系统的控制律为:
u=u1+u2 (9)
式中,u1为基于模型的前馈控制律,用于补偿系统参数变化的不确定性,表示为:
式中:
式中,Ks为正常数,E0为初始条件产生的误差
E0=-(Ks+1)[k2e1(0)+e2(0)] (18)
式中,*表示卷积运算;
步骤4:DSP处理器产生相应的六路PWM脉冲信号,分别驱动永磁直线同步电动机运行;
通过IPM保护隔离驱动电路将DSP处理器输出的PWM信号转换成驱动信号,固定的220V三相交流电经整流电路后,变为稳定的直流电送至IPM逆变电路,IPM逆变电路根据DSP处理器产生的六路PWM脉冲信号来控制IPM逆变电路中六个IGBT的导通与关断,得到满足需要的三相交流电,驱动永磁直线同步电动机,实现永磁直线同步电动机伺服系统的控制,进而驱动伺服加工系统,实现精密加工。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911189333.2A CN110868128B (zh) | 2019-11-28 | 2019-11-28 | 提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911189333.2A CN110868128B (zh) | 2019-11-28 | 2019-11-28 | 提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110868128A CN110868128A (zh) | 2020-03-06 |
CN110868128B true CN110868128B (zh) | 2021-06-29 |
Family
ID=69656882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911189333.2A Active CN110868128B (zh) | 2019-11-28 | 2019-11-28 | 提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110868128B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111669080B (zh) * | 2020-06-22 | 2023-04-28 | 扬州大学 | 一种永磁同步电机自抗扰复合控制系统及其控制方法 |
CN112019100B (zh) * | 2020-08-21 | 2022-05-10 | 北京航空航天大学 | 基于无线数据传输的直线电机控制系统 |
CN113125506B (zh) * | 2021-03-01 | 2024-04-02 | 珠海广浩捷科技股份有限公司 | 光栅尺、磁栅尺的诊断方法、系统及存储介质 |
CN113702870B (zh) * | 2021-08-31 | 2023-02-21 | 东南大学 | 基于重构卸荷电阻的模块化多电平变流器故障定位方法 |
CN114567141B (zh) * | 2022-03-31 | 2024-04-16 | 长沙湘电电气技术有限公司 | 一种大推力往复运动永磁同步直线电机控制方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101989080A (zh) * | 2010-12-03 | 2011-03-23 | 沈阳工业大学 | 用变增益零相位误差跟踪和扰动观测实现轮廓加工的方法 |
US8981702B2 (en) * | 2013-03-15 | 2015-03-17 | Texas Instruments Incorporated | Automated motor control |
CN106527126B (zh) * | 2015-09-11 | 2019-03-05 | 南京理工大学 | 电机伺服系统非线性鲁棒自适应位置控制器的实现方法 |
CN110190793B (zh) * | 2019-05-31 | 2020-12-25 | 东南大学 | 一种二自由度数控机床及其控制系统和定位方法 |
CN110350841B (zh) * | 2019-07-31 | 2021-01-01 | 沈阳工业大学 | 一种数控机床的永磁直线同步电机控制装置及方法 |
CN110350840B (zh) * | 2019-07-31 | 2021-06-04 | 沈阳工业大学 | 一种提高永磁直线同步电动机伺服加工精度的装置及方法 |
-
2019
- 2019-11-28 CN CN201911189333.2A patent/CN110868128B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN110868128A (zh) | 2020-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110868128B (zh) | 提高永磁直线同步电动机鲁棒跟踪控制精度的装置及方法 | |
CN103560722B (zh) | 一种永磁直线同步电机控制装置及方法 | |
CN105159227B (zh) | 一种双轴运动平台的定位与动态轨迹跟踪控制装置及方法 | |
CN103560721B (zh) | 用双直线永磁同步电机控制龙门数控铣床的装置及方法 | |
CN110350840B (zh) | 一种提高永磁直线同步电动机伺服加工精度的装置及方法 | |
CN103401500B (zh) | 一种基于重复控制器的高精度永磁同步电机交流伺服系统转速脉动抑制方法 | |
CN105871282A (zh) | 一种基于电机转动惯量的控制器pi参数整定方法 | |
CN110350841B (zh) | 一种数控机床的永磁直线同步电机控制装置及方法 | |
CN105676780B (zh) | 基于模糊小脑模型关节控制器的xy运动平台轮廓控制装置 | |
CN103414419A (zh) | 基于模糊rbf网络滑模的双直线电机轮廓补偿装置与方法 | |
CN101977014B (zh) | 直线电机伺服系统能耗-时间最优控制方法及所建立系统 | |
CN105932918A (zh) | 高精数控机床的控制直线伺服系统运行速度的方法及装置 | |
CN102497153A (zh) | 永磁同步电机功率角恒定自适应控制方法 | |
CN103516279A (zh) | 一种基于fpga的永磁同步电机控制芯片 | |
CN104834219B (zh) | 一种基于经验模态分解的pmlsm驱动xy平台控制方法及系统 | |
CN111130411B (zh) | 提高双轴直驱平台伺服系统同步控制精度的装置及方法 | |
CN105929693A (zh) | H型精密运动平台自适应滑模补偿同步控制系统与方法 | |
Zhang et al. | Parameter identification of permanent magnet synchronous motor based on extended Kalman filter and gradient correction | |
CN105915145B (zh) | 一种永磁直线同步电机控制装置及方法 | |
CN105048918A (zh) | 一种无刷直流电机自适应模糊控制方法 | |
Zhang et al. | Research on the Control Method of a Brushless DC Motor Based on Second-Order Active Disturbance Rejection Control | |
CN109617482A (zh) | 永磁同步电机的l2滑模控制方法 | |
CN111835251A (zh) | 一种基于无速度传感的永磁同步电机高性能控制方法 | |
CN116073720A (zh) | 一种改善永磁同步电机预测控制系统性能的装置及方法 | |
Qiu et al. | Position Sensorless Control of Brushless DC Motor Based on Sliding Mode Observer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |