CN110865307A - A kind of battery module residual energy detection method - Google Patents
A kind of battery module residual energy detection method Download PDFInfo
- Publication number
- CN110865307A CN110865307A CN201911114201.3A CN201911114201A CN110865307A CN 110865307 A CN110865307 A CN 110865307A CN 201911114201 A CN201911114201 A CN 201911114201A CN 110865307 A CN110865307 A CN 110865307A
- Authority
- CN
- China
- Prior art keywords
- battery module
- voltage
- cut
- current
- residual energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 53
- 238000007600 charging Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000010277 constant-current charging Methods 0.000 claims abstract description 17
- 238000007599 discharging Methods 0.000 claims abstract description 7
- 238000012360 testing method Methods 0.000 description 18
- 238000010280 constant potential charging Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004146 energy storage Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/385—Arrangements for measuring battery or accumulator variables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/396—Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
Abstract
本发明涉及一种电池模组余能检测方法,包括:S1、获取不同单体电池的性能数据,将性能数据一致的单体电池相互连接组成电池模组;S2、根据单体电池的性能数据以及电池模组中各单体电池的连接关系,分别得到电池模组的检测电流、充电截止电压和放电截止电压,其中,检测电流为I3电流;S3、采用检测电流,对电池模组进行恒流放电至电池模组的放电截止电压,之后停止放电,将电池模组静置1h;S4、采用检测电流,对电池模组进行恒流充电至电池模组的充电截止电压,并记录恒流充电时间;S5、根据检测电流和恒流充电时间,得到电池模组的容量,即为电池模组的余能检测值。与现有技术相比,本发明在保证准确性的基础上缩短了余能检测时间。
The invention relates to a method for detecting residual energy of a battery module, comprising: S1. Obtaining performance data of different single cells, and connecting single cells with consistent performance data to form a battery module; S2. According to the performance data of the single cells And the connection relationship of each single cell in the battery module, respectively obtain the detection current, charge cut-off voltage and discharge cut-off voltage of the battery module, wherein, the detection current is I 3 current; S3, adopt the detection current to carry out the battery module. Discharge with constant current to the discharge cut-off voltage of the battery module, then stop discharging, and let the battery module stand for 1 hour; S4. Use the detection current to charge the battery module with constant current to the charge cut-off voltage of the battery module, and record the constant current The current charging time; S5, according to the detection current and the constant current charging time, the capacity of the battery module is obtained, which is the residual energy detection value of the battery module. Compared with the prior art, the present invention shortens the residual energy detection time on the basis of ensuring the accuracy.
Description
技术领域technical field
本发明涉及蓄电池技术领域,尤其是涉及一种电池模组余能检测方法。The invention relates to the technical field of storage batteries, in particular to a method for detecting residual energy of a battery module.
背景技术Background technique
近年来,纯电动汽车的数量呈显著增加的趋势,电动汽车被认为是处理全球变暖和环境污染问题的传统车辆的最佳替代品。而锂离子电池由于其高效率、高比能量和长使用寿命的特点,已经成为电动汽车的主要动力源之一。但是,随着锂离子电池不断增长的需求和生产,将在未来几年内引发电池的回收和处理问题。In recent years, there has been a significant increase in the number of pure electric vehicles, which are considered to be the best alternative to conventional vehicles for dealing with global warming and environmental pollution. Lithium-ion batteries have become one of the main power sources for electric vehicles due to their high efficiency, high specific energy and long service life. However, the growing demand and production of lithium-ion batteries will raise issues of battery recycling and disposal in the coming years.
通常,动力电池平均使用年限为5-8年,其性能随着充电次数的增加而衰减,当电池容量衰减至额定容量的80%以下,动力电池不再适用于电动汽车。但退役后的电池经过检测、维护、重组等环节,仍可进一步在储能、分布式光伏发电、家庭用电、低速电动车等诸多领域进行梯次利用。在梯次利用这些退役电池之前,为确保退役电池的安全使用和最佳性能,需要对退役电池模组进行余能检测(SOH诊断)。Usually, the average service life of a power battery is 5-8 years, and its performance decays with the increase of charging times. When the battery capacity decays to less than 80% of the rated capacity, the power battery is no longer suitable for electric vehicles. However, after testing, maintenance, and reorganization, the retired batteries can still be further utilized in many fields such as energy storage, distributed photovoltaic power generation, household electricity, and low-speed electric vehicles. Before using these retired batteries in a cascade, in order to ensure the safe use and optimal performance of the retired batteries, it is necessary to perform residual energy detection (SOH diagnosis) on the retired battery modules.
根据中国国家标准委员会发布的《车用动力电池回收利用余能检测》(GB/T34015-2017)标准,电芯或电池模组退役之后需用I5电流进行容量标定3-5次,当连续3次的容量极差小于额定容量的3%时,才可结束实验,其中,容量标定时需要分别进行恒流充电和恒压充电,每次标定后静止时间不高于1小时,因此一个电芯或电池模组在温室下的余能检测过程需要占用一台检测仪器的时间为36~60小时,这无疑会导致余能检测的时间成本高、检测仪器需求多等问题。如何对退役电池容量进行快速的余能检测,已经成为了梯次利用电池模组所面临的关键问题之一。According to the standard "Recycling and Utilization of Remaining Energy of Vehicle Power Batteries" (GB/T34015-2017) issued by the China National Standards Committee, after the battery cells or battery modules are retired, the capacity should be calibrated 3-5 times with I 5 current. The experiment can only be ended when the capacity range of 3 times is less than 3% of the rated capacity. Among them, constant current charging and constant voltage charging need to be performed respectively during capacity calibration, and the static time after each calibration is not more than 1 hour. The residual energy detection process of the core or battery module in the greenhouse needs to occupy a testing instrument for 36 to 60 hours. How to quickly detect the residual energy of the retired battery capacity has become one of the key problems faced by the battery modules in the cascade utilization.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种快速的电池模组余能检测方法。The purpose of the present invention is to provide a rapid battery module residual energy detection method in order to overcome the above-mentioned defects of the prior art.
本发明的目的可以通过以下技术方案来实现:一种电池模组余能检测方法,包括以下步骤:The object of the present invention can be achieved through the following technical solutions: a method for detecting residual energy of a battery module, comprising the following steps:
S1、获取不同单体电池的性能数据,将性能数据一致的单体电池相互连接组成电池模组;S1. Obtain performance data of different single cells, and connect cells with consistent performance data to form a battery module;
S2、根据单体电池的性能数据以及电池模组中各单体电池的连接关系,分别计算得到电池模组的检测电流、充电截止电压和放电截止电压,其中,检测电流为I3电流;S2, according to the performance data of the single cell and the connection relationship of each single cell in the battery module, respectively calculate and obtain the detection current, charge cut-off voltage and discharge cut-off voltage of the battery module, wherein the detection current is 1 current;
S3、采用检测电流,对电池模组进行恒流放电至电池模组的放电截止电压,之后停止放电,将电池模组静置1h;S3. Use the detection current to discharge the battery module with constant current to the discharge cut-off voltage of the battery module, then stop discharging, and let the battery module stand for 1 hour;
S4、采用检测电流,对电池模组进行恒流充电至电池模组的充电截止电压,并记录恒流充电时间;S4. Use the detection current to charge the battery module with constant current to the charging cut-off voltage of the battery module, and record the constant current charging time;
S5、根据检测电流和恒流充电时间,计算得到电池模组的容量,即为电池模组的余能检测值。S5. Calculate the capacity of the battery module according to the detection current and the constant current charging time, which is the residual energy detection value of the battery module.
进一步地,所述步骤S1中性能数据包括单体电池的额定容量、充电截止电压和放电截止电压。Further, the performance data in the step S1 includes the rated capacity, charge cut-off voltage and discharge cut-off voltage of the single battery.
进一步地,所述步骤S2具体包括以下步骤:Further, the step S2 specifically includes the following steps:
S21、根据单体电池的额定容量以及电池模组中各单体电池的连接关系,计算得到I3电流;S21, according to the rated capacity of the single cell and the connection relationship of each single cell in the battery module, calculate the I3 current;
S22、根据单体电池的充电截止电压和放电截止电压,结合电池模组中各单体电池的连接关系,计算得到电池模组的充电截止电压和放电截止电压。S22 , according to the charge cut-off voltage and discharge cut-off voltage of the single cell, and in combination with the connection relationship of each single cell in the battery module, calculate the charge cut-off voltage and the discharge cut-off voltage of the battery module.
进一步地,所述步骤S21具体包括以下步骤:Further, the step S21 specifically includes the following steps:
S211、根据单体电池的额定容量以及电池模组中各单体电池的连接关系,计算得到电池模组的额定容量;S211. Calculate the rated capacity of the battery module according to the rated capacity of the single battery and the connection relationship of each single battery in the battery module;
S212、根据电池模组的额定容量,计算得到I3电流。S212. Calculate the I3 current according to the rated capacity of the battery module.
进一步地,所述步骤S211中电池模组的额定容量具体为:Further, the rated capacity of the battery module in the step S211 is specifically:
其中,H为电池模组的额定容量,sc为电池模组中单体电池串联部分的额定容量,pc为电池模组中单体电池并联部分的额定容量,n为并联的单体电池个数,h为单体电池的额定容量;Among them, H is the rated capacity of the battery module, s c is the rated capacity of the series part of the single cells in the battery module, pc is the rated capacity of the parallel part of the single cells in the battery module, and n is the parallel connection of the single cells. The number, h is the rated capacity of the single battery;
且当电池模组中不存在串联的单体电池时,sc=0;当电池模组中存在串联的单体电池时,sc=h。And when there are no single cells connected in series in the battery module, s c =0; when there are single cells connected in series in the battery module, s c =h.
进一步地,所述步骤S212中I3电流具体为:Further, the I3 current in the step S212 is specifically:
进一步地,所述步骤S22中电池模组的放电截止电压具体为:Further, the discharge cut-off voltage of the battery module in the step S22 is specifically:
其中,F为电池模组的放电截止电压,sd为电池模组中单体电池串联部分的放电截止电压,pd为电池模组中单体电池并联部分的放电截止电压,m为串联的单体电池个数,f为单体电池的放电截止电压;Among them, F is the discharge cut-off voltage of the battery module, s d is the discharge cut-off voltage of the series part of the single cells in the battery module, p d is the discharge cut-off voltage of the parallel part of the single cells in the battery module, and m is the series connection. The number of single cells, f is the discharge cut-off voltage of the single cell;
且当电池模组中不存在并联的单体电池时,pd=0;当电池模组中存在并联的单体电池时,pd=f。And when there are no single cells in parallel in the battery module, p d =0; when there are single cells in parallel in the battery module, p d =f.
进一步地,所述步骤S22中电池模组的充电截止电压具体为:Further, the charging cut-off voltage of the battery module in the step S22 is specifically:
其中,R为电池模组的充电截止电压,se为电池模组中单体电池串联部分的充电截止电压,pe为电池模组中单体电池并联部分的充电截止电压,m为串联的单体电池个数,r为单体电池的充电截止电压;Among them, R is the charging cut-off voltage of the battery module, s e is the charging cut-off voltage of the series part of the single cells in the battery module, p e is the charging cut-off voltage of the parallel part of the single cells in the battery module, and m is the series connection. The number of single cells, r is the charging cut-off voltage of the single cell;
且当电池模组中不存在并联的单体电池时,pe=0;当电池模组中存在并联的单体电池时,pe=r。And when there are no single cells connected in parallel in the battery module, p e =0; when there are single cells in parallel in the battery module, p e =r.
进一步地,所述步骤S5中电池模组的容量为:Further, the capacity of the battery module in the step S5 is:
Cw=t*I3 C w =t*I 3
其中,Cw为电池模组的容量,t为恒流充电时间。Among them, C w is the capacity of the battery module, and t is the constant current charging time.
与现有技术相比,本发明采用I3电流作为检测电流对电池模组进行恒流充放电,增加了余能检测时的充放电倍率,能够大大减小余能检测时间,此外,本发明只需对电池模组进行恒流充电,省去了恒压充电的过程,进一步减小了余能检测时间,即通过增大余能检测时充放电倍率和减少余能检测充放电步骤,能够在保持余能检测精度的同时,解决余能检测耗时长的问题,有利于退役电池后续的梯次利用。Compared with the prior art, the present invention uses I3 current as the detection current to charge and discharge the battery module with constant current, which increases the charge and discharge rate during the residual energy detection, and can greatly reduce the residual energy detection time. It is only necessary to perform constant current charging on the battery module, which saves the process of constant voltage charging and further reduces the residual energy detection time. While maintaining the residual energy detection accuracy, solving the problem of long time-consuming residual energy detection is beneficial to the subsequent echelon utilization of retired batteries.
