[go: up one dir, main page]

CN110845635B - 一种两性多糖吸水材料的制备方法 - Google Patents

一种两性多糖吸水材料的制备方法 Download PDF

Info

Publication number
CN110845635B
CN110845635B CN201911203303.2A CN201911203303A CN110845635B CN 110845635 B CN110845635 B CN 110845635B CN 201911203303 A CN201911203303 A CN 201911203303A CN 110845635 B CN110845635 B CN 110845635B
Authority
CN
China
Prior art keywords
polysaccharide
tamarind
microspheres
amphoteric
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911203303.2A
Other languages
English (en)
Other versions
CN110845635A (zh
Inventor
刘俊
成亮
徐来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Hazeno Biological Environmental Protection Technology Co ltd
Original Assignee
Jiangsu Hazeno Biological Environmental Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Hazeno Biological Environmental Protection Technology Co ltd filed Critical Jiangsu Hazeno Biological Environmental Protection Technology Co ltd
Priority to CN201911203303.2A priority Critical patent/CN110845635B/zh
Publication of CN110845635A publication Critical patent/CN110845635A/zh
Application granted granted Critical
Publication of CN110845635B publication Critical patent/CN110845635B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及高分子吸水材料领域,公开了一种两性多糖吸水材料的制备方法,包括以下步骤:将罗望子多糖用TEMPO‑NaBr‑NaClO体系催化氧化,引入羧基;将氧化后的罗望子多糖与季铵盐醚化,引入季铵盐基团,形成两性罗望子多糖;在两性罗望子多糖中加入戊二醛交联反应,得胶粘液;将胶粘液经离子沉淀制成微球,烘干即得。本发明的优点在于:采用纯天然且成本低廉的食品加工废弃物罗望子多糖为原料,克服了原料环保和成本方面遇到的瓶颈;采用植物多糖修饰方法,解决了制备单体或降解产物有毒有害的缺陷;在罗望子多糖分子结构上定点定量引入羧基、季铵盐基团,交联为网状结构,并制成微球,克服了其他高吸水材料吸水机能单一,吸水耐盐率差的缺陷。

Description

一种两性多糖吸水材料的制备方法
技术领域
本发明属于高分子吸水材料领域,具体涉及一种两性多糖吸水材料的制备方法。
背景技术
高吸水材料最早于20世纪50年代由美国Goodrich公司和农业部北方研究所研发成功,其吸水倍率为自身重量的几十倍到数千倍。根据原料不同,主要分为合成树脂类和天然及其改性高分子类高吸水材料。合成树脂类主要包括聚丙烯酸盐系列,如聚丙烯酰胺、丙烯酸与丙烯酰胺共聚物、聚丙烯腈水解产物等;聚乙烯醇系类,如交联聚乙烯醇、聚乙烯醇-酸酐交联共聚物、聚乙烯醇冻融凝胶等;聚氧乙烯系列,如聚醚类和氧化烯烃类。由于合成树脂类高吸水材料受到石化资源日益匮乏、生物降解性能差、降解产物及合成单体有毒等对生态环境的不利影响,天然及其改性高分子类高吸水材料,如淀粉系、纤维素系、蛋白质系,其他碳水化合物系,以其绿色环保、可生物降解、无毒无害、来源广泛、价格低廉等优势日趋受到人们的重视,被广泛应用于农林园艺,如抗旱保水、土壤改良、防风固沙、水土保持等;医疗卫生,如人工玻璃体、人工角膜、医疗缓释等;日用化工,如美容化妆、保水保湿、芳香吸附等。然而,现有基于淀粉、纤维素、蛋白质等的高吸水材料,沿用了合成树脂吸水剂的工艺,如淀粉或纤维素接枝丙烯腈、丙烯酰胺、丙烯酸酯等,面临着成本高、改性不均一、吸水功能基团单一、接枝共聚单体有毒害、耐盐性差(纯水与盐水吸水倍率相差巨大)等缺陷与不足。
罗望子多糖是一种从食品加工废弃物罗望子(又称酸角)种子中提取得到的植物多糖,具有成本低廉、分子结构高度分支、易于生物降解等优点。尝试采用成本低廉的罗望子多糖原料,制取吸水材料。
发明内容
为克服上述技术问题,本发明提供了一种以罗望子多糖为原料经过改性的两性多糖吸水材料的制备方法。
为达到上述目的,本发明是通过以下的技术方案来实现的。
一种两性多糖吸水材料的制备方法,包括以下步骤:
1)将罗望子多糖用TEMPO-NaBr-NaClO体系催化氧化,引入羧基;
2)将步骤1)氧化后的罗望子多糖与季铵盐醚化,引入季铵盐基团,形成两性罗望子多糖;
3)在步骤2)两性罗望子多糖中加入戊二醛交联反应,得胶粘液;
4)将步骤3)制得的得胶粘液经离子沉淀,烘干即得。
进一步地所述步骤1)中罗望子多糖、TEMPO、NaBr、NaClO、季铵盐、戊二醛的重量比为1000:10~12:50~60:400~550:200~250:50。
进一步地所述步骤1)将罗望子多糖溶于10倍重量的去离子水中,加入TEMPO和NaBr,搅拌下加入次氯酸钠,调节并保持溶液pH为9.5,反应1~2小时。由于TEMPO的空间位阻效应,仅选择性地将伯羟基氧化为羧基。
进一步地所述步骤1)反应完成后加入8~10倍TEMPO重量的异丙醇终止反应。消耗过量的次氯酸钠,避免继续氧化多糖。
进一步地所述步骤2)中在氧化后的罗望子多糖溶液中加入1/2罗望子多糖重量的氢氧化钠搅拌30~60分钟,再加入季铵盐,升温至60℃搅拌反应3~4小时。季铵盐基团受到空间位阻以及多糖分子上醇羟基的活性影响,一般认为在多糖支链的伯羟基上引入较多。
进一步地所述步骤3)中将两性罗望子多糖溶液调节pH至中性,加入戊二醛,50℃交联2~3小时,得胶粘液。
进一步地所述步骤4)中将胶粘液制成直径2-5毫米微球,放入盛有5%氯化钙乙醇水溶液的离子沉淀池中浸泡固化,将微球取出,先用乙醇洗涤2~3遍,再用去离子水洗涤至滤液中无氯离子检出,50℃烘干,制得直径1-3毫米的两性多糖吸水材料。
进一步地所述季铵盐为缩水甘油基三甲基氯化铵或3-氯-2-羟丙基三甲基氯化铵中的一种。
有益效果:与现有技术相比,本发明的优点在于:
1)采用纯天然且成本低廉的食品加工废弃物罗望子多糖为原料,克服了其他高吸水材料制备原料环保和成本方面遇到的瓶颈;
2)采用环境友好的植物多糖修饰方法,解决了其他高吸水材料制备单体或降解产物有毒有害的缺陷;
3)在罗望子多糖分子结构上定点定量引入吸水保水功能基团,并采用离子沉淀工艺制取多糖微球,羧基、季铵盐基团、羟基,以及多糖微球中多孔结构,多重吸水保水机制协同作用,克服了其他高吸水材料吸水机能单一,吸水耐盐率差的缺陷。
附图说明
图1为所得两性多糖吸水材料的结构示意图;
具体实施方式
下面结合实例对本发明作进一步的详细说明。本发明所用的原料均为市售产品。
实施例1
一种两性多糖吸水材料的制备方法,包括以下步骤:
1)将罗望子多糖100克缓慢搅拌溶解于1升去离子水。加入1.0克2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)和5克溴化钠的催化剂,搅拌均匀;滴加400g10%次氯酸钠溶液,调节并保持pH至9.5,室温下反应1小时,加入异丙醇10毫升终止反应;
2)向步骤1)所得溶液中缓慢溶解加入50克氢氧化钠搅拌30分钟,再加入20克3-氯-2-羟丙基三甲基氯化铵,升温至60℃搅拌反应3小时;
3)将步骤2)所得溶液调节pH至中性,加入戊二醛5克,控温至50℃交联反应2小时得胶粘液;
4)将步骤3)所得胶粘液加入旋转微球制备设备圆柱形转子中,调节转子转速300转/分钟,胶粘液从转子壁孔洞甩入盛有5%氯化钙乙醇水溶液(醇水体积比为7:3)的离子沉淀池中,沉淀成型,制得直径2-5毫米微球。将微球取出,先用乙醇洗涤2~3遍,再用去离子水洗涤至滤液中无氯离子检出,50℃烘干,制得直径1-3毫米的两性多糖吸水材料。其结构式如图1所示。
将制取的两性罗望子多糖微球浸泡在去离子水和生理盐水中,测试得到去离子水和生理盐水吸水倍率分别为150g/g和128g/g。
将制取的两性罗望子多糖微球10克浸泡在去离子水中4-6小时达到饱和吸水后置于200目尼龙网袋,与腐植土按照1:50-100总质量比,两性多糖铺层并覆盖3-5厘米厚土壤,浇水直至饱和,置于露天环境,每半月浇水一次。于15天、30天、60天、90天、180天,收集残余两性多糖微球,洗净烘干称重,评估降解情况,同时收集土壤,以稀释平板法检测土壤微生物种类和数量。
0天 15天 30天 60天 90天 180天
降解率(%) 0 5.3 12.5 39.9 63.5 95.6
细菌(个/g) 2.5x10<sup>8</sup> 3.2x10<sup>8</sup> 8.6x10<sup>8</sup> 3.5x10<sup>9</sup> 4.2x10<sup>9</sup> 5.8x10<sup>9</sup>
放线菌(个/g) 4.6x10<sup>6</sup> 7.8x10<sup>6</sup> 1.5x10<sup>7</sup> 3.8x10<sup>7</sup> 4.9x10<sup>7</sup> 5.6x10<sup>7</sup>
真菌(个/g) 3.6x10<sup>5</sup> 4.8x10<sup>5</sup> 7.2x10<sup>5</sup> 1.0x10<sup>6</sup> 2.1x10<sup>6</sup> 3.1x10<sup>6</sup>
试验证明经180天两性罗望子多糖微球基本降解完毕,且有益于土壤微生物的生长繁殖,是安全的。
实施例2
一种两性多糖吸水材料的制备方法,包括以下步骤:
1)将罗望子多糖1000克缓慢搅拌溶解于10升去离子水。加入12.0克2,2,6,6-四甲基哌啶-1-氧化物(TEMPO)和60克溴化钠的催化剂,搅拌均匀;滴加5000g 10%次氯酸钠溶液,调节并保持pH至9.5,室温下反应1.5小时,加入异丙醇100毫升终止反应;
2)向步骤1)所得溶液中缓慢溶解加入500克氢氧化钠搅拌40分钟,再加入250克缩水甘油基三甲基氯化铵,升温至60℃搅拌反应3.5小时;
3)将步骤2)所得溶液调节pH至中性,加入戊二醛50克,控温至50℃交联反应2.5小时得胶粘液;
4)将步骤3)所得胶粘液加入旋转微球制备设备圆柱形转子中,调节转子转速300转/分钟,胶粘液从转子壁孔洞甩入盛有5%氯化钙乙醇水溶液(醇水体积比为7:3)的离子沉淀池中,沉淀成型,制得直径2-5毫米微球。将微球取出,先用乙醇洗涤2~3遍,再用去离子水洗涤至滤液中无氯离子检出,50℃烘干,制得直径1-3毫米的两性多糖吸水材料。其结构式如图1所示。
将制取的两性罗望子多糖微球浸泡在去离子水和生理盐水中,测试得到去离子水和生理盐水吸水倍率分别为145g/g和120g/g。
将制取的两性罗望子多糖微球10克浸泡在去离子水中4-6小时达到饱和吸水后至于200目尼龙网袋,与腐植土按照1:50-100总质量比,两性多糖铺层并覆盖3-5厘米厚土壤,浇水直至饱和,置于露天环境。于15天、30天、60天、90天、180天,收集残余两性多糖微球,洗净烘干称重,评估降解情况,同时收集土壤,以稀释平板法检测土壤微生物种类和数量。
0天 15天 30天 60天 90天 180天
降解率(%) 0 3.8 9.7 35.4 57.6 89.7
细菌(个/g) 2.5x10<sup>8</sup> 2.9x10<sup>8</sup> 5.7x10<sup>8</sup> 8.6x10<sup>8</sup> 1.2x10<sup>9</sup> 3.2x10<sup>9</sup>
放线菌(个/g) 4.6x10<sup>6</sup> 5.3x10<sup>6</sup> 8.6x10<sup>6</sup> 1.3x10<sup>7</sup> 2.2x10<sup>7</sup> 4.1x10<sup>7</sup>
真菌(个/g) 3.6x10<sup>5</sup> 4.3x10<sup>5</sup> 6.8x10<sup>5</sup> 9.6x10<sup>5</sup> 1.8x10<sup>6</sup> 3.0x10<sup>6</sup>
验证明经180天两性罗望子多糖微球基本降解完毕,且有益于土壤微生物的生长繁殖,是安全的。
称取5克两性罗望子多糖微球,浸泡于1升去离子水、生理盐水(0.9%NaCl)、5%NaCl、10%NaCl、15%NaCl、20%NaCl溶液中,待吸水平衡后(24小时)使用200目尼龙袋滤除多余水分,称重,计算吸水倍率。选取市售农林保水剂聚丙烯酰胺、淀粉接枝丙烯酰胺、淀粉接枝丙烯腈吸水树脂作为对比参照。
Figure BDA0002296407380000051
本发明按照上述实施例进行了说明,应当理解,上述实施例不以任何形式限定本发明,凡采用等同替换或等效变换方式所获得的技术方案,均落在本发明的保护范围之内。

Claims (2)

1.一种两性多糖吸水材料的制备方法,其特征在于,包括以下步骤:
1)将罗望子多糖用TEMPO-NaBr-NaClO体系催化氧化,引入羧基:将罗望子多糖溶于10倍重量的去离子水中,加入TEMPO和NaBr,搅拌下加入次氯酸钠,调节并保持溶液pH为9 .5,反应1~2小时;反应完成后加入8~10倍TEMPO重量的异丙醇终止反应;
2)将步骤1)氧化后的罗望子多糖与季铵盐醚化,引入季铵盐基团,形成两性罗望子多糖:在氧化后的罗望子多糖溶液中加入1/2罗望子多糖重量的氢氧化钠搅拌30~60分钟,再加入季铵盐,升温至60℃搅拌反应3~4小时;
3)在步骤2)两性罗望子多糖中加入戊二醛交联反应,得胶粘液:将两性罗望子多糖溶液调节pH至中性,加入戊二醛,50℃交联2~3小时,得胶粘液;罗望子多糖、TEMPO、NaBr、NaClO、季铵盐、戊二醛的重量比为1000:10~12:50~60:400~500:200~250:50;
4)将步骤3)制得的得胶粘液经离子沉淀,烘干即得:将胶粘液加入旋转微球制备设备圆柱形转子中,调节转子转速300转/分钟,胶粘液从转子壁孔洞甩入盛有5%氯化钙乙醇水溶液,醇水体积比为7:3的离子沉淀池中,沉淀成型,制得直径2-5毫米微球;将微球取出,先用乙醇洗涤2~3遍,再用去离子水洗涤至滤液中无氯离子检出,50℃烘干,制得直径1-3毫米的两性多糖吸水材料。
2.根据权利要求1所述的一种两性多糖吸水材料的制备方法,其特征在于,所述季铵盐为缩水甘油基三甲基氯化铵或3-氯-2-羟丙基三甲基氯化铵中的一种。
CN201911203303.2A 2019-11-29 2019-11-29 一种两性多糖吸水材料的制备方法 Active CN110845635B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911203303.2A CN110845635B (zh) 2019-11-29 2019-11-29 一种两性多糖吸水材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911203303.2A CN110845635B (zh) 2019-11-29 2019-11-29 一种两性多糖吸水材料的制备方法

Publications (2)

Publication Number Publication Date
CN110845635A CN110845635A (zh) 2020-02-28
CN110845635B true CN110845635B (zh) 2022-07-29

Family

ID=69606371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911203303.2A Active CN110845635B (zh) 2019-11-29 2019-11-29 一种两性多糖吸水材料的制备方法

Country Status (1)

