CN110856795A - Separation device - Google Patents
Separation device Download PDFInfo
- Publication number
- CN110856795A CN110856795A CN201811193549.1A CN201811193549A CN110856795A CN 110856795 A CN110856795 A CN 110856795A CN 201811193549 A CN201811193549 A CN 201811193549A CN 110856795 A CN110856795 A CN 110856795A
- Authority
- CN
- China
- Prior art keywords
- separation device
- flow
- baffles
- channels
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 73
- 239000012528 membrane Substances 0.000 claims abstract description 98
- 239000012530 fluid Substances 0.000 claims abstract description 41
- 239000002775 capsule Substances 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 99
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000004088 simulation Methods 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/268—Drying gases or vapours by diffusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/80—Water
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种分离装置,且特别是有关于一种可分离出流体中的第一成分的分离装置。The present invention relates to a separation device, and more particularly, to a separation device that can separate out a first component of a fluid.
背景技术Background technique
分离装置的种类繁多,以除湿装置为例,其可将空气中的水气分离出来,以降低空气中的湿度。在习知的除湿装置中,空气会以扫流的方式(也就是沿着膜层表面方向流动的方式)经过膜层,此膜层能够使水气通过,但难以供空气通过,藉此来将水气分离于空气。目前,此类除湿装置会在膜层的另一侧会制作出负压的环境,而使水气倾向通过膜层而分离于空气。然而,要如何能够更进一步地增加水气通过膜层的比率,是本领域亟欲探讨的议题。There are many types of separation devices, such as dehumidifiers, which can separate the moisture in the air to reduce the humidity in the air. In the conventional dehumidification device, the air will pass through the membrane in a sweeping flow (that is, flow along the surface of the membrane). The water vapor is separated from the air. At present, such dehumidifiers will create a negative pressure environment on the other side of the membrane layer, so that the water vapor tends to pass through the membrane layer and be separated from the air. However, how to further increase the rate of water vapor passing through the membrane layer is an urgent topic to be discussed in the art.
发明内容SUMMARY OF THE INVENTION
本发明提供一种分离装置,能够增加流体的第一成分被分离出来的效率。The present invention provides a separation device capable of increasing the efficiency with which the first component of the fluid is separated.
本发明的一种分离装置,适于分离出流体中的第一成分。分离装置包括两个膜盒、多个膜层及流向调整结构。两膜盒叠置于彼此且于两膜盒之间形成入气口。各膜盒包括流道形成结构以及外框部。流道形成结构包括多个流道,其中这些流道部分地暴露于膜盒的相对两表面。外框部位于流道形成结构的外围,且包括抽气口,其中抽气口连通于这些流道。这些膜层,配置在两膜盒的这些表面的暴露出这些流道的部位上。流向调整结构配置于两膜盒之间。A separation device of the present invention is suitable for separating the first component in the fluid. The separation device includes two membrane boxes, a plurality of membrane layers and a flow direction adjustment structure. The two capsules are stacked on each other and an air inlet is formed between the two capsules. Each bellows includes a flow channel forming structure and an outer frame portion. The flow channel forming structure includes a plurality of flow channels, wherein the flow channels are partially exposed on opposite surfaces of the bellows. The outer frame portion is located on the periphery of the flow channel forming structure, and includes air suction ports, wherein the air suction ports are communicated with these flow channels. The membrane layers are disposed on the surfaces of the two capsules where the flow channels are exposed. The flow direction adjustment structure is arranged between the two membrane boxes.
在本发明的一实施例中,上述的流道形成结构与外框部为一体。In an embodiment of the present invention, the above-mentioned flow channel forming structure is integrated with the outer frame portion.
在本发明的一实施例中,上述的流向调整结构包括中空结构,中空结构包括开放的第一侧、相对于第一侧且封闭的第二侧以及朝向这些膜层的多个开孔。In an embodiment of the present invention, the flow direction adjustment structure includes a hollow structure, and the hollow structure includes an open first side, a closed second side opposite to the first side, and a plurality of openings facing the membrane layers.
在本发明的一实施例中,上述的中空结构包括相对的上孔板、下孔板及连接上孔板与下孔板的三个挡板。In an embodiment of the present invention, the above-mentioned hollow structure includes an opposite upper orifice plate, a lower orifice plate, and three baffles connecting the upper orifice plate and the lower orifice plate.
在本发明的一实施例中,上述的这些开孔靠近第一侧。In an embodiment of the present invention, the above-mentioned openings are close to the first side.
在本发明的一实施例中,上述的这些开孔的大小相同。In an embodiment of the present invention, the above-mentioned openings have the same size.
在本发明的一实施例中,上述的这些开孔的大小不同。In an embodiment of the present invention, the sizes of the above-mentioned openings are different.
在本发明的一实施例中,上述的这些开孔的大小沿着远离入气口的方向递增或递减5%至10%。In an embodiment of the present invention, the size of the above-mentioned openings increases or decreases by 5% to 10% along the direction away from the air inlet.
在本发明的一实施例中,上述的中空结构包括多个管体,各管体包括开放的第一端、相对于第一端且封闭的第二端以及朝向这些膜层的多个开孔。In an embodiment of the present invention, the above-mentioned hollow structure includes a plurality of tube bodies, each tube body includes an open first end, a closed second end opposite to the first end, and a plurality of openings facing the membrane layers .
在本发明的一实施例中,上述的流向调整结构还包括多个导流板,从这些管体外靠近这些开孔的部位往这些膜层的方向延伸。In an embodiment of the present invention, the above-mentioned flow direction adjustment structure further includes a plurality of deflectors, extending from the positions outside the tubes near the openings to the direction of the membrane layers.
在本发明的一实施例中,上述的这些管体的延伸方向不同于这些流道的延伸方向。In an embodiment of the present invention, the extending directions of the above-mentioned pipes are different from the extending directions of the flow channels.
在本发明的一实施例中,上述的流向调整结构包括多个入口与多个出口,这些出口分别错开于这些入口。In an embodiment of the present invention, the above-mentioned flow direction adjustment structure includes a plurality of inlets and a plurality of outlets, and the outlets are respectively staggered from the inlets.
在本发明的一实施例中,上述的流向调整结构包括多个肋条、多个第一挡板及多个第二挡板,这些肋条并排配置而形成多个子流道,这些肋条具有相对的第一端与第二端,这些第一挡板配置于这些肋条的这些第一端,这些第二挡板配置于这些子流道的多个末端,各第一挡板与各第二挡板的高度大于这些肋条的高度且等于两膜层之间的距离,各肋条具有相对的顶面与底面,这些肋条的这些顶面与邻近的膜层之间的空间连通于这些子流道,这些肋条的这些底面与邻近的膜层之间的空间连通于这些子流道。In an embodiment of the present invention, the above-mentioned flow direction adjustment structure includes a plurality of ribs, a plurality of first baffles and a plurality of second baffles, the ribs are arranged side by side to form a plurality of sub-flow channels, and the ribs have opposite first baffles and a plurality of second baffles. One end and the second end, the first baffles are arranged at the first ends of the ribs, the second baffles are arranged at the ends of the sub-channels, the first baffles and the second baffles are The height is greater than the height of the ribs and is equal to the distance between the two membrane layers, each rib has opposite top and bottom surfaces, the spaces between the top surfaces of the ribs and the adjacent membrane layers communicate with the sub-channels, the ribs The spaces between the bottom surfaces and the adjacent membrane layers communicate with the sub-channels.
在本发明的一实施例中,上述的这些肋条、这些第一挡板及这些第二挡板为一体。In an embodiment of the present invention, the above-mentioned ribs, the first baffles and the second baffles are integrated.
在本发明的一实施例中,上述的这些子流道的延伸方向不同于这些流道的延伸方向。In an embodiment of the present invention, the extension directions of the above-mentioned sub-channels are different from the extension directions of the flow channels.
在本发明的一实施例中,上述的流向调整结构包括多个扰流件。In an embodiment of the present invention, the above-mentioned flow direction adjustment structure includes a plurality of spoilers.
在本发明的一实施例中,上述的这些扰流件包括高度交错的多个挡片,这些挡片的排列方向不同于这些流道的延伸方向。In an embodiment of the present invention, the above-mentioned spoilers include a plurality of highly staggered baffles, and the arrangement direction of the baffles is different from the extending direction of the flow channels.
在本发明的一实施例中,上述的各挡片的高度为两膜盒之间的距离的20%至50%。In an embodiment of the present invention, the height of each of the above-mentioned blocking pieces is 20% to 50% of the distance between the two capsules.
在本发明的一实施例中,上述的各挡片以角度作配置,角度的范围在30度至90度之间。In an embodiment of the present invention, each of the above-mentioned blocking pieces is arranged at an angle, and the range of the angle is between 30 degrees and 90 degrees.
在本发明的一实施例中,上述的流道形成结构包括多个导流条,这些流道形成在这些导流条之间,这些膜层配置在这些导流条的多个上表面上或多个下表面上。In an embodiment of the present invention, the above-mentioned flow channel forming structure includes a plurality of flow guide bars, the flow channels are formed between the flow guide bars, and the film layers are disposed on a plurality of upper surfaces of the flow guide bars or multiple lower surfaces.
在本发明的一实施例中,上述的这些导流条延伸至外框部内靠近抽气口的部位。In an embodiment of the present invention, the above-mentioned guide strips extend to a position in the outer frame portion close to the air suction port.
在本发明的一实施例中,上述在这些导流条中,靠近抽气口的导流条的长度大于远离抽气口的导流条的长度。In an embodiment of the present invention, among the guide bars, the length of the guide bars close to the air suction port is greater than the length of the guide bars away from the air suction port.
在本发明的一实施例中,上述的流道形成结构包括波浪板结构,这些流道上下交替地形成在波浪板结构的上侧与下侧,波浪板结构具有多个顶端部及多个底端部,这些膜层配置在这些顶端部上或是这些底端部上。In an embodiment of the present invention, the above-mentioned flow channel forming structure includes a corrugated plate structure, and these flow channels are alternately formed up and down on the upper side and the lower side of the corrugated plate structure, and the corrugated plate structure has a plurality of top parts and a plurality of bottom parts ends, the layers are disposed on the top ends or on the bottom ends.
在本发明的一实施例中,上述的外框部包括位于流道形成结构的其中两侧的两凹陷区,两凹陷区与流道形成结构共同形成主流道,主流道的延伸方向不同于这些流道的延伸方向。In an embodiment of the present invention, the above-mentioned outer frame portion includes two concave regions located on both sides of the flow channel forming structure, the two concave regions and the flow channel forming structure together form a main flow channel, and the extension direction of the main flow channel is different from these The direction of extension of the runner.
在本发明的一实施例中,上述的分离装置更包括多个网状支撑层,各网状支撑层位于流道形成结构与对应的膜层之间。In an embodiment of the present invention, the above-mentioned separation device further includes a plurality of mesh-shaped support layers, and each mesh-shaped support layer is located between the flow channel forming structure and the corresponding membrane layer.
在本发明的一实施例中,上述的流体适于从入气口流入两膜盒之间,经过流向调整结构而使至少部分流体流向这些膜层,第一成分适于通过这些膜层且沿着这些流道流至抽气口。In an embodiment of the present invention, the above-mentioned fluid is adapted to flow between the two membrane boxes from the air inlet, and at least part of the fluid flows to the membrane layers through the flow direction adjustment structure, and the first component is adapted to pass through the membrane layers and along the These runners flow to the exhaust ports.
基于上述,本发明的分离装置将流向调整结构配置于两膜盒之间,流向调整结构可增加两膜盒之间的流体流向这些膜层的机率。如此一来,在流向这些膜层的流体中的第一成分适于通过这些膜层后沿着这些流道流至抽气口,而使第一成分被有效地分离出来。Based on the above, in the separation device of the present invention, the flow direction adjustment structure is arranged between the two bellows, and the flow direction adjustment structure can increase the probability of the fluid between the two bellows flowing to the membrane layers. In this way, the first component in the fluid flowing to the membrane layers is suitable for passing through the membrane layers and then flows to the suction port along the flow channels, so that the first component is effectively separated.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
附图说明Description of drawings
图1是依照本发明的一实施例的一种分离装置的示意图。FIG. 1 is a schematic diagram of a separation device according to an embodiment of the present invention.
图2是图1的分离装置的爆炸示意图。FIG. 2 is an exploded schematic view of the separation device of FIG. 1 .
图3是依照本发明的另一实施例的一种分离装置的示意图。Figure 3 is a schematic diagram of a separation device according to another embodiment of the present invention.
图4是图3的分离装置的爆炸示意图。FIG. 4 is an exploded schematic view of the separation device of FIG. 3 .
图5是图3的分离装置的流向调整结构的局部放大示意图。FIG. 5 is a partially enlarged schematic view of the flow direction adjustment structure of the separation device of FIG. 3 .
图6是图3的分离装置沿着A-A线段剖面的示意图。FIG. 6 is a schematic view of the separation device of FIG. 3 in section along the line A-A.
图7A与图7B分别是图4的膜盒沿着B-B线段剖面的不同视角示意图。FIG. 7A and FIG. 7B are schematic diagrams of different viewing angles of the bellows of FIG. 4 along the line segment B-B.
图8是依照本发明的另一实施例的一种流道形成结构的示意图。FIG. 8 is a schematic diagram of a flow channel forming structure according to another embodiment of the present invention.
图9与图10是依照本发明的另一实施例的一种流向调整结构的示意图。9 and 10 are schematic diagrams of a flow direction adjustment structure according to another embodiment of the present invention.
图11是依照本发明的另一实施例的一种流向调整结构的示意图。FIG. 11 is a schematic diagram of a flow direction adjustment structure according to another embodiment of the present invention.
图12是依照本发明的另一实施例的一种流向调整结构的示意图。FIG. 12 is a schematic diagram of a flow direction adjustment structure according to another embodiment of the present invention.
图13是图12的流向调整结构沿着C-C线段剖面的示意图。FIG. 13 is a schematic diagram of a cross section of the flow direction adjustment structure of FIG. 12 along the line C-C.