附图说明Description of drawings
图1为本发明的方法流程示意图;Fig. 1 is the method flow schematic diagram of the present invention;
图2a为实施例中不同余能检测方法下电池模组的恒流充电容量对比图;2a is a comparison diagram of the constant current charging capacity of the battery module under different residual energy detection methods in the embodiment;
图2b为实施例中不同余能检测方法下电池模组的恒压充电容量对比图;2b is a comparison diagram of the constant voltage charging capacity of the battery module under different residual energy detection methods in the embodiment;
图3a为实施例中不同余能检测方法下电池模组的实际充电容量对比图;3a is a comparison diagram of the actual charging capacity of the battery module under different residual energy detection methods in the embodiment;
图3b为实施例中不同余能检测方法下电池模组的实际充电时间对比图;3b is a comparison diagram of the actual charging time of the battery module under different residual energy detection methods in the embodiment;
图4为实施例中不同余能检测方法的测试误差对比图。FIG. 4 is a comparison diagram of test errors of different residual energy detection methods in the embodiment.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,一种电池模组余能检测方法,包括以下步骤:As shown in Figure 1, a method for detecting residual energy of a battery module includes the following steps:
S1、获取不同单体电池的性能数据,将性能数据一致的单体电池相互连接组成电池模组;S1. Obtain performance data of different single cells, and connect cells with consistent performance data to form a battery module;
S2、根据单体电池的性能数据以及电池模组中各单体电池的连接关系,分别计算得到电池模组的检测电流、充电截止电压和放电截止电压,其中,检测电流为I3电流;S2, according to the performance data of the single cell and the connection relationship of each single cell in the battery module, respectively calculate and obtain the detection current, charge cut-off voltage and discharge cut-off voltage of the battery module, wherein the detection current is 1 current;
S3、采用检测电流,对电池模组进行恒流放电至电池模组的放电截止电压,之后停止放电,将电池模组静置1h;S3. Use the detection current to discharge the battery module with constant current to the discharge cut-off voltage of the battery module, then stop discharging, and let the battery module stand for 1 hour;
S4、采用检测电流,对电池模组进行恒流充电至电池模组的充电截止电压,并记录恒流充电时间;S4. Use the detection current to charge the battery module with constant current to the charging cut-off voltage of the battery module, and record the constant current charging time;
S5、根据检测电流和恒流充电时间,计算得到电池模组的容量,即为电池模组的余能检测值。S5. Calculate the capacity of the battery module according to the detection current and the constant current charging time, which is the residual energy detection value of the battery module.
为验证本发明提出的方法的有效性,本实施例中采用的电池模组来自奇瑞S18B电动汽车上4块退役的磷酸铁锂动力模块电池模组(15P4S,15并4串),其标称容量为40Ah,由4个15P1S电池单元串联组成,15P1S电池单元额定电压为3.2V。按照5%SOH差别将退役的电池模组从70-90%SOH区间划分为四个容量档次,具体如图表1所示,其中,70-75%、75-80%、80-85%和85-90%的SOH标定均采用Protocol 2协议,Protocol 2协议参考上海市标准《智能电网用储能电池性能测试技术规范》,每个区间各选取一块退役电池模组作为测试对象,共选取四块退役电池模组,以进行多种不同协议的剩余容量测试对比,表1为这4块电池模组实验前的基础性能和电池名称标记。In order to verify the validity of the method proposed by the present invention, the battery modules used in this embodiment are from 4 retired lithium iron phosphate power module battery modules (15P4S, 15 parallel 4 strings) on the Chery S18B electric vehicle. The capacity is 40Ah, and it consists of 4 15P1S battery cells connected in series. The rated voltage of the 15P1S battery cells is 3.2V. According to the 5% SOH difference, the retired battery modules are divided into four capacity grades from the 70-90% SOH range, as shown in Figure 1. Among them, 70-75%, 75-80%, 80-85% and 85 -90% of the SOH calibration adopts the
表1Table 1
分别以1I1(1C倍率,40A),1I3(1/3C倍率,13.3A),1I5(1/5C倍率,8A)和1I10(1/10C倍率,4A)分别对四块退役电池模组进行充放电检测,将这四种检测的电流分别标记为Protocol 1、Protocol 2、Protocol 3、Protocol 4。Protocol 1协议参考国标《电动车用动力蓄电池电性能要求及实验方法》,Protocol 2协议参考上海市标准《智能电网用储能电池性能测试技术规范》,Protocol 3协议参考《车用动力电池回收利用余能检测》,Protocol 4为低倍率容量测试方法。1I 1 (1C rate, 40A), 1I 3 (1/3C rate, 13.3A), 1I 5 (1/5C rate, 8A) and 1I 10 (1/10C rate, 4A) for four retired batteries respectively The module performs charge and discharge detection, and marks the four detected currents as
以Protocol 2的1I3电流为例,将退役电池模组采用1I3(1/3C倍率,13.3A)恒流放电,恒流放电截止条件为放电至截止电压(4×2.7V=10.8V),静置1小时;然后采用1I3恒流充电,恒流充电截止条件为充电至截止电压(4×3.65V=14.6V),再进行恒压充电,恒压充电截止条件为充电电流减小至0.1*I3(1.2A)或单芯电压大于单芯截止电压(3.75V)电池停止充电,静置1小时;接下来采用1I3进行放电,恒流放电截止条件为放电至截止电压(4×2.7V=10.8V),完成步骤后结束。最后以1I3(A)的充电时电流值和充电时间数据计算电池容量(以Ah计)。同时采用1I3(A)电流作为研究对象,改变电池模组的充电截止条件和放电截止条件探讨退役电池模组余能检测的容量值与充放电截止条件的关系。Taking the 1I 3 current of
Protocol 5采用的是本发明提出的余能检测方法,其放电截止条件为电池模组总电压(2.7×n)V,充电截止条件为(3.65×n)V,且不包含模组内单芯电压的监控和恒压的充电测试协议,Protocol 6的放电截止条件为电池模组电压(2.7×n)V,且恒流充电到截止条件(3.65×n)V后,继续恒压充电到充电电流减小至0.1*I3,充电过程不包含单芯电压监控的过度恒压测试协议,本实施例中,n=4。表2为6种不同方案的容量测试协议(Protocol)的测试电流、截止条件。
表2Table 2
表3为为6种不同测试协议下的4个具有不同电池模组的实际充电容量(Cch)和实际放电容量值(Cdis),从表3中可以看出电池的充电容量和放电容量都非常接近,因此,针对S18 EV电池模组,可用充电容量代替放电容量,以分析电池模组的实际容量。Table 3 shows the actual charge capacity (C ch ) and actual discharge capacity (C dis ) of 4 battery modules with different battery modules under 6 different test protocols. From Table 3, it can be seen that the charge capacity and discharge capacity of the battery are very close, so for the S18 EV battery module, the charging capacity can be used instead of the discharging capacity to analyze the actual capacity of the battery module.
表3table 3
图2a为4个电池模组在6种不同测试协议下恒流充电的充电容量值Ccc。在第一类协议下对比,#1,#2,#3,#4四个模组的容量呈现先略微增大后略微减少趋势,其中,Protocol2、Protocol 3、Protocol 4、Protocol 5、Protocol 6这5种协议下Ccc值则非常接近,Protocol 1的测量值于其它协议相比差异较大。采用Protocol4作为对比,其中Protocol 1与Protocol 4相比最大误差为2.51Ah(7.422%SOH),比Protocol 4检测时间少9小时;Protocol 5与Protocol 4相比最大误差为0.22Ah(0.651%SOH),且检测时间比Protocol 4少7小时。因此Protocol 5恒流段作为电池余能检测方法从时间和精度方面综合考虑优于其它协议恒流段检测方案。Figure 2a shows the charging capacity value C cc of four battery modules under constant current charging under six different test protocols. Compared with the first type of protocol, the capacities of the four
图2b为6种不同测试协议下的恒压充电的充电容量值Ccv。由图2b可知,Ccv值随着测试电流的减小都呈现逐渐下降趋势,当Ccv值降为0时不再下降。而电池模组随着容量下降造成的内部电芯一致性变差,恒压充电过程提前达到电芯电压3.75V上限使得恒压充电过程提前结束,是Ccv值下降的主要原因。对比Protocol 4和protocol 5,Ccv值最大相差不超过0.36Ah(1.08%SOH),所以Ccv值的分析也表明Protocol 5的恒流段能够用于余能检测。Figure 2b shows the charging capacity value C cv of constant voltage charging under 6 different test protocols. It can be seen from Figure 2b that the C cv value shows a gradual downward trend with the decrease of the test current, and no longer decreases when the C cv value drops to 0. However, as the capacity of the battery module decreases, the internal cell consistency deteriorates. The constant voltage charging process reaches the upper limit of the cell voltage of 3.75V in advance, which makes the constant voltage charging process end earlier, which is the main reason for the decrease in the C cv value. Comparing
图3a为6种不同容量测试协议(Protocol 1、Protocol 2、Protocol 3、Protocol4、Protocol 5、Protocol 6)下电池模组(#1、#2、#3、#4)的实测充电容量值(Cch,即Ccc值与Ccv之和)。其中,Protocol 5的Cch与Ccc值相等。根据图3a可知,#1和#2模组的Cch值在前5个协议下有轻微下降趋势,直到协议6时增加,#3和#4模组的Cch值在六个协议中则为轻微上增趋势,而退役电池的剩余容量和电池的一致性差别是造成该不同现象的主要原因。Figure 3a shows the measured charging capacity values of battery modules (#1, #2, #3, #4) under 6 different capacity test protocols (
图3b为6种不同容量测试协议(Protocol 1、Protocol 2、Protocol 3、Protocol4、Protocol 5、Protocol 6)下电池模组(#1、#2、#3、#4)的实测充电容量需要的时间。其中,Protocol 5为恒流段时间,由图3b可知,Protocol 5的单次检测时间比Protocol 4减少15小时,比Protocol 2、Protocol 6减少3小时。Figure 3b shows the required charging capacity of battery modules (#1, #2, #3, #4) under 6 different capacity test protocols (
图4为5种不同容量测试协议(Protocol 1、Protocol 2、Protocol 3、Protocol 5、Protocol 6))下采用Protocol 4协议电池实测充电容量为对比,模组(#1,#2,#3,#4)的实测充电容量值的误差,可以发现协议Protocol 1、Protocol 2、Protocol 6误差较大,在3%点以上,协议Protocol 3、Protocol 5在2%误差以内。Figure 4 is a comparison of the measured charging capacity of the
综上所述,本实施例在应用本发明提出的余能检测方法时,Protocol 5首先将退役电池模组采用I3(1/3C倍率,13.3A)恒流放电至放电截止电压(4×2.7V=10.8V),静置1小时;然后以I3恒流充电到充电截止电压(4×3.65V=14.6V);最后根据I3(A)恒流充电时电流值和充电时间数据,计算得到电池容量(以Ah计),即为电池模组的余能检测值。该方法测量出的误差在2%以内,且比其他方法减少了3-15小时测量时间。从退役电池模组的商业化角度来考虑,大量退役电池模组从市场退役,缩短余能检测时间是非常必要,需要在缩短时间的同时保证一定的测量精度,本实施例验证了Protocol 5恒流段从时间效率和精确度来看是最为合适的。因此可以采用本发明提出的方法对退役电池模组进行余能检测,能够在保证检测准确度的基础上实现减少余能检测时间的目的。To sum up, when the residual energy detection method proposed by the present invention is applied in this embodiment,
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114201.3A CN110865307B (en) | 2019-11-14 | 2019-11-14 | Battery module complementary energy detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114201.3A CN110865307B (en) | 2019-11-14 | 2019-11-14 | Battery module complementary energy detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110865307A true CN110865307A (en) | 2020-03-06 |
CN110865307B CN110865307B (en) | 2022-06-07 |
Family
ID=69654205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911114201.3A Active CN110865307B (en) | 2019-11-14 | 2019-11-14 | Battery module complementary energy detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110865307B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184968A (en) * | 2020-09-14 | 2022-03-15 | 蓝谷智慧(北京)能源科技有限公司 | Method, device and equipment for evaluating capacity of battery pack |
WO2022067485A1 (en) * | 2020-09-29 | 2022-04-07 | 宁德时代新能源科技股份有限公司 | Battery charging method and device, and storage medium |
CN115954565A (en) * | 2022-11-21 | 2023-04-11 | 上海玫克生储能科技有限公司 | Method, system, equipment and medium for supplementing electricity to battery module |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169002A (en) * | 2011-01-04 | 2011-08-31 | 武汉理工大学 | Method for measuring fuel consumption and discharge of hybrid electromobile |
CN102854470A (en) * | 2012-08-31 | 2013-01-02 | 哈尔滨工业大学 | Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set |
CN103427459A (en) * | 2013-07-29 | 2013-12-04 | 清华大学 | Battery pack capacity equilibrium method |
CN106199437A (en) * | 2016-06-29 | 2016-12-07 | 重庆小康工业集团股份有限公司 | Electromobile battery dump energy monitoring method and monitoring system thereof |
CN106646261A (en) * | 2017-01-03 | 2017-05-10 | 重庆长安汽车股份有限公司 | Accuracy verification method and accuracy verification system for SOC of battery management system |
CN107797070A (en) * | 2017-10-24 | 2018-03-13 | 北京普莱德新能源电池科技有限公司 | The appraisal procedure and apparatus for evaluating of electrokinetic cell health status |
CN108490366A (en) * | 2018-05-09 | 2018-09-04 | 上海电力学院 | The fast evaluation method of the retired battery module health status of electric vehicle |
CN109061477A (en) * | 2018-06-12 | 2018-12-21 | 清华大学深圳研究生院 | A kind of the verifying evaluation method and device of battery SOC estimating algorithm |
JP2019060838A (en) * | 2017-09-25 | 2019-04-18 | 富士通株式会社 | Battery residual amount measurement circuit, control circuit and sensor node |
CN109738825A (en) * | 2018-12-27 | 2019-05-10 | 上海毅信环保科技有限公司 | Method and device for detecting available capacity and internal resistance of retired batteries based on historical data |
CN110441703A (en) * | 2019-09-07 | 2019-11-12 | 深圳市凯德旺科技有限公司 | A kind of evaluation method and its detection system of the lithium battery SOC of mobile charging system |
-
2019
- 2019-11-14 CN CN201911114201.3A patent/CN110865307B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102169002A (en) * | 2011-01-04 | 2011-08-31 | 武汉理工大学 | Method for measuring fuel consumption and discharge of hybrid electromobile |
CN102854470A (en) * | 2012-08-31 | 2013-01-02 | 哈尔滨工业大学 | Measurement method for estimating actual available capacity by SOC (state of charge) of power battery set |
CN103427459A (en) * | 2013-07-29 | 2013-12-04 | 清华大学 | Battery pack capacity equilibrium method |
CN106199437A (en) * | 2016-06-29 | 2016-12-07 | 重庆小康工业集团股份有限公司 | Electromobile battery dump energy monitoring method and monitoring system thereof |
CN106646261A (en) * | 2017-01-03 | 2017-05-10 | 重庆长安汽车股份有限公司 | Accuracy verification method and accuracy verification system for SOC of battery management system |
JP2019060838A (en) * | 2017-09-25 | 2019-04-18 | 富士通株式会社 | Battery residual amount measurement circuit, control circuit and sensor node |
CN107797070A (en) * | 2017-10-24 | 2018-03-13 | 北京普莱德新能源电池科技有限公司 | The appraisal procedure and apparatus for evaluating of electrokinetic cell health status |
CN108490366A (en) * | 2018-05-09 | 2018-09-04 | 上海电力学院 | The fast evaluation method of the retired battery module health status of electric vehicle |
CN109061477A (en) * | 2018-06-12 | 2018-12-21 | 清华大学深圳研究生院 | A kind of the verifying evaluation method and device of battery SOC estimating algorithm |
CN109738825A (en) * | 2018-12-27 | 2019-05-10 | 上海毅信环保科技有限公司 | Method and device for detecting available capacity and internal resistance of retired batteries based on historical data |
CN110441703A (en) * | 2019-09-07 | 2019-11-12 | 深圳市凯德旺科技有限公司 | A kind of evaluation method and its detection system of the lithium battery SOC of mobile charging system |
Non-Patent Citations (2)
Title |
---|
ZHIRUI LIANG ET AL.: "Residual capacity estimation of valve-regulated lead-acid (VRLA) batteries for second-use", 《2019 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT ASIA)》 * |
李程等: "退役电池模组余能检测充放电协议的优化研究", 《电器工业》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114184968A (en) * | 2020-09-14 | 2022-03-15 | 蓝谷智慧(北京)能源科技有限公司 | Method, device and equipment for evaluating capacity of battery pack |
CN114184968B (en) * | 2020-09-14 | 2023-11-10 | 蓝谷智慧(北京)能源科技有限公司 | Method, device and equipment for evaluating capacity of battery pack |
WO2022067485A1 (en) * | 2020-09-29 | 2022-04-07 | 宁德时代新能源科技股份有限公司 | Battery charging method and device, and storage medium |
CN116018707A (en) * | 2020-09-29 | 2023-04-25 | 宁德时代新能源科技股份有限公司 | Battery charging method, device and storage medium |
CN115954565A (en) * | 2022-11-21 | 2023-04-11 | 上海玫克生储能科技有限公司 | Method, system, equipment and medium for supplementing electricity to battery module |
CN115954565B (en) * | 2022-11-21 | 2023-08-25 | 上海玫克生储能科技有限公司 | Power supply method, system, device and medium for battery module |
Also Published As
Publication number | Publication date |
---|---|
CN110865307B (en) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109031145B (en) | A series-parallel battery pack model and realization method considering inconsistency | |
CN103163464B (en) | The detection method of battery core in power brick | |
CN104101838B (en) | Power cell system, and charge state and maximum charging and discharging power estimation methods thereof | |
CN113533988B (en) | Long-term circulation capacity attenuation analysis method for lithium ion battery | |
CN104617339B (en) | Lithium ion battery matching method | |
CN110865307B (en) | Battery module complementary energy detection method | |
CN204269787U (en) | A detection system for low-temperature performance consistency of lithium-ion batteries | |
CN103267952B (en) | Method for measuring charging efficiency of power batteries | |
CN109193055A (en) | A kind of applying waste lithium ionic power battery cascade utilization screening method | |
CN108490366A (en) | The fast evaluation method of the retired battery module health status of electric vehicle | |
CN103464388A (en) | Lithium ion battery screening method | |
CN106125001A (en) | The fast evaluation method of electric automobile retired battery module actual capacity | |
CN107607874A (en) | The bikini screening technique of quick charge/discharge lithium ion battery | |
CN104269574A (en) | Battery pack sorting method | |
CN103346358A (en) | Grouping method of lead-acid battery | |
CN111458650A (en) | Method for estimating peak power of lithium ion power battery system | |
CN103515663B (en) | The charging device of power brick charging method and employing the method | |
CN105866700A (en) | Lithium ion battery quick screening method | |
CN103424713B (en) | Lead-acid power battery capacity method for group matching | |
CN110749832A (en) | Method for quickly estimating actual capacity of retired lithium ion battery of electric vehicle | |
CN108090244B (en) | A Modeling Method for Parallel Lithium-ion Battery System | |
CN112186278B (en) | Lithium ion battery matching method | |
CN103633705B (en) | Accurately obtained terminal and the method for cell voltage by discharge mode when charging | |
CN115494392A (en) | Power battery full-cycle life prediction method | |
CN110639845A (en) | Method suitable for screening and matching upper-level lithium ion single battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240104 Address after: Building 6, 3rd Floor, No. 929 Fengtan Road, Wuyuan Street, Haiyan County, Jiaxing City, Zhejiang Province, 314300 Patentee after: Yubang Zhiyuan Technology (Jiaxing) Co.,Ltd. Address before: 200090 No. 2103, Pingliang Road, Shanghai, Yangpu District Patentee before: Shanghai University of Electric Power |