CN110860302A - A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst - Google Patents
A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst Download PDFInfo
- Publication number
- CN110860302A CN110860302A CN201911119181.9A CN201911119181A CN110860302A CN 110860302 A CN110860302 A CN 110860302A CN 201911119181 A CN201911119181 A CN 201911119181A CN 110860302 A CN110860302 A CN 110860302A
- Authority
- CN
- China
- Prior art keywords
- agi
- lafeo
- preparation
- composite photocatalyst
- deionized water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 34
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 21
- 229910002321 LaFeO3 Inorganic materials 0.000 title claims abstract 8
- 229910017771 LaFeO Inorganic materials 0.000 claims abstract description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000008367 deionised water Substances 0.000 claims abstract description 12
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 12
- 238000001035 drying Methods 0.000 claims abstract description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 9
- 238000001291 vacuum drying Methods 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 238000001354 calcination Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 101710134784 Agnoprotein Proteins 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 229920000877 Melamine resin Polymers 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims 2
- 238000001914 filtration Methods 0.000 claims 1
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(III) nitrate Inorganic materials [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 5
- 239000002994 raw material Substances 0.000 abstract description 3
- 239000003960 organic solvent Substances 0.000 abstract description 2
- 230000010355 oscillation Effects 0.000 abstract description 2
- 231100000331 toxic Toxicity 0.000 abstract description 2
- 230000002588 toxic effect Effects 0.000 abstract description 2
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 8
- 229960001180 norfloxacin Drugs 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000004005 microsphere Substances 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 3
- 230000001699 photocatalysis Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 238000003837 high-temperature calcination Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002957 persistent organic pollutant Substances 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 229910000608 Fe(NO3)3.9H2O Inorganic materials 0.000 description 1
- 229910002554 Fe(NO3)3·9H2O Inorganic materials 0.000 description 1
- 229910020851 La(NO3)3.6H2O Inorganic materials 0.000 description 1
- 229910002422 La(NO3)3·6H2O Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- XMEVHPAGJVLHIG-FMZCEJRJSA-N chembl454950 Chemical compound [Cl-].C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H]([NH+](C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O XMEVHPAGJVLHIG-FMZCEJRJSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 239000002060 nanoflake Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005067 remediation Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229940043267 rhodamine b Drugs 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229960004989 tetracycline hydrochloride Drugs 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/341—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
- B01J37/343—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/34—Organic compounds containing oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/38—Organic compounds containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2305/00—Use of specific compounds during water treatment
- C02F2305/10—Photocatalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Thermal Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于材料制备工艺领域,涉及到采用超声辅助高温煅烧法,合成了一种新型AgI/LaFeO3/g-C3N4复合光催化剂材料的制备。The invention belongs to the field of material preparation technology, and relates to the preparation of a novel AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst material synthesized by an ultrasonic-assisted high-temperature calcination method.
背景技术Background technique
半导体光催化剂已成为解决全球化石燃料短缺和环境危机的有效手段。通过改善光催化剂的光催化和光电化学的化学反应性能,可以使光催化技术得到更广泛的应用。近年来,一种非金属可见光驱动的光催化剂氮化碳纳米材料因其在环境修复中的潜在应用受到了广泛的关注。以g-C3N4为底物建立多相光催化剂是提高光催化性能的有效方法。Semiconductor photocatalysts have become an effective means to solve the global shortage of fossil fuels and environmental crisis. By improving the photocatalytic and photoelectrochemical chemical reaction properties of photocatalysts, photocatalytic technology can be widely used. In recent years, a non-metallic visible light-driven photocatalyst carbon nitride nanomaterials has received extensive attention for its potential applications in environmental remediation. The establishment of heterogeneous photocatalysts using gC3N4 as a substrate is an effective method to improve the photocatalytic performance.
距今为止,还未发现有关于AgI/LaFeO3/g-C3N4复合光催化剂材料应用的报道。So far, there is no report on the application of AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst material.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是提供一种新型光催化剂的制备方法,首次采用超声辅助高温煅烧法制备了AgI/LaFeO3/g-C3N4复合光催化剂材料,该材料能有效提高对有机污染物的降解能力。The technical problem to be solved by the present invention is to provide a preparation method of a novel photocatalyst. For the first time, the AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst material is prepared by ultrasonic-assisted high-temperature calcination, which can effectively improve the resistance to organic pollutants. degradability.
本发明的发明构思是:利用LaFeO3纳米微球、g-C3N4纳米薄片和AgI之间的良好的能带匹配和结构特征,LaFeO3纳米微球作为AgI和g-C3N4之间的电子转移载体形成了一种双Z型体系,形成了平面-立体-平面(AgI-LaFeO3-g-C3N4)的光生电子通道,大大加强了光生载流子的转移和分离,使得有更多的光生电子参与反应,加强了催化剂的催化效率,其中诺氟沙星为选择的具有代表性的抗生素类污染物,其他的有效果的污染物还有罗丹明B、亚甲基蓝、盐酸四环素等。The inventive concept of the present invention is: utilizing the good energy band matching and structural characteristics between LaFeO 3 nano-microspheres, gC 3 N 4 nano-flakes and AgI, LaFeO 3 nano-micro spheres serve as electrons between AgI and gC 3 N 4 The transfer carrier forms a double Z-type system, forming a planar-stereo-planar (AgI-LaFeO 3 -gC 3 N 4 ) photogenerated electron channel, which greatly enhances the transfer and separation of photogenerated carriers, making more The photogenerated electrons participate in the reaction, which enhances the catalytic efficiency of the catalyst. Norfloxacin is a representative antibiotic pollutant selected. Other effective pollutants include rhodamine B, methylene blue, and tetracycline hydrochloride.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
AgI/LaFeO3/g-C3N4复合光催化剂的制备:将1-15wt%AgI、1-50wt%LaFeO3和100wt%g-C3N4在去离子水中超声震荡0.5h后放入160℃真空干燥箱干燥至水分完全消失;粉末充分混合后倒入坩埚中,520℃空气中煅烧5h,得到AgI/LaFeO3/g-C3N4复合光催化剂。Preparation of AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst: 1-15wt% AgI, 1-50wt% LaFeO 3 and 100wt% gC 3 N 4 were sonicated in deionized water for 0.5h and then placed in 160 ℃ for vacuum drying oven-dried until the moisture completely disappeared; the powder was fully mixed and poured into a crucible, and calcined in air at 520 °C for 5 h to obtain an AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst.
本发明中干燥温度为160℃,在该温度下,可以避免LaFeO3的损失和LaFeO3纳米微球形貌缺陷,干燥时间优选12h,可以确保水分完全消失。In the present invention, the drying temperature is 160° C., at this temperature, the loss of LaFeO 3 and the appearance defects of LaFeO 3 nano-microspheres can be avoided, and the drying time is preferably 12h, which can ensure the complete disappearance of moisture.
本发明中煅烧条件为520℃,在空气中煅烧5h,该温度为复合催化剂的晶面形成最佳温度,低于520℃则不能使AgI、LaFeO3和g-C3N4复合在一起,高于该温度会造成g-C3N4的挥发,煅烧时间不能低于5h,低于5小时不能形成g-C3N4纳米薄片。In the present invention, the calcination condition is 520°C, calcined in air for 5 hours, which is the optimum temperature for the formation of crystal planes of the composite catalyst. If it is lower than 520°C, AgI, LaFeO 3 and gC 3 N 4 cannot be composited together. This temperature will cause the volatilization of gC 3 N 4 , the calcination time should not be less than 5h, and the gC 3 N 4 nanosheets cannot be formed if it is less than 5 hours.
本发明中超声震荡时间优选0.5h,低于该时间会造成三种原料结合不完全。In the present invention, the ultrasonic oscillation time is preferably 0.5h, and less than this time will result in incomplete combination of the three raw materials.
进一步的,本发明中LaFeO3的制备过程是:按物质量1:1:5将La(NO3)3·6H2O、Fe(NO3)3·9H2O和柠檬酸溶入去离子水中,加入20ml乙二醇,剧烈磁力搅拌0.5h后将混合溶液倒入聚四氟乙反应釜中,真空干燥箱中160℃加热12h,将得到的颗粒用去离子水和无水乙醇清洗数次,真空干燥箱中80℃干燥12h后,在800℃中煅烧2h,得到LaFeO3。Further, the preparation process of LaFeO 3 in the present invention is as follows: La(NO 3 ) 3 .6H 2 O, Fe(NO 3 ) 3 .9H 2 O and citric acid are dissolved in deionized 1:1:5 by mass Add 20 ml of ethylene glycol to the water, stir vigorously magnetically for 0.5 h, pour the mixed solution into a polytetrafluoroethylene reaction kettle, heat it in a vacuum drying oven at 160 °C for 12 h, and wash the obtained particles with deionized water and anhydrous ethanol. Second, after drying at 80 °C for 12 h in a vacuum drying oven, calcined at 800 °C for 2 h to obtain LaFeO 3 .
进一步的,本发明中g-C3N4的制备过程是:将适量的三聚氰胺放入陶瓷坩埚中,Further, the preparation process of gC 3 N 4 in the present invention is as follows: put an appropriate amount of melamine into a ceramic crucible,
520℃(程序升温2℃/min)空气中带盖煅烧5h后,再开盖520℃(程序升温2℃/min)空气中开盖煅烧2h得到g-C3N4。After being calcined at 520°C (programmed temperature 2°C/min) for 5 hours with a lid in the air, the lid was opened at 520°C (programmed temperature 2°C/min) and calcined in air for 2 hours to obtain gC 3 N 4 .
所述的AgI的制备过程是:将等摩尔质量的KI和AgNO3融入去离子水中充分搅拌后,将得到的固体沉淀过滤80℃烘干6h,得到AgI。The preparation process of AgI is as follows: after mixing equimolar mass of KI and AgNO 3 into deionized water and fully stirring, the obtained solid precipitate is filtered and dried at 80° C. for 6 hours to obtain AgI.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)原材料廉价易得,不使用有毒有害的有机溶剂,工艺简单、环保,不需要昂贵的设备,既可用于实验操作,又可工业上大规模生产。(1) The raw materials are cheap and easy to obtain, no toxic and harmful organic solvents are used, the process is simple, environmentally friendly, and does not require expensive equipment, which can be used for both experimental operation and industrial large-scale production.
(2)制备的AgI/LaFeO3/g-C3N4复合光催化剂对有机污染物诺氟沙星有很高的降解率,120min内最高可达95%。(2) The prepared AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst has a high degradation rate of the organic pollutant norfloxacin, and the highest rate can reach 95% within 120 min.
(3)本发明进一步的扩大了氮化碳纳米材料的应用领域,为其他半导体复合氮化碳纳米材料的开发和大规模的应用提供了崭新的思路。(3) The present invention further expands the application field of carbon nitride nanomaterials, and provides a new idea for the development and large-scale application of other semiconductor composite carbon nitride nanomaterials.
附图说明Description of drawings
图1a是制备的AgI/LaFeO3/g-C3N4复合光催化剂的扫描电镜图(SEM),放大倍数为5万倍。Figure 1a is a scanning electron microscope (SEM) image of the as-prepared AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst with a magnification of 50,000 times.
图1b是制备的AgI/LaFeO3/g-C3N4复合光催化剂的透射电镜图(TEM),放大倍数为10万倍。Figure 1b is a transmission electron microscope (TEM) image of the as-prepared AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst with a magnification of 100,000 times.
图2是制备的AgI/LaFeO3/g-C3N4复合光催化剂的X-射线衍射图(XRD),横坐标是两倍衍射角(2θ),纵坐标是衍射峰强度(cps)。2 is the X-ray diffraction pattern (XRD) of the prepared AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst, the abscissa is twice the diffraction angle (2θ), and the ordinate is the diffraction peak intensity (cps).
图3是制备的AgI/LaFeO3/g-C3N4复合光催化剂对诺氟沙星的降解效率。Figure 3 shows the degradation efficiency of norfloxacin by the prepared AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst.
具体实施方式Detailed ways
以下结合技术方案详细叙述本发明的具体实施方式。The specific embodiments of the present invention are described in detail below in conjunction with the technical solutions.
实施例1Example 1
本实例提供一种AgI/LaFeO3/g-C3N4复合光催化剂的制备方法,具体如下:This example provides a preparation method of AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst, as follows:
将0.002molLa(NO3)3·6H2O、0.002molFe(NO3)3·9H2O和0.01mol柠檬酸溶入去离子水中,加入20ml乙二醇,剧烈磁力搅拌0.5h后将混合溶液倒入聚四氟乙反应釜中,真空干燥箱中160℃加热12h。将得到的颗粒用去离子水和无水乙醇清洗数次,真空干燥箱中80℃干燥12h后,在800℃中煅烧2h,得到LaFeO3。Dissolve 0.002mol La(NO 3 ) 3 ·6H 2 O, 0.002mol Fe(NO 3 ) 3 ·9H 2 O and 0.01mol citric acid in deionized water, add 20ml ethylene glycol, stir vigorously magnetically for 0.5h, and then mix the solution Pour it into a polytetrafluoroethylene reaction kettle, and heat it in a vacuum drying oven at 160°C for 12h. The obtained particles were washed several times with deionized water and absolute ethanol, dried in a vacuum drying oven at 80°C for 12 hours, and then calcined at 800°C for 2 hours to obtain LaFeO 3 .
将15g三聚氰胺放入陶瓷坩埚中,520℃(程序升温2℃/min)空气中带盖煅烧5h后,再开盖520℃(程序升温2℃/min)空气中开盖煅烧2h得到g-C3N4。Put 15g of melamine into a ceramic crucible, calcinate in air at 520°C (programmed temperature 2°C/min) for 5 hours with a lid, and then open the lid and calcinate in air at 520°C (programmed temperature 2°C/min) for 2 hours to obtain gC 3 N 4 .
将0.01mol的KI和0.01mol的AgNO3融入去离子水中充分搅拌后,将得到的固体沉淀过滤80℃烘干6h。得到AgI。After mixing 0.01 mol of KI and 0.01 mol of AgNO 3 into deionized water and stirring well, the obtained solid precipitate was filtered and dried at 80 °C for 6 h. to obtain AgI.
将0.03gAgI、0.3gLaFeO3和1gg-C3N4充分混合,将粉末倒入去离子水中,超声震荡30min,然后将悬浊液置于160℃真空干燥箱12h,得到的粉末在520℃空气中煅烧5h。研磨后得到AgI/LaFeO3/g-C3N4复合光催化剂。Mix 0.03g AgI, 0.3g LaFeO 3 and 1gg-C 3 N 4 well, pour the powder into deionized water, ultrasonically shake for 30min, then place the suspension in a 160°C vacuum drying oven for 12h, and the obtained powder is dried at 520°C in air calcined for 5h. AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst was obtained after grinding.
取0.2gAgI/LaFeO3/g-C3N4复合光催化剂和100ml的20mg/l诺氟沙星溶液于石英烧杯中进行磁力搅拌,在开始照射前在黑暗条件下进行暗反应达到催化剂和诺氟沙星之间的吸附-脱附平衡。实验的光源由500W的氙灯提供,光源距离反应悬浊液表面约为20cm,每隔30min取5ml悬浊液离心分离(8000rpm5min)光催化剂,上清液在诺氟沙星最大吸收波长280nm处测量吸光度,根据吸光度计算上清液中的诺氟沙星浓度。Take 0.2g AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst and 100ml of 20mg/l norfloxacin solution in a quartz beaker for magnetic stirring, and perform a dark reaction under dark conditions before starting irradiation to reach the catalyst and norfloxacin Adsorption-desorption equilibrium between stars. The light source of the experiment was provided by a 500W xenon lamp, the light source was about 20cm away from the surface of the reaction suspension, and 5ml of the suspension was taken every 30min to centrifuge (8000rpm5min) the photocatalyst, and the supernatant was measured at the maximum absorption wavelength of norfloxacin at 280nm. Absorbance, norfloxacin concentration in the supernatant was calculated from the absorbance.
降解结果如图3所示,在120min内AgI/LaFeO3/g-C3N4复合光催化剂对诺氟沙星的降解效率达到95%。The degradation results are shown in Figure 3. The AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst has a degradation efficiency of 95% for norfloxacin within 120 min.
对本发明制备的AgI/LaFeO3/g-C3N4复合光催化剂进行形貌和晶型结构表征,具体如下:The morphology and crystal structure of the AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst prepared by the present invention are characterized as follows:
(1)形貌分析(1) Morphology analysis
用扫描电子显微镜(SEM)和透射电子显微镜(TEM)技术对本发明制备的AgI/LaFeO3/g-C3N4复合光催化剂进行形貌、尺寸和表面物理结构分析,见图1a和图1b。由图中可以看出AgI和LaFeO3均匀地生长在了g-C3N4上。The morphology, size and surface physical structure of the AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst prepared by the present invention were analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM), as shown in Figure 1a and Figure 1b. It can be seen from the figure that AgI and LaFeO 3 are uniformly grown on gC 3 N 4 .
(2)X-射线衍射图谱(XRD)分析(2) X-ray diffraction pattern (XRD) analysis
用X射线衍射技术对由本发明制备的AgI/LaFeO3/g-C3N4复合光催化剂的晶型结构进行分析。图2中的曲线为本发明制备的AgI/LaFeO3/g-C3N4复合光催化剂的XRD图谱和AgI(JCPDSNo.09-0374)、LaFeO3(JCPDSNo.37-1493)、g-C3N4(JCPDSNo.87-1526)标准卡片。谱图中没有出现其它物质的衍射峰,说明本发明制备的AgI/LaFeO3/g-C3N4复合光催化剂的成功制备。The crystal structure of the AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst prepared by the present invention is analyzed by X-ray diffraction technique. The curve in Fig. 2 is the XRD pattern of AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst prepared by the present invention and AgI (JCPDS No. 09-0374), LaFeO 3 (JCPDS No. 37-1493), gC 3 N 4 ( JCPDSNo.87-1526) standard card. There are no diffraction peaks of other substances in the spectrum, indicating that the AgI/LaFeO 3 /gC 3 N 4 composite photocatalyst prepared by the present invention has been successfully prepared.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119181.9A CN110860302A (en) | 2019-11-15 | 2019-11-15 | A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119181.9A CN110860302A (en) | 2019-11-15 | 2019-11-15 | A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110860302A true CN110860302A (en) | 2020-03-06 |
Family
ID=69653913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911119181.9A Pending CN110860302A (en) | 2019-11-15 | 2019-11-15 | A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110860302A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111389425A (en) * | 2020-05-15 | 2020-07-10 | 福州大学 | A kind of perovskite photocatalytic material for removing water algae and preparation method thereof |
CN111514920A (en) * | 2020-05-27 | 2020-08-11 | 辽宁师范大学 | A kind of preparation method of AgBr/LaNiO3/g-C3N4 composite photocatalyst |
CN113413907A (en) * | 2021-07-19 | 2021-09-21 | 浙江省科创新材料研究院 | Compound near-infrared photocatalyst and preparation method and application thereof |
CN114100657A (en) * | 2021-11-23 | 2022-03-01 | 长春大学 | alpha-Fe2O3/LaFeO3/g-C3N4/MXene material and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102836734A (en) * | 2012-09-20 | 2012-12-26 | 华东理工大学 | A kind of method for preparing AgXg-C3N4 composite photocatalytic material |
CN106807411A (en) * | 2017-03-13 | 2017-06-09 | 常州大学 | A kind of preparation method of ferrous acid La doped silver bromide compound photocatalyst |
CN106824243A (en) * | 2017-01-25 | 2017-06-13 | 东南大学 | Z-type BiVO4‑Au/g‑C3N4The preparation of catalysis material and its photo catalytic reduction CO2Application |
CN106984352A (en) * | 2017-03-06 | 2017-07-28 | 常州大学 | A kind of preparation method of cadmium ferrite doped graphite phase carbon nitride composite photo-catalyst |
CN109453800A (en) * | 2018-11-28 | 2019-03-12 | 湖南大学 | All solid state double Z shaped ternary heterojunction photochemical catalyst of silver iodide/carbonitride/bismuth tungstate and its preparation method and application |
-
2019
- 2019-11-15 CN CN201911119181.9A patent/CN110860302A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102836734A (en) * | 2012-09-20 | 2012-12-26 | 华东理工大学 | A kind of method for preparing AgXg-C3N4 composite photocatalytic material |
CN106824243A (en) * | 2017-01-25 | 2017-06-13 | 东南大学 | Z-type BiVO4‑Au/g‑C3N4The preparation of catalysis material and its photo catalytic reduction CO2Application |
CN106984352A (en) * | 2017-03-06 | 2017-07-28 | 常州大学 | A kind of preparation method of cadmium ferrite doped graphite phase carbon nitride composite photo-catalyst |
CN106807411A (en) * | 2017-03-13 | 2017-06-09 | 常州大学 | A kind of preparation method of ferrous acid La doped silver bromide compound photocatalyst |
CN109453800A (en) * | 2018-11-28 | 2019-03-12 | 湖南大学 | All solid state double Z shaped ternary heterojunction photochemical catalyst of silver iodide/carbonitride/bismuth tungstate and its preparation method and application |
Non-Patent Citations (3)
Title |
---|
XIAOMING GAO等: ""A plasmonic Z-scheme three-component photocatalyst g-C3N4/Ag/LaFeO3 with enhanced visible-light photocatalytic activities"", 《OPTICAL MATERIALS》 * |
YANREN SONG等: ""Enhanced photocatalytic decomposition of an organic dye under visible light with a stable LaFeO3/AgBr heterostructured photocatalyst"", 《JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS》 * |
舒万艮著: "《有色金属精细化工产品生产与应用》", 31 December 1995 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111389425A (en) * | 2020-05-15 | 2020-07-10 | 福州大学 | A kind of perovskite photocatalytic material for removing water algae and preparation method thereof |
CN111389425B (en) * | 2020-05-15 | 2022-08-12 | 福州大学 | A kind of perovskite photocatalytic material for removing water algae and preparation method thereof |
CN111514920A (en) * | 2020-05-27 | 2020-08-11 | 辽宁师范大学 | A kind of preparation method of AgBr/LaNiO3/g-C3N4 composite photocatalyst |
CN113413907A (en) * | 2021-07-19 | 2021-09-21 | 浙江省科创新材料研究院 | Compound near-infrared photocatalyst and preparation method and application thereof |
CN113413907B (en) * | 2021-07-19 | 2022-05-03 | 浙江省科创新材料研究院 | A kind of complex near-infrared photocatalyst and preparation method and application thereof |
CN114100657A (en) * | 2021-11-23 | 2022-03-01 | 长春大学 | alpha-Fe2O3/LaFeO3/g-C3N4/MXene material and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110860302A (en) | A kind of preparation method of AgI/LaFeO3/g-C3N4 composite photocatalyst | |
CN108855140B (en) | CuS/Bi2WO6Heterojunction photocatalyst and preparation method and application thereof | |
CN107008467A (en) | The preparation method and purposes of a kind of heterojunction photocatalyst | |
CN110575837B (en) | A kind of InVO4/ZnIn2S4 photocatalyst, preparation method and application | |
CN101817562A (en) | Method for preparing hollow spherical Alpha-Fe2O3 by carbon-sugar microsphere template method | |
CN111871430B (en) | Preparation method and application of sulfur-indium-zinc/calcium-potassium niobate two-dimensional heterojunction composite photocatalytic material | |
CN108940255A (en) | A kind of zinc oxide catalysis material and the preparation method and application thereof | |
CN105964250B (en) | It is a kind of with visible light-responded Ag10Si4O13Photochemical catalyst and its preparation method and application | |
CN113877556B (en) | Indium oxyhydroxide/modified attapulgite photocatalytic composite material and its preparation method and application | |
CN107511154A (en) | A kind of sea urchin shape CeO2/Bi2S3Composite visible light catalyst and preparation method thereof | |
CN110605126A (en) | Preparation method and application of a hollow BiOCl@CeO2 nanocomposite material | |
CN107626331B (en) | Mn (manganese)3O4/BiOCl heterojunction photocatalyst and preparation method thereof | |
CN104815665A (en) | A kind of preparation method of Fe3+ doped nanometer ZnO photocatalyst | |
CN107233889B (en) | A kind of preparation method of Cu/ZnO photocatalyst | |
CN113441145A (en) | Preparation method of barium titanate/iron oxyhydroxide photocatalyst | |
CN109647510B (en) | Polyion liquid modified cerium-doped nano-zinc oxide photocatalyst and preparation method and application thereof | |
CN111450863A (en) | Cu2+Modification of g-C3N4-Bi2Fe4O9Heterojunction photocatalytic hydrogen production material and preparation method thereof | |
CN108554427B (en) | A kind of In2O3/BiOI semiconductor composite photocatalyst and its preparation method and use | |
CN109433244A (en) | A kind of Ag8W4O8/C3N4The preparation method and applications of visible light catalytic composite material | |
CN117427692A (en) | NH (NH) 2 -MIL-88B(Fe)/Bi 2 WO 6 Composite photocatalyst, preparation method and application thereof | |
CN114308072B (en) | Double-function catalyst for synchronously reducing water to produce hydrogen by photocatalytic oxidation of paraxylene, and preparation method and application thereof | |
CN113559856B (en) | Preparation method of barium titanate/silver iodate heterojunction photocatalyst | |
CN110624532B (en) | TiO 22-BiVO4-graphene ternary composite photocatalytic material and preparation method thereof | |
CN117005017A (en) | Anatase/brookite mesoporous titanium dioxide mixed crystal nanosheets and preparation methods and applications | |
CN109847781A (en) | A kind of preparation method and application of CdIn2S4/g-C3N4 composite photocatalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200306 |
|
WD01 | Invention patent application deemed withdrawn after publication |