Country Link
CN (1) CN110845635B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337288A (zh) * 2021-06-15 2021-09-03 内蒙古自治区林业科学研究院 一种植物基固沙剂制备及其应用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152170A (en) * 1975-06-18 1979-05-01 Sumitomo Chemical Company, Ltd. Cross-linked pullulan
JP2002226502A (ja) * 2001-01-30 2002-08-14 Mitsubishi Gas Chem Co Inc 酸化多糖類誘導体の製造方法
FR2833599B1 (fr) * 2001-12-18 2004-01-30 Oreal Polysaccharide amphotere, composition et utilisation
JP4132993B2 (ja) * 2002-06-03 2008-08-13 住友精化株式会社 吸水性樹脂およびその製造方法
WO2009099567A2 (en) * 2008-01-31 2009-08-13 Rhodia Inc. Crosslinked polysaccharides and methods of production thereof
UA109772C2 (uk) * 2009-07-02 2015-10-12 Агент для підвищення гідрофільності ґрунту і способи його застосування
CN102229676B (zh) * 2011-05-19 2012-10-10 江西仁丰农业发展有限公司 一种建筑涂料专用胶粉的制备工艺
CN102875692B (zh) * 2012-10-30 2014-07-30 桂林理工大学 一种交联两性蔗渣木聚糖的制备方法
CN103012613B (zh) * 2012-12-06 2016-04-06 青岛利邦达海洋科技有限公司 一种阳离子罗望子多糖的制备方法
CN103242459B (zh) * 2013-05-27 2015-07-15 江西鑫川实业有限公司 一种交联两性淀粉及制备方法
CN106243232B (zh) * 2016-07-25 2019-03-26 山东熙来淀粉有限公司 一种高性能湿部添加剂及其制备方法
CN110997729B (zh) * 2017-08-03 2022-09-13 巴斯夫欧洲公司 包含生物基聚合物的化妆品组合物

Also Published As

Publication number Publication date
CN110845635A (zh) 2020-02-28

Similar Documents

Publication Publication Date Title
Cheng et al. Water-and fertilizer-integrated hydrogel derived from the polymerization of acrylic acid and urea as a slow-release N fertilizer and water retention in agriculture
Liu et al. Novel alginate-cellulose nanofiber-poly (vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals
Ramli Slow release fertilizer hydrogels: a review
Neethu et al. Prospects and applications of hydrogel technology in agriculture
Azeem et al. Eco‐friendly three‐dimensional hydrogels for sustainable agricultural applications: Current and future scenarios
Akalin et al. Controlled release behavior of zinc-loaded carboxymethyl cellulose and carrageenan hydrogels and their effects on wheatgrass growth
Thombare et al. Guar gum based hydrogel as controlled micronutrient delivery system: Mechanism and kinetics of boron release for agricultural applications
Tang et al. Application of chitin hydrogels for seed germination, seedling growth of rapeseed
Skrzypczak et al. Biodegradable hydrogel materials for water storage in agriculture-review of recent research
CN110423180A (zh) 一种用于盐碱地改良的缓释型复合肥料及其制备方法
CN101638461B (zh) 马铃薯淀粉磷酸酯接枝共聚合成含磷和氮高吸水树脂的方法
KP et al. Polyvinyl alcohol-soy protein isolate hydrogels: Controlled release of fertilizer and matrix nutrients for sustainable agriculture
CN110845635B (zh) 一种两性多糖吸水材料的制备方法
Li et al. Network interpenetrating slow-release nitrogen fertilizer based on carrageenan and urea: A new low-cost water and fertilizer regulation carrier
Maksimova et al. Polymer hydrogels in agriculture
Yang et al. Categories and application fields and manufacturing process and action mechanism of water retaining agent
Kumar et al. Seaweed based hydrogels: extraction, gelling characteristics, and applications in the agriculture sector
Batara et al. Recent Advances, Applications, and Challenges in Superabsorbent Polymers to Support Water Sustainability
Mandal et al. A Review on Sustainable Slow‐Release N, P, K Fertilizer Hydrogels for Smart Agriculture
CN107915524A (zh) 一种椰糠基大孔型缓释保水剂及制备方法
Tranquilan-Aranilla et al. Properties and Potential Applications of Carboxymethyl-kappa-carrageenan Hydrogels Crosslinked by Gamma Radiation.
CN117701282A (zh) 一种高吸水性凝胶缓释微球型土壤改良剂及其制备方法
CN117264121A (zh) 一种高吸水海藻酸钠基复合材料及其制备方法
Malik et al. Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition. Polymers. 2023; 15 (1): 161
Krishnasamy et al. Synthesis of a superabsorbent hydrogel from Artocarpus heterophyllus Lam seed polysaccharides and its application in relieving drought stress in plants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant