CN110864768A - Self-generating tide level observation device for tide test well - Google Patents
Self-generating tide level observation device for tide test well Download PDFInfo
- Publication number
- CN110864768A CN110864768A CN201911196477.0A CN201911196477A CN110864768A CN 110864768 A CN110864768 A CN 110864768A CN 201911196477 A CN201911196477 A CN 201911196477A CN 110864768 A CN110864768 A CN 110864768A
- Authority
- CN
- China
- Prior art keywords
- tide
- well
- spiral coil
- level observation
- self
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 4
- 238000001914 filtration Methods 0.000 claims abstract description 8
- 238000001514 detection method Methods 0.000 claims description 2
- 238000012795 verification Methods 0.000 claims 4
- 230000000694 effects Effects 0.000 abstract description 5
- 238000013461 design Methods 0.000 abstract description 4
- 230000033001 locomotion Effects 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 16
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013524 data verification Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/30—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats
- G01F23/64—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements
- G01F23/72—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by floats of the free float type without mechanical transmission elements using magnetically actuated indicating means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C13/00—Surveying specially adapted to open water, e.g. sea, lake, river or canal
- G01C13/002—Measuring the movement of open water
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Fluid Mechanics (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于验潮井的自发电潮位观测装置,属于能源动力技术领域。The invention relates to a self-generating tide level observation device for tide-gauging wells, belonging to the technical field of energy and power.
背景技术Background technique
潮位预报是海洋保障的重要要素,沿岸潮位的变化直接关系到传播的进出港口、海洋与海岸工程设计、风暴潮汐的预测、潮汐发电等方面。能降低潮汐变化对渔业造成的损失,修复防灾减灾环境,确保渔业船舶航行安全。Tide level forecasting is an important element of ocean security, and changes in coastal tide levels are directly related to the propagation of entry and exit ports, marine and coastal engineering design, storm tide forecasting, and tidal power generation. It can reduce the losses caused by tidal changes to the fishery, restore the disaster prevention and mitigation environment, and ensure the safety of fishing vessels.
验潮井是提供长期定点验潮的固定、可靠设施。衡量验潮井的优劣标准通常用消波性和随潮性。起初设计验潮井时,是来帮助测量几米的潮汐变化。虽然潮汐现象是在浅海区占基础地位的海洋动力学现象,随着科学的不断发展,对气候变化和卫星数据校验的需要,给验潮井的测量精度提出了更高的要求。对于整个验潮井来说,它性能的优劣体现在进水孔的消波性和随潮性。设计得过大,则滤波性能差,潮汐自记曲线将出现很宽的带状记录,这样观测下来的潮位值既不准确,又给资料的整理带来了困难,反之,若进水孔设计得过小,虽然滤波性能增强,但因滤掉了一些不应滤掉的波动,虽则记录曲线平滑,但记录的潮时出现滞后现象,造成井内外潮位明显的不一致。A tide well is a fixed and reliable facility that provides long-term fixed-point tide testing. The standard to measure the pros and cons of tide wells is usually wave-absorptive and tide-accompanying. Tide wells were originally designed to help measure tidal changes over a few meters. Although the tidal phenomenon is a fundamental marine dynamic phenomenon in the shallow sea area, with the continuous development of science, the need for climate change and satellite data verification has put forward higher requirements for the measurement accuracy of tide wells. For the entire tide well, its performance is reflected in the wave absorption and tide-accompanying properties of the inlet hole. If the design is too large, the filtering performance will be poor, and the tidal self-recording curve will have a wide band record, so the observed tidal level value is not accurate, but also brings difficulties to the data collation. On the contrary, if the water inlet hole is designed If it is too small, although the filtering performance is enhanced, some fluctuations that should not be filtered out are filtered out, and although the recorded curve is smooth, there is a lag in the recorded tides, resulting in obvious inconsistencies in the tidal levels inside and outside the well.
目前用于潮位观测应用较为广泛的装置是浮子式验潮井。主要结构是验潮井、浮筒、记录装置。其优点在于坚固耐用、滤波性能好,但缺点也较为明显,其机动性能较差,且需要人工更换电源,操作较为不便。在要求滤波性能好的同时还需注意验潮井内外超差变化的时间间隔不应过大,以此来保证潮位观测的准确性和实效性,这就导致两者不能作用最大化。因此,开发一种用于验潮井的自发电潮位测量装置,让验潮井装置在对潮位进行观测的同时产生电能,同时放大滤波孔,通过电流电压变化计算出潮位变化的平均潮位,为验潮井装置高操作性、高实效性的研究应用奠定基础。At present, the most widely used device for tide level observation is the float-type tide well. The main structures are tide wells, buoys, and recording devices. Its advantages lie in its sturdiness and durability, and its filtering performance is good, but its disadvantages are also relatively obvious. In order to ensure the accuracy and effectiveness of tide level observation, it is necessary to pay attention to that the time interval of the variation of the out-of-tolerance inside and outside the tide well should not be too large, which leads to the inability of the two to maximize their effect. Therefore, a self-generating tidal level measurement device for tide-gauge wells is developed, so that the tide-gauge well device can generate electricity while observing the tide level, and at the same time amplify the filter hole, and calculate the average tide level of the tidal level change through the change of current and voltage, which is Lay the foundation for the research and application of high operability and high effectiveness of the tide detection well device.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种用于验潮井的自发电潮位观测装置,以解决现有技术中机动性能较差,且需要人工更换电源,操作较为不便的缺陷。The purpose of the present invention is to provide a self-generating tide level observation device for a tide well, so as to solve the defects of the prior art that the maneuverability is poor, the power supply needs to be manually replaced, and the operation is relatively inconvenient.
一种用于验潮井的自发电潮位观测装置,包括支架、滤波孔、井壁和电流输出储存系统连接;A self-generating tide level observation device for tide-gauging wells, comprising a bracket, a filter hole, a well wall and a current output storage system connection;
所述支架与验潮井底连接,所述井壁设于支架的上端,所述滤波孔设于井壁的底部,所述井壁内设有多组螺旋线圈组,所述螺旋线圈组内设有带浮体的磁铁,所述电流输出储存系统与螺旋线圈组和带浮体的磁铁连接。The support is connected to the bottom of the tide-checking well, the well wall is arranged at the upper end of the support, the filter hole is arranged at the bottom of the well wall, and a plurality of sets of helical coil groups are arranged in the well wall, and the inside of the helical coil group is A magnet with a floating body is provided, and the current output storage system is connected with the helical coil set and the magnet with a floating body.
优选地,所述螺旋线圈组至少设有三组,每组螺旋线圈组皆设有带浮体的磁铁。Preferably, there are at least three sets of the helical coil sets, and each set of the helical coil sets is provided with a magnet with a floating body.
优选地,所述螺旋线圈组错位连接在井壁内。Preferably, the helical coil group is dislocated and connected in the well wall.
优选地,每组所述螺旋线圈组设有5个不同匝数的部分。Preferably, each group of the helical coil group is provided with 5 parts with different numbers of turns.
优选地,每组所述螺旋线圈组的不同匝数部分在垂直方向上的区间高度分别为1.2m 、0.24m、0.048m。Preferably, the section heights in the vertical direction of the parts with different turns of each group of the helical coil groups are 1.2m, 0.24m, and 0.048m, respectively.
优选地,所述不同匝数的部分在任意两个高度上的排列组合方式均不相同。Preferably, the arrangement and combination of the parts with different turns at any two heights are different.
与现有技术相比,本发明所达到的有益效果:三组电磁装置中线圈的组成方式可以根据当地潮差大小及精度需求进行调整,可以通过增加更多的线圈排列组合方式的方法提高潮位观测的精度;螺旋式的线圈设计增加了浮体的运动路程,放大了电流效应,提高了观测电压波动的敏感度,同时增加了发电量,使得无需对相关设备进行电池更换,提高了验潮井潮位观测的可操作性和便捷性。Compared with the prior art, the present invention has the beneficial effects that the composition of the coils in the three sets of electromagnetic devices can be adjusted according to the local tidal range and accuracy requirements, and the tidal level can be improved by adding more coil arrangements and combinations. The accuracy of observation; the spiral coil design increases the moving distance of the floating body, amplifies the current effect, improves the sensitivity of the observed voltage fluctuation, and increases the power generation, so that the battery of the related equipment does not need to be replaced, and the tide inspection well is improved. The operability and convenience of tide level observation.
附图说明Description of drawings
图1是本发明装置示意图;Fig. 1 is the schematic diagram of the device of the present invention;
图2是本发明电磁装置第一螺旋线圈组示意图;Fig. 2 is the schematic diagram of the first helical coil group of the electromagnetic device of the present invention;
图3是本发明电磁装置第二螺旋线圈组示意图;Fig. 3 is the schematic diagram of the second helical coil group of the electromagnetic device of the present invention;
图4是本发明电磁装置第三螺旋线圈组示意图;Fig. 4 is the schematic diagram of the third helical coil group of the electromagnetic device of the present invention;
图5是本发明带浮体的磁铁在俯视图的相对位置示意图;5 is a schematic diagram of the relative position of the magnet with a floating body of the present invention in a top view;
图6是本发明第一螺旋线圈组不同匝数的布置示意图;6 is a schematic diagram of the arrangement of different turns of the first helical coil group of the present invention;
图7是本发明第二螺旋线圈组不同匝数的布置示意图;Fig. 7 is the arrangement schematic diagram of the second helical coil group of the present invention with different turns;
图8是本发明第三螺旋线圈组不同匝数的布置示意图;FIG. 8 is a schematic diagram of the arrangement of different turns of the third helical coil group of the present invention;
图9是本发明第一螺旋线圈组电压输出信号范例示意图;FIG. 9 is a schematic diagram of an example of the voltage output signal of the first helical coil group of the present invention;
图10是本发明第二螺旋线圈组电压输出信号范例示意图;10 is a schematic diagram of an exemplary voltage output signal of the second helical coil set of the present invention;
图11是本发明第三螺旋线圈组电压输出信号范例示意图。FIG. 11 is a schematic diagram of an example of the voltage output signal of the third helical coil set of the present invention.
图中:1支架、2滤波孔、3井壁、4第一螺旋线圈组、5第一带浮体的磁铁、6第二螺旋线圈组、7第二带浮体的磁铁、8第三螺旋线圈组、9第三带浮体的磁铁、10电流输出储存系统。In the figure: 1 bracket, 2 filter hole, 3 well wall, 4 first spiral coil group, 5 first magnet with floating body, 6 second spiral coil group, 7 second magnet with floating body, 8 third spiral coil group , 9 third magnet with floating body, 10 current output storage system.
具体实施方式Detailed ways
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。In order to make the technical means, creative features, achievement goals and effects realized by the present invention easy to understand, the present invention will be further described below with reference to the specific embodiments.
如图1-图11所示,一种用于验潮井的自发电潮位观测装置,包括由支架1、滤波孔2、井壁3、第一螺旋线圈组4、第一带浮体的磁铁5、第二螺旋线圈组6、第二带浮体的磁铁7、第三螺旋线圈组8、第三带浮体的磁铁9、电流输出储存系统10;As shown in Fig. 1-Fig. 11, a self-generated tide level observation device for tide-checking wells includes a
所述支架1与验潮井底固接,将滤波口2水位控制在该地最低潮位附近,滤波口2较普通验潮井直径更大,敏感地响应潮位变化,增加自发电量及观测准确度,所述滤波孔2较普通验潮井直径更大,弱化了其消波效果,但潮位变化带来的水面波动使带浮体的磁铁运动幅度加大,增加了发电量,同时能更迅速地追踪潮位变化;井壁3将潮位观测系统与井外水位直接隔开,所述井壁3内设有多组螺旋线圈组,所述螺旋线圈组内设有带浮体的磁铁,所述螺旋线圈组和带浮体的磁铁与电流输出储存系统10连接;潮位变化时,带浮体的磁铁在各自浮体浮力的带动下在螺旋线圈组内上升,根据各组电磁装置在电流输出系统中产生电流的不同组合判断当前潮位大小,产生的电能储存在蓄电池中,供信息传送终端使用。The
在本实施例中,所述螺旋线圈组至少设有三组,分别为第一螺旋线圈组4、第二螺旋线圈组6、第三螺旋线圈组8,每组螺旋线圈组皆设有带浮体的磁铁,第一带浮体的磁铁5设在第一螺旋线圈组4,第二带浮体的磁铁7设在第二螺旋线圈组6,第三带浮体的磁铁9设在第三螺旋线圈组8,三组所述螺旋线圈组错位连接在井壁3内。图2-图4是电磁装置示意图,所述电磁装置由第一螺旋线圈组4和带浮体的磁铁5、第二螺旋线圈组6和带浮体的磁铁7、第三螺旋线圈组8和带浮体的磁铁9组成,三组线圈磁铁组合在验潮井中错位布置,在起始时刻三个磁铁及线圈底部的高度相同。In this embodiment, there are at least three sets of the helical coil group, namely a first helical coil group 4, a second
如图6-图8各线圈组不同匝数的布置示意图所示,所述第一螺旋线圈组4、第二螺旋线圈组6、第三螺旋线圈组8分别由A、B、C、D、E共5个不同匝数的部分组成,第一螺旋线圈组4每1.2m为一种匝数区间,线圈匝数排列为ABCDE,第二螺旋线圈组6每0.24m为一个匝数区间,线圈匝数排列为ABCDE,ABCDE……共5个循环,第三螺旋线圈组8每0.048m为一种匝数区间,线圈匝数排列为ABCDE,ABCDE……共25个循环,三组螺旋线圈组的起始高度相同。当潮位上涨时,第一带浮体的磁铁5、第二带浮体的磁铁、第三带浮体的磁铁9在浮体的带动下在线圈里螺旋缓慢上升,电磁感应产生电流传到电流输出储存系统10,利用储存的电能通过信号发送终端将实时的电流波动图形传输到潮位观测的终端,进行潮位的观测与记录。由于磁铁运动状态相同,不同匝数的部分在任意两个高度上的排列组合方式均不相同,三组线圈产生的电流波动图共有125种组合方式,对应于6m潮差下的观测精度为4.8cm。As shown in the schematic diagrams of the arrangement of different turns of each coil group in Figs. 6-8, the first helical coil group 4, the second
对比前一天观测到的波形图得知浮体运动速度相近,则螺旋线圈组输出电压波形图基本不变。如图9-图11所示,分别为终端某时刻记录的第一、第二和第三螺旋线圈组输出的电压图。5种不同的线圈匝数对应于5种不同的波形,以线圈起始高度为0,假设图9-图11中三个电压波形图对应的线圈匝数分别为BCE,根据图6-图8中线圈布置方式即可找到该时刻对应的潮位大小,为1.30m。在该线圈布置方式下,根据任一时刻电压图的排列组合均能找到对应时刻的潮位大小。Comparing the waveforms observed on the previous day, it is known that the moving speed of the floating body is similar, and the output voltage waveform of the spiral coil group is basically unchanged. As shown in Fig. 9-Fig. 11, the voltage diagrams output by the first, second and third helical coil groups recorded at a certain moment in the terminal are respectively shown. 5 different coil turns correspond to 5 different waveforms. The initial height of the coil is 0. Assume that the coil turns corresponding to the three voltage waveform diagrams in Figure 9-Figure 11 are BCE respectively. According to Figure 6-Figure 8 The tidal level corresponding to this moment can be found by the arrangement of the middle coil, which is 1.30m. In this coil arrangement, the tidal level at the corresponding moment can be found according to the arrangement and combination of the voltage map at any moment.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the technical principle of the present invention, several improvements and modifications can also be made. These improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911196477.0A CN110864768A (en) | 2019-11-29 | 2019-11-29 | Self-generating tide level observation device for tide test well |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911196477.0A CN110864768A (en) | 2019-11-29 | 2019-11-29 | Self-generating tide level observation device for tide test well |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110864768A true CN110864768A (en) | 2020-03-06 |
Family
ID=69657586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911196477.0A Pending CN110864768A (en) | 2019-11-29 | 2019-11-29 | Self-generating tide level observation device for tide test well |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110864768A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114166307A (en) * | 2021-12-16 | 2022-03-11 | 江苏航运职业技术学院 | Self-powered water gauge reading device |
CN114791507A (en) * | 2022-04-19 | 2022-07-26 | 河海大学 | An offshore wind measuring device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0942960A (en) * | 1995-08-02 | 1997-02-14 | Taisei Corp | How to measure the height of the underwater point |
CN102713502A (en) * | 2009-10-23 | 2012-10-03 | 伊瓜纳工业解决方案有限公司 | Depth determination apparatus |
CN204827777U (en) * | 2015-07-24 | 2015-12-02 | 林冬冬 | Wave energy power generation facility |
CN105401566A (en) * | 2015-09-24 | 2016-03-16 | 河海大学 | Ship lock floating type bollard |
CN205779449U (en) * | 2016-05-17 | 2016-12-07 | 中国海洋大学 | Combined oscillating floater wave energy generating set and TT&C system thereof |
CN206772394U (en) * | 2017-04-24 | 2017-12-19 | 西安新竹防务科技有限公司 | Liquid extinguisher steel cylinder liquid level detection device |
CN107843304A (en) * | 2017-10-10 | 2018-03-27 | 沈阳大学 | A kind of electrically separated spontaneous Current Generated gauge of liquid |
CN110259629A (en) * | 2019-05-23 | 2019-09-20 | 浙江海洋大学 | A kind of Multifunction Wave energy power generator |
-
2019
- 2019-11-29 CN CN201911196477.0A patent/CN110864768A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0942960A (en) * | 1995-08-02 | 1997-02-14 | Taisei Corp | How to measure the height of the underwater point |
CN102713502A (en) * | 2009-10-23 | 2012-10-03 | 伊瓜纳工业解决方案有限公司 | Depth determination apparatus |
CN204827777U (en) * | 2015-07-24 | 2015-12-02 | 林冬冬 | Wave energy power generation facility |
CN105401566A (en) * | 2015-09-24 | 2016-03-16 | 河海大学 | Ship lock floating type bollard |
CN205779449U (en) * | 2016-05-17 | 2016-12-07 | 中国海洋大学 | Combined oscillating floater wave energy generating set and TT&C system thereof |
CN206772394U (en) * | 2017-04-24 | 2017-12-19 | 西安新竹防务科技有限公司 | Liquid extinguisher steel cylinder liquid level detection device |
CN107843304A (en) * | 2017-10-10 | 2018-03-27 | 沈阳大学 | A kind of electrically separated spontaneous Current Generated gauge of liquid |
CN110259629A (en) * | 2019-05-23 | 2019-09-20 | 浙江海洋大学 | A kind of Multifunction Wave energy power generator |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114166307A (en) * | 2021-12-16 | 2022-03-11 | 江苏航运职业技术学院 | Self-powered water gauge reading device |
CN114166307B (en) * | 2021-12-16 | 2022-07-26 | 江苏航运职业技术学院 | Self-powered water gauge reading device |
CN114791507A (en) * | 2022-04-19 | 2022-07-26 | 河海大学 | An offshore wind measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN201600164U (en) | Video water-level gauge | |
CN207860394U (en) | A kind of marine environmental monitoring buoy | |
CN110864768A (en) | Self-generating tide level observation device for tide test well | |
CN107764248A (en) | A kind of acoustic wave tide measuring instrument and measuring method | |
CN108981855B (en) | Water level monitoring device and method based on plastic optical fiber optical time domain reflection | |
CN104132714A (en) | Automatic ultrasonic water level monitoring device | |
CN205562058U (en) | Temperature sensing type seawater temperature observation system | |
CN112525166A (en) | Tidal flat health multi-parameter profile real-time synchronous monitoring device and method | |
CN202793391U (en) | Capacitance induction type automatic tidal observation device | |
CN210664467U (en) | Artificial fish reef rising water flow monitoring device | |
CN202974389U (en) | Float-type water level indicator adopting datum water level | |
CN201568046U (en) | Water wave reducer | |
RU195000U1 (en) | OFFLINE METER OF HYDROLOGICAL AND HYDROCHEMICAL CHARACTERISTICS OF WATER OBJECTS GSA-1 | |
CN115389265A (en) | A long-period marine layered suspended sediment capture device and measurement method | |
Whiting et al. | 2020 State of the Science Report, Chapter 7: Changes in Oceanographic Systems Associated with Marine Renewable Energy Devices | |
CN209857921U (en) | Double-well tide gauge calibrating device | |
Stratigaki et al. | Large scale experiments on farms of heaving buoys to investigate wake dimensions, near-field and far-field effects | |
CN222027691U (en) | Tidal energy detection device convenient to install | |
WO2014019289A1 (en) | Capacitance induction-type automatic tidal observation device | |
RU150031U1 (en) | MAGNETOSTRICTIONAL LEVEL METER WITH TEMPERATURE CIRCUIT | |
CN218511753U (en) | Tidal river reach monitoring device | |
CN222481803U (en) | Device for in-situ evaluation of tidal blocking gate salty and light demarcation effect | |
CN202793529U (en) | Laser automatic tide register | |
CN203443641U (en) | Jam-type open channel highest water level automatic recording ruler | |
CN221667046U (en) | Water level measuring device for hydraulic engineering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200306 |
|
RJ01 | Rejection of invention patent application after publication |