符号说明:Symbol Description:
θ:角度θ: angle
F:流体F: fluid
F1:第一成分F1: First ingredient
H1、H2:高度H1, H2: height
10、10a:分离装置10, 10a: Separation device
12:入气口12: Air inlet
14:主流道14: Main Street
100、100a:膜盒100, 100a: Capsule
110、110’:流道形成结构110, 110': flow channel forming structure
111:流道111: runner
112:导流条112: Guide strip
113:波浪板结构113: Wave plate structure
114:顶端部114: Top part
115:底端部115: Bottom end
120:外框部120: Outer frame part
122:抽气口122: exhaust port
124:凹陷区124: Recessed area
200:膜层200: film layer
210:网状支撑层210: Mesh Support Layer
300、300b、300c、300d:流向调整结构300, 300b, 300c, 300d: Flow direction adjustment structure
310:管体310: Tube body
311:第一端311: First End
312:第二端312: Second End
313:开孔313: Opening
314:导流板314: Deflector
320:肋条320: Ribs
321:第一端321: First End
322:第二端322: Second End
323:顶面323: Top Surface
324:底面324: Underside
325:子流道325: Sub runner
326:第一挡板326: First bezel
327:第二挡板327: Second bezel
328:入口328: Entrance
329:出口329: Export
330:扰流件330: spoiler
331:框架331: Frames
332、334:挡片332, 334: Baffles
335:第一侧335: First Side
337:第二侧337: Second Side
340:上孔板340: Upper Orifice Plate
350:下孔板350: Lower orifice plate
342、352:开孔342, 352: Opening
360:挡板360: Bezel
具体实施方式Detailed ways
图1是依照本发明的一实施例的一种分离装置的示意图。图2是图1的分离装置的爆炸示意图。请参阅图1与图2,本实施例的分离装置10适于分离出流体F中的第一成分F1。举例来说,本实施例的分离装置10例如是应用在可以分离出空气中的水气的除湿装置。分离装置10包括多个膜盒100、多个膜层200及流向调整结构300。在本实施例中,膜盒100的数量以两个作为示意,但不以此为限制。两个膜盒100叠置于彼此,入气口12形成于两膜盒100之间。在本实施例中,膜层200例如是可让水气通过但空气难以通过的膜层200。空气可以从入气口12进入分离装置10之后,空气中的水气通过膜层200,而使得出口329的空气具有较低的湿度。当然,膜层200的种类以及所要分离的第一成分F1的种类并不以此为限制。膜层200又称选择性膜,膜层200可为例如中国台湾发明专利1565517所揭露的水分离复合膜、其它含有氧化石墨烯的复合膜、沸石膜、高分子膜sulfonated poly(ether ether ketone)(SPEEK)、polyether block amide(1074)、或其它亲水性高分子与盐类组成的复合膜(聚乙烯醇PVA+氯化锂LiCl)。当然,膜层200的种类不以上述为限制。FIG. 1 is a schematic diagram of a separation device according to an embodiment of the present invention. FIG. 2 is an exploded schematic view of the separation device of FIG. 1 . Please refer to FIG. 1 and FIG. 2 , the
如图2所见,在本实施例中,各膜盒100包括位于中间部位的流道形成结构110及位于周围的外框部120。流道形成结构110具有多个流道111。这些流道111部分地暴露于膜盒100的相对两表面。在本实施例中,流道形成结构110包括多个导流条112,这些流道111形成在这些导流条112之间,但流道形成结构110的形式不限于此。外框部120包括至少一抽气口122。在本实施例中,外框部120包括多个抽气口122,且这些抽气口122连通于这些流道111。As shown in FIG. 2 , in this embodiment, each
这些膜层200配置在两膜盒100的这些上下表面的暴露出这些流道111的部位上。换句话说,这些膜层200遮蔽了这些流道111被暴露出的部位。如图2所示,在本实施例中,分离装置10的膜层200数量以四个为例,这四个膜层200分别配置在两个膜盒100的两流道形成结构110的上侧与下侧。更明确地说,这些膜层200配置在这些导流条112的多个上表面上或多个下表面上。在本实施例中,分离装置10更包括多个网状支撑层210,各网状支撑层210位于其中一个流道形成结构110与对应的膜层200之间。因此,在本实施例中,各膜盒100与其所对应的膜层200与网状支撑层210的组合会呈现由上至下是膜层200、网状支撑层210、膜盒100、网状支撑层210、膜层200的排列。网状支撑层210可为单层、双层或多层的不锈钢烧结网,此烧结网由不锈钢丝缠绕再热压烧结而成,开孔率大于50%,可用以支撑膜层200于抽真空时不塌陷。当然,网状支撑层210的材料不以此为限制。The membrane layers 200 are disposed on the upper and lower surfaces of the two
分离装置10在运作时,各膜盒100会在抽气口122处抽真空,流道111内的气体会被抽出,而呈负压。此时,膜层200会往流道形成结构110的方向紧靠,网状支撑层210用来支撑膜层200而可避免膜层200塌陷。When the
此外,在本实施例中,膜层200叠置于网状支撑层210上时,膜层200的面积可大于网状支撑层210的面积,使得膜层200的四周可透过胶合等方式密封于流道形成结构110上。如此可确保膜层200的四周不会泄气,让流体F中的第一成分F1(例如是水气)只能穿过这些膜层200进入流道111。当然,在其他实施例中,膜层200与网状支撑层210的四周也可透过扣合等其他方式密封于流道形成结构110上。膜层200与网状支撑层210密封于流道形成结构110上的方式不以此为限制。In addition, in this embodiment, when the
在本实施例中,由于流道形成结构110与外框部120为一体的结构,膜盒100不会从流道形成结构110与外框部120之间的接缝处漏气,而可维持在良好的负压状态。此外,由于流道形成结构110与外框部120为一体,也不需额外组装,可减少制作工序。当然,在其他实施例中,流道形成结构110与外框部120也可以是非一体成形,也就是说,流道形成结构110与外框部120也可以是分开的两件,再透过组装或粘合的方式固定在一起。In this embodiment, due to the integrated structure of the flow
在本实施例中,外框部120包括位于流道形成结构110的其中两侧的两凹陷区124,两凹陷区124与流道形成结构110共同形成主流道14。在本实施例中,主流道14的延伸方向不同于这些流道111的延伸方向(例如是垂直),但不以此为限。In this embodiment, the
此外,本实施例中,流向调整结构300配置于位在两流道形成结构110的两内侧上的这些膜层200之间。从入气口12流入的流体F适于经过流向调整结构300而使至少部分流体F流向这些膜层200。此时,由于流道111处成负压,流体F中的第一成分F1(例如是水气)便会通过这些膜层且沿着这些流道111流至抽气口122,而剩下的空气就会继续流动而离开分离装置10。也就是说,本实施例的分离装置10透过流向调整结构300来增加流体F流向上下两膜层200的机率。In addition, in this embodiment, the flow
图3是依照本发明的另一实施例的一种分离装置的示意图。图4是图3的分离装置的爆炸示意图。请参阅图3与图4,在本实施例的分离装置10a中,膜盒100a的形式不同于前一实施例的膜盒100,后续将会对此进行说明。本实施例的分离装置10a同样是透过在两膜盒100a之间配置流向调整结构300,从入气口12流入的流体F在经过流向调整结构300之后更容易地流向这些膜层200,而增加第一成分F1通过膜层200的机率。下面将对流向调整结构300进行详细说明。Figure 3 is a schematic diagram of a separation device according to another embodiment of the present invention. FIG. 4 is an exploded schematic view of the separation device of FIG. 3 . Please refer to FIG. 3 and FIG. 4 , in the
图5是图3的分离装置的流向调整结构的局部放大示意图。图6是图3的分离装置沿着A-A线段剖面的示意图。请参阅图5与图6,在本实施例中,流向调整结构300包括中空结构,在本实施例中,中空结构例如是包括多个管体310。当然,中空结构的种类不以此为限制。流体F在进入入气口12之后,进入这些管体310,且沿着管体310的延伸方向流动。在本实施例中,管体310的延伸方向不同于这些流道111的延伸方向,但不以此为限。FIG. 5 is a partially enlarged schematic view of the flow direction adjustment structure of the separation device of FIG. 3 . FIG. 6 is a schematic view of the separation device of FIG. 3 in section along the line A-A. Referring to FIG. 5 and FIG. 6 , in this embodiment, the flow
在本实施例中,各管体310包括开放的第一端311、相对于第一端311且封闭的第二端312以及朝向这些膜层200的多个开孔313。这些管体310的这些开孔313靠近第一端311。在本实施例中,从入气口12流入的流体F适于从这些第一端311进入这些管体310,并从这些开孔313喷出而流向这些膜层200,而增加流体F流向上下两膜层200的机率。In this embodiment, each
经模拟,若管体310的长度以20公分为例,管体310从第一端311开始每个1公分的距离在朝向各膜层200方向上设置开孔313,依序将具有1个开孔313的管体310(其开孔313位于距离第一端311的1公分处)、2个开孔313的管体310(其两开孔313位于距离第一端311的1公分与2公分处)、…、具有10个开孔313的管体310分别进行模拟。管体310所具有的开孔313数量在1至2个时,质传倍率可维持在2以上,且压降可维持在800帕以上,而具有较佳的效果。因此,在本实施例中,管体310在朝向各膜层200方向的开孔313数量为两个,且开孔313的位置在靠近第一端311不超过5公分处,例如是1公分与3公分处。经模拟,流体F从开孔313处喷出的速度可维持在20公尺/秒至30公尺/秒之间。After simulation, if the length of the
此外,在本实施例中,流向调整结构300还包括多个导流板314,沿着垂直于管体310的延伸方向配置于管体310外侧,且从这些管体310外靠近这些开孔313的部位往这些膜层200的方向上下延伸,用以导引流体F往膜层200的方向流去。经模拟,导流板314的配置可有效提升水气的质传倍率。In addition, in the present embodiment, the flow
要说明的是,若在具有两个开孔313的管体310上且靠近第一端311的上下两侧配置2个、4个、6个与8个导流板314后去模拟流体F状态,导流板314数量是4个以上时,质传倍率可维持在2以上,其中8个导流板314的质传倍率为2.45,具有最佳的质传倍率。因此,在本实施例中,管体310的上侧与下侧分别设置有8个导流板314。模拟结果,在具有流向调整结构300的分离装置10中,膜层200的抓水量(质传倍率)可提升2.5倍至3倍。It should be noted that if 2, 4, 6 and 8
值得一提的是,本实施例的分离装置10a的膜盒100a与前一实施例的膜盒100略有不同。其中一个不同之处在于,请同时参阅图2与图4可知,在本实施例的膜盒100a中,外框部120不具有位于流道形成结构110的上下两侧的两凹陷区124(标示于图2),也就是说,膜盒100a的外框部120也可以不具有高度差。It is worth mentioning that the
另一个不同之处在于,图7A与图7B分别是图4的膜盒沿着B-B线段剖面的不同视角示意图。请参阅图7A与图7B,在本实施例的膜盒100a中,流道形成结构110的这些导流条112延伸至外框部120内靠近抽气口122的部位,而增加外框部120在靠近抽气口122的部位的结构强度。此外,在这些导流条112中,靠近抽气口122的导流条112的长度大于远离抽气口122的导流条112的长度。也就是说,外框部120在越靠近抽气口122处的结构强度越好,以降低抽真空时,外框部120的上下板塌陷的机率。另外,外框部120在靠近抽气口122处具有斜向抽气口122的壁面,以导引抽真空时的气流。Another difference is that FIG. 7A and FIG. 7B are schematic diagrams of different viewing angles of the bellows of FIG. 4 along the section of the B-B line segment, respectively. Referring to FIGS. 7A and 7B , in the
当然,虽然上述的流道形成结构110是由多个导流条112并排而形成,但流道形成结构110的形式不限于此。图8是依照本发明的另一实施例的一种流道形成结构的侧面示意图。请参阅图8,在本实施例中,流道形成结构110’也可以是包括波浪板结构113,这些流道111上下交替地形成在波浪板结构113的上侧与下侧,波浪板结构113具有多个顶端部114及多个底端部115,这些膜层200与网状支撑层210(绘示于图2)可以共同配置在这些顶端部114上或是这些底端部115上。Of course, although the above-mentioned flow
下面介绍其他种流向调整结构300b、300c、300d。图9与图10是依照本发明的另一实施例的一种流向调整结构的示意图。请参阅图9与图10,在本实施例中,流向调整结构300b包括多个肋条320、多个第一挡板326及多个第二挡板327。在本实施例中,这些肋条320、这些第一挡板326及这些第二挡板327为一体,但也可以是分开的构件。这些肋条320并排配置而形成多个子流道325。在本实施例中,这些子流道325的延伸方向不同于这些流道111的延伸方向,但不以此为限。The other flow
这些肋条320具有相对的第一端321与第二端322,这些第一挡板326配置于这些肋条320的这些第一端321,这些第二挡板327配置于这些子流道325的多个末端。也就是说,第一挡板326与第二挡板327错开配置。在图10可见,各第一挡板326与各第二挡板327的高度大于这些肋条320的高度且等于两膜层200之间的距离。多个入口328形成在流向调整结构300b的这些第一挡板326、上下两膜层200之间,且多个出口329形成在这些第二挡板327与肋条320的第二端322、上下两膜层200之间。这些出口329分别错开于这些入口328。The ribs 320 have opposite first ends 321 and second ends 322 , the
各肋条320具有相对的顶面323与底面324,这些肋条320的这些顶面323与邻近的膜层200之间的空间会连通于这些子流道325,这些肋条320的这些底面324与邻近的膜层200之间的空间会连通于这些子流道325。因此,流体F进入流向调整结构300b的这些入口328之后,会在这些子流道325、这些肋条320的这些顶面323与邻近的膜层200之间的空间、这些肋条320的这些底面324与邻近的膜层200之间的空间流动,而增加流体F流向上下两膜层200的机率。Each rib 320 has an opposite
图11是依照本发明的另一实施例的一种流向调整结构的示意图。请参阅图11,在本实施例中,流向调整结构300c包括多个扰流件330,流体F适于被这些扰流件330扰动至多个方向,而使部分的流体F流向这些膜层200。在本实施例中,这些扰流件330包括高度交错的多个挡片332、334,这些挡片332、334沿着一方向排列并固定于两框架331之间。在本实施例中,由于这些挡片332、334上下交错地配置,流体F在通过流向调整结构300c时会因为这些挡片332、334而往上下流动,增加流体F流向上下两膜层200的机率。FIG. 11 is a schematic diagram of a flow direction adjustment structure according to another embodiment of the present invention. Referring to FIG. 11 , in this embodiment, the flow direction adjustment structure 300 c includes a plurality of spoilers 330 , and the fluid F is adapted to be disturbed in multiple directions by the spoilers 330 , so that part of the fluid F flows to the membrane layers 200 . In this embodiment, the spoilers 330 include a plurality of blocking pieces 332 , 334 that are staggered in height, and the blocking pieces 332 , 334 are arranged along one direction and fixed between the two frames 331 . In the present embodiment, since the baffles 332 and 334 are arranged alternately up and down, the fluid F will flow up and down because of the baffles 332 and 334 when passing through the flow direction adjustment structure 300 c , which increases the flow of the fluid F to the upper and lower membrane layers 200 . chance.
在本实施例中,框架331的高度为H1,由于当本实施例的流向调整结构300c应用于分离装置时,两膜盒100a(标示于图4)会被流向调整结构300c的框架331隔开,因此,两膜盒100a之间的距离接近于H1。又可以说,流体F在通过两膜盒100a之间时的整体高度接近于H1。在本实施例中,挡片332、334的高度为H2,则H2为H1的20%至50%。也就是说,在本实施例中,挡片332、334的高度H2为流体F在通过两膜盒100a之间时的整体高度的20%至50%。这样的设计可使得流体F在通过两膜盒100a之间时仍保有良好的流动性且可随流向调整结构300c而调整流向。In this embodiment, the height of the frame 331 is H1, because when the flow direction adjustment structure 300c of this embodiment is applied to the separation device, the two
另外,在本实施例中,挡片332、334的延伸方向与框架331的平面之间夹有角度θ。在本实施例中,挡片332、334的延伸方向例如是垂直于框架331的平面,而使得两者的角度θ为90度。但在其他实施例中,挡片332、334的延伸方向与框架331的平面之间的角度θ范围可在30度至90度之间,例如是75度,藉此可增加流体F流向上下两膜层200的机率。In addition, in this embodiment, an angle θ is formed between the extending direction of the blocking pieces 332 and 334 and the plane of the frame 331 . In this embodiment, the extending directions of the blocking pieces 332 and 334 are, for example, perpendicular to the plane of the frame 331 , so that the angle θ between them is 90 degrees. However, in other embodiments, the angle θ between the extending directions of the baffles 332 and 334 and the plane of the frame 331 may be in the range of 30 degrees to 90 degrees, for example, 75 degrees, thereby increasing the flow of the fluid F up and down two times. The probability of
本实施例的流向调整结构300c可以藉由调整挡片332、334的本身角度、本身高度、与流体F在通过两膜盒100a之间时的整体高度之间的比例关系、挡片332、334与上方或下方的膜层200之间的间隙、相邻的两挡片332、334之间的间距等参数来改变流体F的流动方向,而增加流体F流向上下两膜层200的机率。经模拟,分离装置若配置本实施例的流向调整结构300c可使得水气的质传倍率增加为2至4倍,而有效提升分离装置的抓水量。当然,在其他实施例中,扰流件330的种类不以此为限制,扰流件330也可以是转子或是其他结构。The flow direction adjustment structure 300c of this embodiment can adjust the proportional relationship between the angle and height of the baffles 332, 334 and the overall height of the fluid F when passing between the two
图12是依照本发明的另一实施例的一种流向调整结构的示意图。图13是图12的流向调整结构沿着C-C线段剖面的示意图。请参阅图12与图13,在本实施例中,流向调整结构300d为中空结构,由图13可见,流向调整结构300d具有开放的第一侧335、相对于第一侧335且封闭的第二侧337。更明确地说,由图12可见,流向调整结构300d包括相对的上孔板340、下孔板350及连接上孔板340与下孔板350的多个挡板360。在本实施例中,上孔板340与下孔板350平行地配置,上孔板340与下孔板350分别具有多个开孔342、352。挡板360连接上孔板340与下孔板350之间在左右两侧与第二侧337的间隙,并使第一侧335开放。从入气口12流入的流体适于从第一侧335进入中空结构,并从这些开孔342、352喷出而流向上下方的这些膜层200(标示于图2)。FIG. 12 is a schematic diagram of a flow direction adjustment structure according to another embodiment of the present invention. FIG. 13 is a schematic diagram of a cross section of the flow direction adjustment structure of FIG. 12 along the line C-C. Referring to FIGS. 12 and 13 , in this embodiment, the flow direction adjustment structure 300d is a hollow structure. As can be seen from FIG. 13 , the flow direction adjustment structure 300d has an open first side 335 and a closed second side 335 opposite to the first side 335 .
在本实施例中,为了制造方便,上孔板340与下孔板350的形式可以相同。也就是说,上孔板340的开孔342的位置与数量对应于下孔板350的开孔352的位置与数量。当然,上孔板340与下孔板350的形式也可以不同,也就是,上孔板340的开孔342的位置与数量也可以不对应于下孔板350的开孔352的位置与数量。In this embodiment, for the convenience of manufacture, the
此外,在本实施例中,上孔板340的这些开孔342的大小相同,且下孔板350的这些开孔352的大小相同。开孔342、352的直径例如是在0.05毫米至6毫米之间。例如,在一实施例中,开孔342、352均是0.1毫米。在一实施例中,开孔342、352均是0.2毫米。在一实施例中,开孔342、352均是1毫米。或者,在一实施例中,开孔342、352均是4毫米。当然,开孔342、352的尺寸不以此为限制。上孔板340与下孔板350的这些开孔342、352可以是均匀地分布,也可以是集中在靠近第一侧335的部位。In addition, in this embodiment, the
在其他实施例中,上孔板340的这些开孔342的大小也可以不相同,下孔板350的这些开孔352的大小也可以不相同。举例而言,上孔板340的这些开孔342的大小可以是沿着远离入气口12的方向(也就是从第一侧335往第二侧337的方向)递增5%至10%。例如,若上孔板340的最靠近第一侧335的开孔342的孔径是1毫米,从第一侧335往第二侧337的方向,每个开孔342的孔径增加0.3毫米,直到上孔板340的最靠近第二侧337的开孔342的孔径是4毫米。In other embodiments, the sizes of the
或者,上孔板340的这些开孔342的大小也可以是沿着远离入气口12的方向(也就是从第一侧335往第二侧337的方向)递减5%至10%。例如,上孔板340的最靠近第一侧335的开孔342的孔径是4毫米,从第一侧335往第二侧337的方向,每个开孔342的孔径减少0.3毫米,直到上孔板340的最靠近第二侧337的开孔342的孔径是1毫米。Alternatively, the size of the
同样地,下孔板350的这些开孔352的大小可以是沿着远离入气口12的方向(也就是从第一侧335往第二侧337的方向)递增5%至10%,或者,下孔板350的这些开孔352的大小也可以是沿着远离入气口12的方向(也就是从第一侧335往第二侧337的方向)递减5%至10%。Likewise, the size of the
经模拟,分离装置若配置本实施例的流向调整结构300d可使得水气的质传倍率增加为2至3倍,而有效提升分离装置的抓水量。Through simulation, if the separation device is equipped with the flow direction adjustment structure 300d of this embodiment, the mass transfer rate of water vapor can be increased by 2 to 3 times, and the water capture amount of the separation device can be effectively improved.
综上所述,本发明的分离装置将流向调整结构配置于两膜盒之间,流向调整结构可增加两膜盒之间的流体流向这些膜层的机率。如此一来,在流向这些膜层的流体中的第一成分适于通过这些膜层后沿着这些流道流至抽气口,而使第一成分被有效地分离出来。流向调整结构可以是由具有开孔的上下孔板所构成的中空结构,也可以是由具有开孔的管体所构成的中空结构,也可以是导流结构或是扰流件。经模拟,本发明的分离装置由于具有流向调整结构,而使得水气的质传倍率提升2倍至4倍,而有效提升分离装置的抓水量。To sum up, in the separation device of the present invention, the flow direction adjustment structure is arranged between the two bellows, and the flow direction adjustment structure can increase the probability of the fluid between the two bellows flowing to the membrane layers. In this way, the first component in the fluid flowing to the membrane layers is suitable for passing through the membrane layers and then flows to the suction port along the flow channels, so that the first component is effectively separated. The flow direction adjustment structure can be a hollow structure formed by upper and lower orifice plates with openings, a hollow structure formed by a pipe body with openings, or a flow guiding structure or a spoiler. Through simulation, the separation device of the present invention has a flow direction adjustment structure, which increases the mass transfer rate of water vapor by 2 to 4 times, and effectively increases the water capture amount of the separation device.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当以权利要求书所界定的范围为准。Although the present invention has been disclosed as above with examples, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the claims.
Claims (26)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW107129609A TWI673097B (en) | 2018-08-24 | 2018-08-24 | Separation device |
TW107129609 | 2018-08-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110856795A true CN110856795A (en) | 2020-03-03 |
CN110856795B CN110856795B (en) | 2022-02-01 |
Family
ID=69023484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811193549.1A Active CN110856795B (en) | 2018-08-24 | 2018-10-12 | Separating device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110856795B (en) |
TW (1) | TWI673097B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024233247A1 (en) * | 2023-05-05 | 2024-11-14 | Baltimore Aircoil Company, Inc. | Sheet membrane apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3398091A (en) * | 1966-08-09 | 1968-08-20 | Ionics | Membrane separation apparatus and process |
US20040112349A1 (en) * | 2002-12-17 | 2004-06-17 | Livingston Brian Paul | Separation membrane cartridge with bypass |
CN105188890A (en) * | 2013-02-22 | 2015-12-23 | 巴特尔纪念研究院 | Membrane device and process for mass exchange, separation, and filtration |
CN106582216A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔股份有限公司 | Air separation apparatus and refrigerating freezing apparatus |
-
2018
- 2018-08-24 TW TW107129609A patent/TWI673097B/en active
- 2018-10-12 CN CN201811193549.1A patent/CN110856795B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3398091A (en) * | 1966-08-09 | 1968-08-20 | Ionics | Membrane separation apparatus and process |
US20040112349A1 (en) * | 2002-12-17 | 2004-06-17 | Livingston Brian Paul | Separation membrane cartridge with bypass |
CN105188890A (en) * | 2013-02-22 | 2015-12-23 | 巴特尔纪念研究院 | Membrane device and process for mass exchange, separation, and filtration |
CN106582216A (en) * | 2016-12-02 | 2017-04-26 | 青岛海尔股份有限公司 | Air separation apparatus and refrigerating freezing apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024233247A1 (en) * | 2023-05-05 | 2024-11-14 | Baltimore Aircoil Company, Inc. | Sheet membrane apparatus |
Also Published As
Publication number | Publication date |
---|---|
TW202009049A (en) | 2020-03-01 |
CN110856795B (en) | 2022-02-01 |
TWI673097B (en) | 2019-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10317095B2 (en) | Counter-flow energy recovery ventilator (ERV) core | |
JP4999982B2 (en) | Heat exchanger and dehumidifier using the same | |
JPH0313515B2 (en) | ||
KR20080060932A (en) | Heat exchanger of ventilation system | |
CN115917236A (en) | Fog dispersal device and cooling tower | |
CN110856795A (en) | Separation device | |
CN110462327B (en) | Total heat exchange element, method for manufacturing total heat exchange element, and total heat exchange device | |
CN113790619B (en) | Falling film evaporator | |
KR100709233B1 (en) | Heat / moisture exchanger | |
EP3314189A1 (en) | Microtube heat exchanger | |
CN110755870A (en) | A condensing cooling and dehumidifying cyclone gas-water separator | |
JP7399293B2 (en) | Heat exchange elements and heat exchange type ventilation equipment | |
CN214552256U (en) | A vane mist eliminator | |
CN115997101B (en) | Heat exchange element and heat exchange ventilator | |
JP7164571B2 (en) | Industrial equipment and cyclone exhaust system | |
CN116272135A (en) | A new type of gas-liquid separation and defogging method and device | |
CN210495828U (en) | Fin type gas separation membrane assembly | |
KR101189950B1 (en) | Ventilating apparatus and heat exchanger thereof | |
JPS6134062Y2 (en) | ||
CN118649477B (en) | Gas-liquid separation device and gas-liquid separation method | |
CN222918287U (en) | Water separator and cooler | |
CN203893388U (en) | Power recycling type tubular silencer | |
CN102893713B (en) | Method and device of heat transport | |
TWM460251U (en) | Dehumidifying wheel type dehumidifier and heat exchanger thereof | |
CN117781450A (en) | Total heat exchange core and fresh air handling unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |