CN110838574A - High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material - Google Patents
High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material Download PDFInfo
- Publication number
- CN110838574A CN110838574A CN201810935025.9A CN201810935025A CN110838574A CN 110838574 A CN110838574 A CN 110838574A CN 201810935025 A CN201810935025 A CN 201810935025A CN 110838574 A CN110838574 A CN 110838574A
- Authority
- CN
- China
- Prior art keywords
- silicon
- alloy
- carbon
- silicon alloy
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/626—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池用高容量复合负极材料、其制备方法及包含该复合材料的锂离子电池,所述复合负极材料包括中间相碳微球、分散于所述中间相碳微球的内部的改性纳米硅合金,以及包覆于所述中间相碳微球的外部的碳材料包覆层。所述方法包括:1)将改性纳米硅合金分散在中间相碳微球的原料中,进行聚合反应,分离,得到前驱体;2)对所得前驱体进行包覆改性并烧结,得到复合负极材料。本发明工艺简单,易于规模化生产。制备得到的复合负极材料具有优异的电化学性能,采用该复合负极材料应用于锂离子电池时,其表现出高比容量、高效率和优异的循环寿命。
The invention discloses a high-capacity composite negative electrode material for lithium ion batteries, a preparation method thereof, and a lithium ion battery comprising the composite material. The composite negative electrode material comprises mesocarbon microspheres, dispersed in the mesocarbon microspheres The inner modified nano-silicon alloy, and the outer carbon material coating layer of the mesophase carbon microspheres. The method includes: 1) dispersing the modified nano-silicon alloy in the raw material of mesocarbon microspheres, carrying out a polymerization reaction, and separating to obtain a precursor; 2) carrying out coating modification and sintering on the obtained precursor to obtain a composite negative electrode material. The process of the invention is simple, and the large-scale production is easy. The prepared composite negative electrode material has excellent electrochemical performance, and when the composite negative electrode material is applied to a lithium ion battery, it exhibits high specific capacity, high efficiency and excellent cycle life.
Description
技术领域technical field
本发明属于锂离子电池负极材料应用领域,涉及一种复合负极材料、其制备方法及包含该复合负极材料的锂离子电池,尤其涉及一种锂离子电池用高容量复合负极材料、其制备方法及包含该复合材料的锂离子电池。The invention belongs to the application field of negative electrode materials for lithium ion batteries, relates to a composite negative electrode material, a preparation method thereof, and a lithium ion battery comprising the composite negative electrode material, and in particular relates to a high-capacity composite negative electrode material for lithium ion batteries, a preparation method thereof, and a lithium ion battery. Lithium-ion batteries containing the composite material.
背景技术Background technique
锂离子电池具有高能量密度、循环寿命高、安全性好等优点,现已广泛应用在便携式电子设备中,同时在电动汽车等领域的应用迅猛增长。中间相碳微球因具有堆积密度高、比表小、倍率性能好、安全性能较好等优点而被应用于锂离子电池负极材料,但是其本身比容量不高,只有340mAh/g,无法满足当今市场对高能量密度锂离子电池日益增加的需求。硅材料作为负极材料理论比容量较高(4200mA h/g),但是,硅负极在脱/嵌锂的过程中伴随着较大的体积膨胀(高达300%),导致硅颗粒破碎、粉化,使材料失去活性,最终造成循环性能的严重衰减;此外,硅自身的电导率不高,倍率性能较差。Lithium-ion batteries have the advantages of high energy density, high cycle life, and good safety. They are now widely used in portable electronic devices, and their applications in electric vehicles and other fields are growing rapidly. Mesocarbon microspheres are used as anode materials for lithium-ion batteries due to their advantages of high bulk density, small specific surface, good rate performance, and good safety performance, but their specific capacity is not high, only 340mAh/g, which cannot meet the There is an increasing demand for high energy density lithium-ion batteries in today's market. The theoretical specific capacity of silicon material as a negative electrode material is high (4200mA h/g). However, the silicon negative electrode is accompanied by a large volume expansion (up to 300%) during the process of lithium extraction/intercalation, resulting in the fragmentation and pulverization of silicon particles. The material is deactivated, resulting in a serious degradation of the cycle performance; in addition, the conductivity of silicon itself is not high, and the rate performance is poor.
CN107768671A公开了一种锂离子电池用硅中间相碳微球的制备方法,包括以下步骤:在原料中添加单质硅或含硅氧化物,混合均匀后,进行热缩聚反应,再经过分离得到以硅为核心的中间相碳微球生球,然后通过碳化得到锂离子电池用硅为核心的中间相碳微球。虽然该方法提高了中间相碳微球的容量,但是硅和含硅氧化物在中间相碳微球中的分散效果不佳,而且硅和含硅氧化物的导电性、膨胀较差,导致材料容量无法进一步提升,材料膨胀较大。CN107768671A discloses a preparation method of silicon mesocarbon microspheres for lithium ion batteries, comprising the following steps: adding elemental silicon or silicon-containing oxides to raw materials, after mixing uniformly, conducting thermal polycondensation reaction, and then separating to obtain silicon The mesophase carbon microspheres as the core are green spheres, and then the mesophase carbon microspheres with silicon as the core for lithium ion batteries are obtained by carbonization. Although this method improves the capacity of mesocarbon microspheres, the dispersion effect of silicon and silicon-containing oxides in mesocarbon microspheres is not good, and the electrical conductivity and expansion of silicon and silicon-containing oxides are poor, resulting in material The capacity cannot be further improved, and the material expands greatly.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的上述问题,本发明的目的在于提供一种复合负极材料、其制备方法及包含该复合负极材料的锂离子电池,尤其是提供一种锂离子电池用高容量复合负极材料、其制备方法及包含该复合材料的锂离子电池。In view of the above-mentioned problems in the prior art, the purpose of the present invention is to provide a composite negative electrode material, a preparation method thereof and a lithium ion battery comprising the composite negative electrode material, especially to provide a high-capacity composite negative electrode material for lithium ion batteries , a preparation method thereof and a lithium ion battery comprising the composite material.
本发明所述“高容量复合负极材料”中的“高容量”指:0.1C首次可逆容量在800-1100mAh/g。The "high capacity" in the "high capacity composite negative electrode material" in the present invention refers to the first reversible capacity at 0.1C of 800-1100mAh/g.
为达上述目的,本发明采用以下技术方案:For achieving the above object, the present invention adopts the following technical solutions:
第一方面,本发明提供一种复合负极材料(其结构示意图参见图1),所述复合负极材料包括中间相碳微球、分散于所述中间相碳微球的内部的改性纳米硅合金,以及包覆于所述中间相碳微球的外部的碳材料包覆层。In a first aspect, the present invention provides a composite negative electrode material (see FIG. 1 for a schematic diagram of its structure), the composite negative electrode material includes mesocarbon microspheres and modified nano-silicon alloys dispersed in the interior of the mesocarbon microspheres , and a carbon material coating layer covering the outside of the mesocarbon microspheres.
本发明采用纳米硅合金材料作为活性物质,和纯硅相比导电性更好、膨胀更低,纳米尺度化后进一步降低了硅合金的膨胀,提升循环性能。纳米硅合金的碳包覆改性可以有效提升其亲油性,从而改善纳米硅合金在中间相碳微球中的分散效果以及结合性,避免纳米硅合金材料局部团聚造成的材料性能下降。将改性纳米硅合金分散在中间相碳微球内部可以有效地提升中间相碳微球的容量,同时进一步降低纳米硅合金的膨胀。最后在中间相碳微球颗粒表面进行碳包覆改性,进一步降低材料膨胀性能和材料比表面积,提升材料性能。Compared with pure silicon, the invention adopts nano-silicon alloy material as active material, which has better conductivity and lower expansion, and further reduces the expansion of silicon alloy after nano-scale, and improves cycle performance. The carbon coating modification of nano-silicon alloy can effectively improve its lipophilicity, thereby improving the dispersion effect and bonding of nano-silicon alloy in mesocarbon microspheres, and avoiding the deterioration of material properties caused by local agglomeration of nano-silicon alloy materials. Dispersing the modified nano-silicon alloys inside the mesocarbon microspheres can effectively increase the capacity of the mesocarbon microspheres and further reduce the expansion of the nano-silicon alloys. Finally, carbon coating is carried out on the surface of the mesophase carbon microsphere particles to further reduce the material expansion performance and material specific surface area, and improve the material performance.
本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。当所述复合负极材料由中间相碳微球、分散于所述中间相碳微球的内部的改性纳米硅合金,以及包覆于所述中间相碳微球的外部的碳材料包覆层构成时,复合负极材料表现出更佳的电化学性能,包括高比容量、高效率和优异的循环寿命。In the present invention, "comprising" can also be replaced by closed "is" or "consisting of". When the composite negative electrode material is composed of mesocarbon microspheres, modified nano-silicon alloys dispersed inside the mesocarbon microspheres, and a carbon material coating layer coated on the outside of the mesocarbon microspheres When constructed, the composite anode material exhibits better electrochemical performance, including high specific capacity, high efficiency, and excellent cycle life.
作为本发明所述复合负极材料的优选技术方案,在制备中间相碳微球的过程中,实现改性纳米合金在中间相碳微球内部的分散。As a preferred technical solution of the composite negative electrode material of the present invention, in the process of preparing the mesocarbon microspheres, the dispersion of the modified nano-alloy inside the mesocarbon microspheres is realized.
优选地,所述改性纳米硅合金为碳包覆改性的纳米硅合金。碳包覆改性可以更好地提升纳米硅合金的亲油性,增加其分散于中间相碳微球内部的结合性和分散性。Preferably, the modified nano-silicon alloy is a carbon-coated modified nano-silicon alloy. Carbon coating modification can better improve the lipophilicity of nano-silicon alloys, and increase its binding and dispersibility within mesophase carbon microspheres.
优选地,所述改性纳米硅合金由纳米硅合金及包覆于所述纳米硅合金表面的碳包覆改性层构成。Preferably, the modified nano-silicon alloy is composed of a nano-silicon alloy and a carbon-coated modified layer coated on the surface of the nano-silicon alloy.
优选地,所述纳米硅合金为硅铁合金、硅镍合金、硅钛合金、硅锡合金、硅铜合金或硅铝合金中的任意1种或至少2种的组合,所述组合典型但非限制性实例有:硅铁合金和硅镍合金的组合,硅铁合金和硅钛合金的组合,硅镍合金和硅锡合金的组合,硅钛合金和硅铝合金的组合,硅铁合金、硅镍合金和硅铜合金的组合,硅镍合金、硅钛合金和硅铝合金的组合,硅镍合金、硅钛合金、硅锡合金和硅铝合金的组合等。Preferably, the nano-silicon alloy is any one or a combination of at least two of silicon-iron alloy, silicon-nickel alloy, silicon-titanium alloy, silicon-tin alloy, silicon-copper alloy or silicon-aluminum alloy, and the combination is typical but not limited Typical examples are: the combination of ferrosilicon and silicon-nickel alloy, the combination of silicon-iron alloy and silicon-titanium alloy, the combination of silicon-nickel alloy and silicon-tin alloy, the combination of silicon-titanium alloy and silicon-aluminum alloy, the combination of silicon-iron alloy, silicon-nickel alloy and silicon The combination of copper alloy, the combination of silicon-nickel alloy, silicon-titanium alloy and silicon-aluminum alloy, the combination of silicon-nickel alloy, silicon-titanium alloy, silicon-tin alloy and silicon-aluminum alloy, etc.
作为本发明所述复合负极材料的优选技术方案,以所述复合负极材料的总质量为100wt%计,所述纳米硅合金的质量百分含量为10wt%~60wt%,碳包覆改性层的质量百分含量为1wt%~8wt%,中间相碳微球的质量百分含量为30 wt%~80wt%,碳材料包覆层的质量百分含量为3wt%~20wt%。As a preferred technical solution of the composite negative electrode material of the present invention, based on the total mass of the composite negative electrode material being 100 wt %, the mass percentage of the nano-silicon alloy is 10 wt % to 60 wt %, and the carbon coating modified layer The mass percentage of the carbon material is 1wt% to 8wt%, the mass percentage of the mesocarbon microspheres is 30wt% to 80wt%, and the mass percentage of the carbon material coating layer is 3wt% to 20wt%.
此优选技术方案中,纳米硅合金的质量百分含量例如为10wt%、15wt%、 20wt%、25wt%、30wt%、35wt%、40wt%、45wt%、50wt%、55wt%或60wt%等;碳包覆改性层的质量百分含量例如为1wt%、2wt%、2.5wt%、3wt%、3.5 wt%、4wt%、5wt%、5.5wt%、6wt%、7wt%或8wt%等;中间相碳微球的质量百分含量例如为30wt%、35wt%、40wt%、45wt%、50wt%、60wt%、65wt%、 70wt%或80wt%等;碳材料包覆层的质量百分含量例如为3wt%、5wt%、7wt%、 10wt%、12wt%、15wt%、16wt%、18wt%或20wt%等。In this preferred technical solution, the mass percentage of the nano-silicon alloy is, for example, 10wt%, 15wt%, 20wt%, 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, 50wt%, 55wt% or 60wt%, etc.; The mass percentage content of the carbon coating modified layer is, for example, 1wt%, 2wt%, 2.5wt%, 3wt%, 3.5wt%, 4wt%, 5wt%, 5.5wt%, 6wt%, 7wt% or 8wt%, etc.; The mass percentage content of mesocarbon microspheres is, for example, 30wt%, 35wt%, 40wt%, 45wt%, 50wt%, 60wt%, 65wt%, 70wt% or 80wt%, etc.; the mass percentage content of the carbon material coating layer For example, it is 3wt%, 5wt%, 7wt%, 10wt%, 12wt%, 15wt%, 16wt%, 18wt% or 20wt% and the like.
更优选地,优选地,以所述复合负极材料的总质量为100wt%计,所述纳米硅合金的质量百分含量为20wt%~50wt%,碳包覆改性层的质量百分含量为2 wt%~6wt%,中间相碳微球的质量百分含量为40wt%~70wt%,碳材料包覆层的质量百分含量为5wt%~15wt%。More preferably, preferably, based on the total mass of the composite negative electrode material being 100 wt %, the mass percentage of the nano-silicon alloy is 20 wt % to 50 wt %, and the mass percentage of the carbon coating modified layer is 2 wt % to 6 wt %, the mass percentage of the mesocarbon microspheres is 40 wt % to 70 wt %, and the mass percentage of the carbon material coating layer is 5 wt % to 15 wt %.
优选地,所述复合负极材料的中值粒径为1μm~45μm,例如1μm、3μm、 5μm、8μm、10μm、15μm、17.5μm、20μm、22μm或25μm等,优选为5μm ~25μm。Preferably, the median particle size of the composite negative electrode material is 1 μm to 45 μm, such as 1 μm, 3 μm, 5 μm, 8 μm, 10 μm, 15 μm, 17.5 μm, 20 μm, 22 μm or 25 μm, etc., preferably 5 μm to 25 μm.
优选地,所述纳米硅合金的中值粒径为50nm~800nm,例如50nm、60nm、 80nm、100nm、150nm、200nm、300nm、350nm、400nm、450nm、500nm、 600nm、650nm、700nm或800nm等,优选为100nm~500nm。Preferably, the median particle size of the nano-silicon alloy is 50 nm to 800 nm, such as 50 nm, 60 nm, 80 nm, 100 nm, 150 nm, 200 nm, 300 nm, 350 nm, 400 nm, 450 nm, 500 nm, 600 nm, 650 nm, 700 nm or 800 nm, etc., It is preferably 100 nm to 500 nm.
第二方面,本发明提供如第一方面所述的复合负极材料的制备方法,所述方法包括以下步骤:In a second aspect, the present invention provides a method for preparing a composite negative electrode material as described in the first aspect, the method comprising the following steps:
(1)将改性纳米硅合金分散在中间相碳微球的原料中,进行聚合反应,得到第一前驱体;(1) dispersing the modified nano-silicon alloy in the raw material of mesocarbon microspheres, and carrying out a polymerization reaction to obtain a first precursor;
(2)对第一前驱体进行分离,得到第二前驱体;(2) separating the first precursor to obtain the second precursor;
(3)对第二前驱体进行包覆改性,得到第三前驱体;(3) coating and modifying the second precursor to obtain the third precursor;
(4)对第三前驱体进行烧结,得到复合负极材料。(4) Sintering the third precursor to obtain a composite negative electrode material.
本发明的方法中,步骤(2)所述分离为必须步骤,因为:步骤(1)中间相碳微球的原料(比如沥青、煤焦油以及合成树脂等)经聚合反应转化为熔融态,所得第一前驱体中,内含纳米硅合金的中间相碳微球分散在母液中,需要经过步骤(2)的分离将内含纳米硅合金的中间相碳微球分离出来以进行后续的包覆步骤。In the method of the present invention, the separation described in step (2) is a necessary step, because: in step (1), the raw materials of mesocarbon microspheres (such as pitch, coal tar and synthetic resin, etc.) are converted into molten state through polymerization reaction, and the obtained In the first precursor, the mesocarbon microspheres containing the nano-silicon alloy are dispersed in the mother liquor, and the mesocarbon microspheres containing the nano-silicon alloy need to be separated through the separation of step (2) for subsequent coating. step.
本发明的方法通过在高温聚合反应制备中间相碳微球的过程中引入改性纳米硅合金,可以形成改性纳米硅合金分散于中间相碳微球内部的结构,改性的纳米硅合金提升了纳米硅的亲油性,可以很好地分散于中间相碳微球内部且结合性高,这种独特的内部分散结构(这种结构相当于改性纳米硅合金内嵌于中间相碳微球中)可以很好地缓解硅合金的膨胀,同时有效抑制材料与电解液之间的副反应,进一步在中间相碳微球外部包覆碳材料包覆层,得到复合负极材料,将该复合负极材料应用于锂离子电池时,其表现出高比容量、高效率和优异的循环寿命。In the method of the invention, the modified nano-silicon alloy is introduced in the process of preparing the mesophase carbon microspheres by high-temperature polymerization, so that a structure in which the modified nano-silicon alloy is dispersed inside the mesophase carbon microspheres can be formed, and the modified nano-silicon alloy can improve the Due to the lipophilicity of nano-silicon, it can be well dispersed inside the mesocarbon microspheres and has high binding. This unique internal dispersion structure (this structure is equivalent to the modified nano-silicon alloy embedded in the mesocarbon microspheres) middle) can well relieve the expansion of the silicon alloy, and at the same time effectively suppress the side reaction between the material and the electrolyte, and further coat the carbon material coating layer on the outside of the mesocarbon microspheres to obtain a composite negative electrode material, and the composite negative electrode When the material is applied to lithium-ion batteries, it exhibits high specific capacity, high efficiency and excellent cycle life.
作为本发明所述方法的优选技术方案,步骤(1)所述改性纳米硅合金为碳包覆改性的纳米硅合金。As a preferred technical solution of the method of the present invention, the modified nano-silicon alloy in step (1) is a carbon-coated modified nano-silicon alloy.
优选地,所述碳包覆改性的纳米硅合金的制备方法为气相包覆法,包括:将纳米硅合金置于反应炉中,以有机碳源气体为包覆源,在通有保护性气体的条件下,对纳米硅合金表面进行碳包覆改性。Preferably, the preparation method of the carbon-coated modified nano-silicon alloy is a gas-phase coating method, comprising: placing the nano-silicon alloy in a reaction furnace, using an organic carbon source gas as a coating source, and having a protective Under the condition of gas, the surface of nano-silicon alloy was modified by carbon coating.
作为所述碳包覆改性的纳米硅合金的制备方法的优选技术方案,所述方法包括:将纳米硅合金置于回转炉中,调节回转炉的转速为0.1r/min~5r/min,通入保护性气体,升温至500℃~1200℃,通入有机碳源气体,保温,得到碳包覆改性的纳米硅合金。As a preferred technical solution for the preparation method of the carbon-coated modified nano-silicon alloy, the method includes: placing the nano-silicon alloy in a rotary kiln, adjusting the rotational speed of the rotary kiln to be 0.1 r/min to 5 r/min, A protective gas is introduced, the temperature is raised to 500 DEG C to 1200 DEG C, an organic carbon source gas is introduced, and the temperature is maintained to obtain a carbon-coated modified nano-silicon alloy.
此优选技术方案中,回转炉的转速为0.1r/min~5r/min,例如0.1r/min、0.5 r/min、1r/min、2r/min、3r/min、4r/min或5r/min等;升温至500℃~1200℃,例如500℃、600℃、700℃、800℃、900℃、1000℃、1100℃或1200℃等。In this preferred technical solution, the rotating speed of the rotary furnace is 0.1r/min~5r/min, such as 0.1r/min, 0.5r/min, 1r/min, 2r/min, 3r/min, 4r/min or 5r/min etc.; raise the temperature to 500°C to 1200°C, such as 500°C, 600°C, 700°C, 800°C, 900°C, 1000°C, 1100°C or 1200°C, etc.
优选地,所述碳包覆改性的纳米硅合金的制备过程中,保护性气体包括氮气、氦气、氖气、氩气、氪气或氙气中的任意1种或至少2种的组合;Preferably, in the preparation process of the carbon-coated modified nano-silicon alloy, the protective gas includes any one or a combination of at least two of nitrogen, helium, neon, argon, krypton or xenon;
优选地,所述碳包覆改性的纳米硅合金的制备过程中,升温至500℃~ 1200℃的升温速率为0.5℃/min~20℃/min,例如0.5℃/min、1℃/min、3℃/min、 5℃/min、8℃/min、10℃/min、12.5℃/min、15℃/min或20℃/min等。Preferably, in the preparation process of the carbon-coated modified nano-silicon alloy, the heating rate to 500°C to 1200°C is 0.5°C/min to 20°C/min, such as 0.5°C/min, 1°C/min , 3°C/min, 5°C/min, 8°C/min, 10°C/min, 12.5°C/min, 15°C/min or 20°C/min, etc.
优选地,所述碳包覆改性的纳米硅合金的制备过程中,有机碳源气体为烃类和/或1~3个苯环的芳香烃类衍生物中的任意1种或至少2种的组合,优选为甲烷、乙烯、乙炔、苯、甲苯、二甲苯、丙酮、苯乙烯或苯酚中的任意1种或至少2种的组合。Preferably, in the preparation process of the carbon-coated modified nano-silicon alloy, the organic carbon source gas is any one or at least two of hydrocarbons and/or aromatic hydrocarbon derivatives with 1 to 3 benzene rings The combination is preferably any one or a combination of at least two of methane, ethylene, acetylene, benzene, toluene, xylene, acetone, styrene or phenol.
优选地,所述碳包覆改性的纳米硅合金的制备过程中,有机碳源气体的通入流量为0.1L/min~20L/min,例如0.1L/min、0.5L/min、1L/min、5L/min、 7L/min、10L/min、12L/min、14L/min、16L/min、18L/min或20L/min等,优选为2L/min~10L/min。Preferably, in the preparation process of the carbon-coated modified nano-silicon alloy, the flow rate of the organic carbon source gas is 0.1L/min~20L/min, such as 0.1L/min, 0.5L/min, 1L/min min, 5L/min, 7L/min, 10L/min, 12L/min, 14L/min, 16L/min, 18L/min or 20L/min, etc., preferably 2L/min~10L/min.
优选地,所述碳包覆改性的纳米硅合金的制备过程中,保温的时间为 0.1h~10h,例如0.1h、0.5h、1h、3h、5h、6h、8h或10h等,优选为1h~5h。Preferably, in the preparation process of the carbon-coated modified nano-silicon alloy, the heat preservation time is 0.1h to 10h, such as 0.1h, 0.5h, 1h, 3h, 5h, 6h, 8h or 10h, etc., preferably 1h ~ 5h.
本发明的方法中,优选采用气相包覆法对纳米硅合金进行碳包覆改性,并控制回转炉转速、反应温度、有机碳源气体的通入流量和保温时间等参数,使纳米硅合金表面形成合适厚度且包覆均匀的碳包覆改性层,从而有利于提升纳米硅合金表面的亲油性,改善其分散于中间相碳微球内部的分散性和结合性,进而提升复合负极材料的电化学性能。In the method of the present invention, the carbon coating modification is preferably carried out on the nano-silicon alloy by the gas-phase coating method, and parameters such as the rotating speed of the rotary furnace, the reaction temperature, the flow rate of the organic carbon source gas and the holding time are controlled to make the nano-silicon alloy A carbon-coated modified layer with suitable thickness and uniform coating is formed on the surface, which is beneficial to improve the lipophilicity of the nano-silicon alloy surface, improve its dispersibility and bonding within the mesocarbon microspheres, and further improve the composite negative electrode material. electrochemical performance.
作为本发明所述方法的优选技术方案,步骤(1)所述中间相碳微球的原料为煤沥青、煤焦油、石油沥青、石油渣油、合成沥青、合成树脂或重油中的任意1种或至少2种的组合,所述组合典型但非限制性实例有:煤沥青和煤焦油的组合,煤沥青和石油沥青的组合,煤焦油和石油渣油的组合,煤沥青和重油的组合,煤沥青、煤焦油和石油沥青的组合,煤焦油、石油渣油和合成沥青的组合,石油沥青、石油渣油和合成树脂的组合,煤沥青、煤焦油、石油渣油和重油的组合等。As a preferred technical solution of the method of the present invention, the raw material of the mesocarbon microspheres in step (1) is any one of coal tar, coal tar, petroleum tar, petroleum residue, synthetic asphalt, synthetic resin or heavy oil or a combination of at least two, typical but non-limiting examples of the combination are: a combination of coal tar and coal tar, a combination of coal tar and petroleum tar, a combination of coal tar and petroleum residue, a combination of coal tar and heavy oil, Combination of coal tar, coal tar and petroleum asphalt, combination of coal tar, petroleum residue and synthetic asphalt, combination of petroleum asphalt, petroleum residue and synthetic resin, combination of coal tar, coal tar, petroleum residue and heavy oil, etc.
优选地,步骤(1)包括:Preferably, step (1) includes:
(A)将改性纳米硅合金和中间相碳微球的原料置于反应釜中,通入保护性气体,升温至200℃~350℃,搅拌使改性纳米硅合金在中间相碳微球的原料中均匀分散;(A) Place the raw materials of the modified nano-silicon alloy and mesocarbon microspheres in a reaction kettle, introduce a protective gas, heat the temperature to 200°C to 350°C, and stir to make the modified nano-silicon alloy in the mesocarbon microspheres. uniformly dispersed in the raw materials;
(B)然后升温至400℃~550℃,控制压力为0.1MPa~12MPa,保温,中间相碳微球的原料发生热缩聚反应,得到第一前驱体。(B) then the temperature is raised to 400°C to 550°C, the pressure is controlled to be 0.1 MPa to 12 MPa, and the temperature is maintained, and the raw material of the mesocarbon microspheres undergoes thermal polycondensation reaction to obtain the first precursor.
此优选技术方案中,步骤(A)所述反应釜为高温高压反应釜。In this preferred technical solution, the reaction kettle described in step (A) is a high temperature and high pressure reaction kettle.
此优选技术方案中,步骤(A)所述升温至200℃~350℃,例如200℃、 220℃、245℃、265℃、285℃、300℃、320℃或350℃等。In this preferred technical solution, the temperature in step (A) is raised to 200°C to 350°C, such as 200°C, 220°C, 245°C, 265°C, 285°C, 300°C, 320°C or 350°C, etc.
此优选技术方案中,步骤(B)所述升温至400℃~550℃,例如400℃、 420℃、430℃、440℃、460℃、480℃、500℃、525℃或550℃等。In this preferred technical solution, the temperature in step (B) is raised to 400°C to 550°C, such as 400°C, 420°C, 430°C, 440°C, 460°C, 480°C, 500°C, 525°C or 550°C, etc.
此优选技术方案中,步骤(B)所述控制压力为0.1MPa~12MPa,例如0.1 MPa、0.5MPa、1MPa、3MPa、5MPa、7MPa、10MPa、11MPa或12MPa 等。In this preferred technical solution, the control pressure in step (B) is 0.1 MPa to 12 MPa, such as 0.1 MPa, 0.5 MPa, 1 MPa, 3 MPa, 5 MPa, 7 MPa, 10 MPa, 11 MPa or 12 MPa.
优选地,步骤(A)所述升温的速率为0.5℃/min~15℃/min,例如0.5℃/min、 1℃/min、2℃/min、3℃/min、5℃/min、7℃/min、8℃/min、10℃/min、12℃/min、 14℃/min或15℃/min等。Preferably, the rate of temperature increase in step (A) is 0.5°C/min~15°C/min, such as 0.5°C/min, 1°C/min, 2°C/min, 3°C/min, 5°C/min, 7°C/min °C/min, 8 °C/min, 10 °C/min, 12 °C/min, 14 °C/min or 15 °C/min, etc.
优选地,步骤(A)所述搅拌的速度为500rpm~2500rpm,例如500rpm、 650rpm、800rpm、900rpm、1000rpm、1100rpm、1250rpm、1500rpm、1700 rpm、2000rpm、2200rpm或2500rpm等;搅拌的时间优选为1h~2h,例如1h、 1.2h、1.5h、1.7h或2h等。Preferably, the stirring speed of step (A) is 500rpm~2500rpm, such as 500rpm, 650rpm, 800rpm, 900rpm, 1000rpm, 1100rpm, 1250rpm, 1500rpm, 1700rpm, 2000rpm, 2200rpm or 2500rpm, etc.; the stirring time is preferably 1h ~2h, eg 1h, 1.2h, 1.5h, 1.7h or 2h, etc.
优选地,步骤(A)中,以所述改性纳米硅合金和中间相碳微球的原料的总质量为100%计,所述改性纳米硅合金的质量百分比为20%~55%,例如20%、 22.5%、25%、30%、33%、36%、40%、45%、47%、50%、52%、54%或55%等,优选为30%~50%。Preferably, in step (A), based on the total mass of the raw materials of the modified nano-silicon alloy and mesocarbon microspheres being 100%, the mass percentage of the modified nano-silicon alloy is 20% to 55%, For example, 20%, 22.5%, 25%, 30%, 33%, 36%, 40%, 45%, 47%, 50%, 52%, 54% or 55%, etc., preferably 30% to 50%.
优选地,步骤(B)所述升温的速率为0.5℃/min~15℃/min,例如0.5℃/min、 1.5℃/min、3℃/min、5℃/min、8℃/min、10℃/min、12℃/min、13℃/min或15℃ /min等。Preferably, the heating rate of step (B) is 0.5°C/min~15°C/min, such as 0.5°C/min, 1.5°C/min, 3°C/min, 5°C/min, 8°C/min, 10°C/min °C/min, 12 °C/min, 13 °C/min or 15 °C/min, etc.
优选地,步骤(B)控制压力为1MPa~8Mpa,例如1Mpa、2Mpa、3Mpa、 4Mpa、5Mpa、6Mpa、7Mpa或8Mpa等。Preferably, the control pressure in step (B) is 1MPa~8Mpa, such as 1Mpa, 2Mpa, 3Mpa, 4Mpa, 5Mpa, 6Mpa, 7Mpa or 8Mpa, etc.
优选地,步骤(B)所述保温的时间为1h~15h,例如1h、3h、5h、7h、8h、 10h、12h、13h、14h或15h等。Preferably, the incubation time in step (B) is 1 h to 15 h, such as 1 h, 3 h, 5 h, 7 h, 8 h, 10 h, 12 h, 13 h, 14 h or 15 h, and the like.
作为本发明所述方法的优选技术方案,步骤(2)所述分离的方法包括:沉淀分离法、离心分离法或溶剂分离法中的任意一种。As a preferred technical solution of the method of the present invention, the separation method in step (2) includes any one of precipitation separation method, centrifugal separation method or solvent separation method.
优选地,步骤(3)所述包覆改性的方法为:液相包覆法或固相包覆法中的任意一种。Preferably, the method of coating modification in step (3) is any one of a liquid phase coating method or a solid phase coating method.
优选地,所述液相包覆法的工艺步骤包括:将第二前驱体和有机物分散在有机溶剂体系中,干燥,得到第三前驱体。Preferably, the process steps of the liquid phase coating method include: dispersing the second precursor and the organic matter in an organic solvent system, and drying to obtain the third precursor.
优选地,所述液相包覆的过程中,有机溶剂为醚、醇或酮中的任意1种或至少2种的组合。Preferably, in the process of liquid phase coating, the organic solvent is any one or a combination of at least two of ether, alcohol or ketone.
优选地,所述固相包覆法的工艺步骤包括:将第二前驱体和有机物置于VC 高效混合机中,混合至少0.5h,得到第三前驱体。Preferably, the process steps of the solid-phase coating method include: placing the second precursor and the organic substance in a VC high-efficiency mixer, and mixing for at least 0.5 hours to obtain the third precursor.
优选地,所述固相包覆的过程中,调节VC高效混合机的转速为500r/min~ 3000r/min,例如500r/min、650r/min、800r/min、1000r/min、1200r/min、1500 r/min、2000r/min、2200r/min、2600r/min或3000r/min等。Preferably, in the process of solid-phase coating, the rotational speed of the VC high-efficiency mixer is adjusted to be 500r/min~3000r/min, such as 500r/min, 650r/min, 800r/min, 1000r/min, 1200r/min, 1500r/min, 2000r/min, 2200r/min, 2600r/min or 3000r/min, etc.
优选地,所述液相包覆法和固相包覆法中,有机物独立地为聚酯类、糖类、有机酸或沥青中的任意1种或至少2种的组合。Preferably, in the liquid phase coating method and the solid phase coating method, the organic substance is independently any one or a combination of at least two of polyesters, sugars, organic acids or asphalt.
优选地,所述液相包覆法和固相包覆法中,有机物为粉末状,中值粒径独立地为0.1μm~25μm,例如0.1μm、1μm、3μm、6μm、10μm、15μm、18μm、 20μm、22μm或25μm等,优选为0.5μm~8μm。Preferably, in the liquid-phase coating method and the solid-phase coating method, the organic matter is in powder form, and the median particle size is independently 0.1 μm to 25 μm, such as 0.1 μm, 1 μm, 3 μm, 6 μm, 10 μm, 15 μm, 18 μm , 20 μm, 22 μm or 25 μm, etc., preferably 0.5 μm to 8 μm.
作为本发明所述方法的优选技术方案,步骤(4)所述烧结包括:将第三前驱体置于反应器中,通入保护性气体,升温至500℃~1200℃,保温,得到复合负极材料。As a preferred technical solution of the method of the present invention, the sintering in step (4) includes: placing the third precursor in a reactor, introducing a protective gas, heating the temperature to 500°C to 1200°C, and maintaining the temperature to obtain a composite negative electrode Material.
此优选技术方案中,所述升温至500℃~1200℃,例如500℃、600℃、700℃、 750℃、800℃、900℃、950℃、1000℃、1100℃或1200℃等。In this preferred technical solution, the temperature is raised to 500°C to 1200°C, such as 500°C, 600°C, 700°C, 750°C, 800°C, 900°C, 950°C, 1000°C, 1100°C or 1200°C, etc.
优选地,步骤(4)所述烧结的过程中,反应器包括真空炉、箱式炉、回转炉、辊道窑、推板窑或管式炉中的任意1种。Preferably, during the sintering process in step (4), the reactor includes any one of a vacuum furnace, a box furnace, a rotary furnace, a roller kiln, a push-plate kiln or a tube furnace.
优选地,步骤(4)所述烧结的过程中,保护性气体包括氮气、氦气、氖气、氩气或氙气中的任意1种或至少2种的组合。Preferably, during the sintering process in step (4), the protective gas includes any one or a combination of at least two of nitrogen, helium, neon, argon or xenon.
优选地,步骤(4)所述烧结的过程中,升温的速率为0.5℃/min~20℃/min,例如0.5℃/min、1℃/min、3℃/min、5℃/min、7℃/min、10℃/min、12℃/min、 13℃/min或15℃/min等。Preferably, in the sintering process of step (4), the heating rate is 0.5°C/min~20°C/min, such as 0.5°C/min, 1°C/min, 3°C/min, 5°C/min, 7°C/min °C/min, 10 °C/min, 12 °C/min, 13 °C/min or 15 °C/min, etc.
优选地,步骤(4)所述烧结的过程中,保温的时间为0.5h~10h,例如0.5h、 1h、3h、5h、6h、8h或10h等。Preferably, in the sintering process of step (4), the holding time is 0.5h to 10h, for example, 0.5h, 1h, 3h, 5h, 6h, 8h or 10h.
作为本发明所述方法的进一步优选技术方案,所述方法包括以下步骤:As a further preferred technical solution of the method of the present invention, the method comprises the following steps:
(1)将中值粒径为100nm~500nm的纳米硅合金置于回转炉中,调节回转炉的转速为0.1r/min~5r/min,通入保护性气体,以0.5℃/min~20℃/min的速率升温至500℃~1200℃,通入有机碳源气体,有机碳源气体的通入流量为2 L/min~10L/min,保温1h~5h,自然冷却,得到碳包覆改性的纳米硅合金;(1) Place the nano-silicon alloy with a median particle size of 100nm to 500nm in a rotary furnace, adjust the speed of the rotary furnace to 0.1r/min to 5r/min, and introduce protective gas at a temperature of 0.5°C/min to 20 The rate of ℃/min is heated to 500℃~1200℃, and the organic carbon source gas is introduced, and the flow rate of the organic carbon source gas is 2 L/min~10L/min, the temperature is kept for 1h~5h, and the carbon coating is obtained by natural cooling. Modified nano-silicon alloy;
将碳包覆改性的纳米硅合金和中间相碳微球的原料置于高温高压反应釜中,通入保护性气体,以0.5℃/min~15℃/min的速率升温至200℃~350℃,以500rpm~2500rpm的速度搅拌1h~2h,使改性纳米硅合金在中间相碳微球的原料中均匀分散;然后以0.5℃/min~15℃/min的速率升温至400℃~550℃,控制压力为2MPa~5MPa,保温1h~15h,中间相碳微球的原料发生热缩聚反应,得到第一前驱体;The carbon-coated modified nano-silicon alloy and the raw materials of mesophase carbon microspheres are placed in a high temperature and high pressure reaction kettle, a protective gas is introduced, and the temperature is raised to 200 ℃ ~ 350 ℃ at a rate of 0.5 ℃ / min ~ 15 ℃ / min. ℃, stir at a speed of 500rpm to 2500rpm for 1h to 2h, so that the modified nano-silicon alloy is uniformly dispersed in the raw material of mesocarbon microspheres; ℃, the control pressure is 2MPa~5MPa, and the temperature is kept for 1h~15h, the raw material of the mesocarbon microspheres undergoes thermal polycondensation reaction, and the first precursor is obtained;
(2)对第一前驱体进行分离,得到第二前驱体;(2) separating the first precursor to obtain the second precursor;
(3)采用液相包覆法或固相包覆法,以有机物为碳源对第二前驱体进行碳源包覆,得到第三前驱体;(3) adopting the liquid phase coating method or the solid phase coating method, and using organic matter as the carbon source to carry out carbon source coating on the second precursor to obtain the third precursor;
(4)将第三前驱体置于反应器中,以0.5℃/min~20.0℃/min的速率升温至500℃~1200℃,保温0.5h~10h,自然冷却,得到中值粒径为中值粒径为1μm ~45μm的复合负极材料;(4) The third precursor is placed in the reactor, heated to 500°C to 1200°C at a rate of 0.5°C/min to 20.0°C/min, kept for 0.5h to 10h, and naturally cooled to obtain a median particle size of medium A composite negative electrode material with a particle size of 1 μm to 45 μm;
其中,以所述改性纳米硅合金和中间相碳微球的原料的总质量为100%计,所述改性纳米硅合金的质量百分比为20%~55%;Wherein, based on the total mass of the raw materials of the modified nano-silicon alloy and mesocarbon microspheres being 100%, the mass percentage of the modified nano-silicon alloy is 20% to 55%;
以所述第二前驱体和有机物的总质量为100%计,所述第二前驱体的质量百分含量为75%~95%,例如75%、80%、82%、85%、87.5%、90%、915%、93%或95%等;Taking the total mass of the second precursor and the organic matter as 100%, the mass percentage of the second precursor is 75% to 95%, such as 75%, 80%, 82%, 85%, 87.5% , 90%, 915%, 93% or 95%, etc.;
所述纳米硅合金为硅铁合金、硅镍合金、硅钛合金、硅锡合金、硅铜合金或硅铝合金中的任意1种或至少2种的组合;The nano-silicon alloy is any one or a combination of at least two of silicon-iron alloy, silicon-nickel alloy, silicon-titanium alloy, silicon-tin alloy, silicon-copper alloy or silicon-aluminum alloy;
所述中间相碳微球的原料为煤沥青、煤焦油、石油沥青、石油渣油、合成沥青、合成树脂或重油中的任意1种或至少2种的组合;The raw material of the mesocarbon microspheres is any one or a combination of at least two of coal pitch, coal tar, petroleum pitch, petroleum residue, synthetic pitch, synthetic resin or heavy oil;
所述有机物为聚酯类、糖类、有机酸或沥青中的任意1种或至少2种的组合。The organic substance is any one or a combination of at least two of polyesters, sugars, organic acids or asphalt.
此优选技术方案中,通过对步骤(1)气相包覆工艺的参数控制,使纳米硅合金表面形成合适厚度且包覆均匀的碳包覆层,进一步配合步骤(2)改性纳米硅合金和中间相碳微球的原料的用量、步骤(3)有机物的用量等参数,可以形成良好的分散以及有效的包覆,能够大幅提升材料的首次可逆容量、首次库伦效率以及循环性能。In this preferred technical solution, by controlling the parameters of the gas phase coating process in step (1), a carbon coating layer with suitable thickness and uniform coating is formed on the surface of the nano-silicon alloy, and the modified nano-silicon alloy and Parameters such as the amount of raw materials of mesocarbon microspheres and the amount of organic matter in step (3) can form good dispersion and effective coating, which can greatly improve the first reversible capacity, first Coulomb efficiency and cycle performance of the material.
第三方面,本发明提供一种锂离子电池,所述锂离子电池包含第一方面所述的复合负极材料。In a third aspect, the present invention provides a lithium ion battery, the lithium ion battery comprising the composite negative electrode material described in the first aspect.
与已有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明的复合负极材料结构新颖,改性的纳米硅合金提升了纳米硅的亲油性,增加了其分散于中间相碳微球内部的结合性和分散性,这种独特的结构可以很好地缓解硅合金的膨胀,同时有效抑制材料与电解液之间的副反应,进一步在中间相碳微球外部包覆碳材料包覆层,得到复合负极材料,将该复合负极材料应用于锂离子电池时,其表现出高比容量、高效率和优异的循环寿命。(1) The composite negative electrode material of the present invention has a novel structure, and the modified nano-silicon alloy improves the lipophilicity of nano-silicon, and increases its binding and dispersibility within the mesocarbon microspheres. This unique structure can The expansion of the silicon alloy is well relieved, and the side reaction between the material and the electrolyte is effectively suppressed, and the carbon material coating layer is further coated on the outside of the mesocarbon microspheres to obtain a composite negative electrode material, which is applied to the composite negative electrode material. When used as lithium-ion batteries, it exhibits high specific capacity, high efficiency and excellent cycle life.
(2)本发明的方法通过在聚合反应制备中间相碳微球的过程中引入改性纳米硅合金,可以形成改性纳米硅合金分散于中间相碳微球内部的结构,改性的纳米硅合金提升了纳米硅的亲油性,可以很好地分散于中间相碳微球内部且结合性高,这种独特的结构可以很好地缓解硅合金的膨胀,同时有效抑制材料与电解液之间的副反应。(2) The method of the present invention can form a structure in which the modified nano-silicon alloy is dispersed inside the mesocarbon microspheres by introducing the modified nano-silicon alloy in the process of preparing the meso-carbon microspheres by the polymerization reaction. The modified nano-silicon The alloy improves the lipophilicity of nano-silicon, which can be well dispersed inside the mesocarbon microspheres and has high bonding. This unique structure can well relieve the expansion of the silicon alloy, and at the same time effectively inhibit the interaction between the material and the electrolyte. side reactions.
本发明优选采用气相包覆法对纳米硅合金进行碳包覆改性,并控制回转炉转速、反应温度、有机碳源气体的通入流量和保温时间等参数,使纳米硅合金表面形成合适厚度且包覆均匀的碳包覆改性层,从而有利于提升纳米硅合金表面的亲油性,改善其分散于中间相碳微球内部的分散性和结合性,进而提升复合负极材料的电化学性能。The present invention preferably adopts the gas-phase coating method to carry out carbon coating modification on the nano-silicon alloy, and controls parameters such as the rotational speed of the rotary kiln, the reaction temperature, the flow rate of the organic carbon source gas and the holding time, so that the surface of the nano-silicon alloy forms a suitable thickness And coated with a uniform carbon coating modified layer, which is conducive to improving the lipophilicity of the surface of the nano-silicon alloy, improving its dispersion and binding within the mesocarbon microspheres, and then improving the electrochemical performance of the composite negative electrode material. .
(3)本发明工艺简单,易于规模化生产。(3) The process of the present invention is simple, and it is easy to produce on a large scale.
附图说明Description of drawings
图1为本发明提供的复合负极材料的结构示意图,其中,1-中间相碳微球, 2-改性硅纳米合金,3-碳材料包覆层;1 is a schematic structural diagram of a composite negative electrode material provided by the present invention, wherein 1- mesophase carbon microspheres, 2-modified silicon nano-alloy, 3-carbon material coating layer;
图2为采用实施例1的负极材料制成电池并测试得到的循环曲线。FIG. 2 is a cycle curve obtained by using the negative electrode material of Example 1 to make a battery and test it.
具体实施方式Detailed ways
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。The technical solutions of the present invention are further described below with reference to the accompanying drawings and through specific embodiments.
采用以下方法对各实施例和对比例的负极材料进行测试:Adopt the following method to test the negative electrode material of each embodiment and comparative example:
①采用以下方法测试首次充放电性能:①Use the following methods to test the first charge and discharge performance:
将各实施例及对比例的负极材料、导电剂和粘结剂按质量百分比90:5:5分散在溶剂中混合,得到的混合浆料涂覆于铜箔集流体上,真空烘干、制得负极极片;然后将1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1)电解液、SK(12μm) 隔膜、外壳采用常规工艺装配CR2016扣式电池,电化学性能测试电流密度0.1C 等于800-1100mA h/g,测试结果见表1。The negative electrode materials, conductive agents and binders of each embodiment and comparative example are dispersed in a solvent according to a mass percentage of 90:5:5 and mixed, and the obtained mixed slurry is coated on the copper foil current collector, dried in a vacuum, and prepared. Then, 1 mol/L LiPF 6 /EC+DMC+EMC (v/v=1:1:1) electrolyte, SK (12μm) separator, and outer shell were assembled by conventional technology to assemble CR2016 button battery. Chemical performance test The current density of 0.1C is equal to 800-1100mA h/g. The test results are shown in Table 1.
②采用以下方法测试循环性能:②Use the following methods to test the cycle performance:
将负极材料、导电剂和粘结剂按质量百分比95:2:3将他们分散在溶剂中混合,涂覆于铜箔集流体上,真空烘干、制得负极极片;然后将传统成熟工艺制备的三元正极极片、1mol/L的LiPF6/EC+DMC+EMC(v/v=1:1:1)电解液、SK (12μm)隔膜、外壳采用常规生产工艺装配18650圆柱单体电池。圆柱电池的充放电测试在武汉金诺电子有限公司LAND电池测试系统上,在常温条件,1C 倍率下恒流充放电,充放电电压限制在2.75-4.2V,测试结果见表1。Disperse and mix the negative electrode material, conductive agent and binder in a solvent according to the mass percentage of 95:2:3, coat it on the copper foil current collector, vacuum dry to obtain the negative electrode piece; then the traditional mature technology The prepared ternary positive electrode, 1mol/L LiPF 6 /EC+DMC+EMC (v/v=1:1:1) electrolyte, SK (12μm) separator, and shell were assembled with 18650 cylindrical monomer by conventional production process Battery. The charge-discharge test of the cylindrical battery was carried out on the LAND battery test system of Wuhan Jinnuo Electronics Co., Ltd., under normal temperature conditions, constant current charge and discharge at a rate of 1C, and the charge-discharge voltage was limited to 2.75-4.2V. The test results are shown in Table 1.
实施例1Example 1
(1)将粒径为150nm的硅铁合金置于回转炉中,调节回转速度为1.5r/min,通入氮气,以5.0℃/min升温速率升温至850℃,通入乙炔气体,流量为2.0L/min,保温1h,自然冷却至室温,得到改性纳米硅铁合金;(1) Place the ferrosilicon alloy with a particle size of 150nm in a rotary furnace, adjust the rotation speed to 1.5r/min, feed nitrogen, heat up to 850°C at a heating rate of 5.0°C/min, feed acetylene gas, and the flow rate is 2.0 L/min, hold for 1 h, and cool to room temperature naturally to obtain modified nano-ferrosilicon alloy;
(2)将改性纳米硅铁合金和煤沥青按质量比50:50置于高温高压反应釜中,通入氮气,以5.0℃/min升温速率升温至250℃,在反应釜中以2200rpm搅拌速度搅拌1h,然后以3.0℃/min升温速率升温至500℃,控制压力2MPa,保温 5h得到第一前驱体;通过溶剂分离得到第二前驱体;(2) place the modified nano-ferrosilicon alloy and coal pitch in a high-temperature and high-pressure reaction kettle at a mass ratio of 50:50, feed nitrogen, and heat up to 250°C at a heating rate of 5.0°C/min, and in the reaction kettle at a stirring speed of 2200rpm Stir for 1 h, then heat up to 500 °C at a heating rate of 3.0 °C/min, control the pressure to 2 MPa, and keep the temperature for 5 h to obtain the first precursor; the second precursor is obtained by solvent separation;
(3)将第二前驱体和沥青按90:10置于VC高效混合机中,调节转速为 2000.0r/min,混合0.5h,得到第三前驱体;将第三前驱体置于箱式炉中,通入氮气气体,以5.0℃/min升温速率升温至900℃,保温1.0h,自然冷却至室温,得到高容量复合负极材料。(3) Place the second precursor and asphalt in a VC high-efficiency mixer at a ratio of 90:10, adjust the rotational speed to 2000.0 r/min, and mix for 0.5 h to obtain a third precursor; place the third precursor in a box furnace , nitrogen gas was introduced, the temperature was raised to 900°C at a heating rate of 5.0°C/min, maintained for 1.0 h, and cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
图2为采用本实施例的负极材料制成电池并测试得到的循环曲线,可以看出,其具有非常优异的循环性能,1C/1C循环500次容量保持率仍高达89.3%。Figure 2 shows the cycle curve obtained by using the negative electrode material of this embodiment to make a battery and test it. It can be seen that it has very excellent cycle performance, and the capacity retention rate is still as high as 89.3% after 500 cycles of 1C/1C.
实施例2Example 2
(1)将粒径为200nm的硅钛合金置于回转炉中,调节回转速度为3r/min,通入氩气,以3.0℃/min升温速率升温至950℃,通入甲烷气体,流量为5.0L/min,保温3h,自然冷却至室温,得到改性纳米硅钛合金;(1) Place a silicon-titanium alloy with a particle size of 200 nm in a rotary furnace, adjust the rotation speed to 3 r/min, feed argon gas, heat up to 950 °C at a heating rate of 3.0 °C/min, feed methane gas, and the flow rate is 5.0L/min, heat preservation for 3h, and natural cooling to room temperature to obtain modified nano-silicon-titanium alloy;
(2)将性纳米硅钛合金和煤焦油按质量比30:70置于高温高压反应釜中,通入氩气,以3.0℃/min升温速率升温至200℃,在反应釜中以1500rpm搅拌速度搅拌2h,然后以5.0℃/min升温速率升温至450℃,控制压力5MPa,保温 7h得到第一前驱体;通过离心分离得到第二前驱体;(2) Put the nano-silicon-titanium alloy and coal tar in a high temperature and high pressure reaction kettle in a mass ratio of 30:70, pass argon gas, heat up to 200 °C at a heating rate of 3.0 °C/min, and stir at 1500 rpm in the reaction kettle Stir at a speed for 2h, then heat up to 450°C at a heating rate of 5.0°C/min, control the pressure to 5MPa, and keep the temperature for 7h to obtain the first precursor; the second precursor is obtained by centrifugal separation;
(3)将第二前驱体和葡萄糖按85:15分散在乙醇中,干燥,得到第三前驱体;将第三前驱体置于回转炉中,通入氮气气体,以3.0℃/min升温速率升温至 700℃,保温2.0h,自然冷却至室温,得到高容量复合负极材料。(3) Disperse the second precursor and glucose in ethanol at a ratio of 85:15, and dry to obtain the third precursor; place the third precursor in a rotary kiln, introduce nitrogen gas, and heat up at a rate of 3.0°C/min The temperature was raised to 700° C., the temperature was maintained for 2.0 h, and then cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
实施例3Example 3
(1)将粒径为300nm的硅铜合金置于回转炉中,调节回转速度为5r/min,通入氮气,以2.0℃/min升温速率升温至700℃,通入乙烯气体,流量为7.0L/min,保温5h,自然冷却至室温,得到改性纳米硅铜合金;(1) Place the silicon-copper alloy with a particle size of 300nm in a rotary furnace, adjust the rotation speed to 5r/min, feed nitrogen, heat up to 700°C at a heating rate of 2.0°C/min, feed ethylene gas, and the flow rate is 7.0 L/min, heat preservation for 5h, and natural cooling to room temperature to obtain modified nano-silicon copper alloy;
(2)将改性纳米硅铜合金和石油沥青按质量比40:60置于高温高压反应釜中,通入氮气,以10.0℃/min升温速率升温至300℃,在反应釜中以800rpm 搅拌速度搅拌2h,然后以6.0℃/min升温速率升温至480℃,控制压力10MPa,保温10h得到第一前驱体;通过沉淀分离得到第二前驱体;(2) Place the modified nano-silicon copper alloy and petroleum pitch in a high-temperature and high-pressure reaction kettle in a mass ratio of 40:60, feed nitrogen, heat up to 300°C at a heating rate of 10.0°C/min, and stir at 800rpm in the reaction kettle. Stir at a speed for 2h, then heat up to 480°C at a heating rate of 6.0°C/min, control the pressure to 10MPa, and keep the temperature for 10h to obtain the first precursor; the second precursor is obtained by precipitation and separation;
(3)将第二前驱体和葡萄糖按82:18置于VC高效混合机中,调节转速为 3000.0r/min,混合0.5h,得到第三前驱体;将第三前驱体置于箱式炉中,通入氮气气体,以10.0℃/min升温速率升温至1100℃,保温3.0h,自然冷却至室温,得到高容量复合负极材料。(3) Place the second precursor and glucose in a VC high-efficiency mixer at a ratio of 82:18, adjust the rotational speed to 3000.0 r/min, and mix for 0.5 h to obtain a third precursor; place the third precursor in a box furnace In the process, nitrogen gas was introduced, the temperature was raised to 1100°C at a heating rate of 10.0°C/min, the temperature was maintained for 3.0 h, and then cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
实施例4Example 4
(1)将粒径为500nm的硅镍合金置于回转炉中,调节回转速度为2.5r/min,通入氩气,以15.0℃/min升温速率升温至1100℃,通入苯乙烯气体,流量为15.0 L/min,保温0.5h,自然冷却至室温,得到改性纳米硅镍合金;(1) Place the silicon-nickel alloy with a particle size of 500nm in a rotary furnace, adjust the rotation speed to 2.5r/min, feed argon gas, heat up to 1100°C at a heating rate of 15.0°C/min, feed styrene gas, The flow rate was 15.0 L/min, the temperature was kept for 0.5 h, and then cooled to room temperature naturally to obtain the modified nano-silicon-nickel alloy;
(2)将性纳米硅镍合金和合成沥青按质量比45:55置于高温高压反应釜中,通入氩气,以7.0℃/min升温速率升温至350℃,在反应釜中以1000rpm搅拌速度搅拌1.8h,然后以10.0℃/min升温速率升温至550℃,控制压力8MPa,保温12h得到第一前驱体;通过离心分离得到第二前驱体;(2) Place the nano-silicon-nickel alloy and synthetic pitch in a high-temperature and high-pressure reaction kettle in a mass ratio of 45:55, feed argon gas, heat up to 350°C at a heating rate of 7.0°C/min, and stir at 1000rpm in the reaction kettle Stir at a speed of 1.8h, then heat up to 550°C at a heating rate of 10.0°C/min, control the pressure to 8MPa, and keep the temperature for 12h to obtain the first precursor; the second precursor is obtained by centrifugal separation;
(3)将第二前驱体和柠檬酸按78:22分散在丙酮中,干燥,得到第三前驱体;将第三前驱体置于回转炉中,通入氮气气体,以1.0℃/min升温速率升温至 600℃,保温10.0h,自然冷却至室温,得到高容量复合负极材料。(3) Disperse the second precursor and citric acid in acetone at a ratio of 78:22, and dry to obtain the third precursor; place the third precursor in a rotary kiln, feed nitrogen gas, and heat up at 1.0°C/min The rate of heating was increased to 600 °C, the temperature was kept for 10.0 h, and then cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
实施例5Example 5
(1)将粒径为750nm的硅铝合金置于回转炉中,调节回转速度为4r/min,通入氮气,以6.0℃/min升温速率升温至600℃,通入苯气体,流量为3.5L/min,保温7.5h,自然冷却至室温,得到改性纳米硅铝合金;(1) Place the silicon-aluminum alloy with a particle size of 750nm in a rotary furnace, adjust the rotation speed to 4r/min, feed nitrogen, heat up to 600°C at a heating rate of 6.0°C/min, feed benzene gas, and the flow rate is 3.5 L/min, heat preservation for 7.5h, and natural cooling to room temperature to obtain modified nano-silicon-aluminum alloy;
(2)将改性纳米硅铝合金和石油渣油按质量比42:58置于高温高压反应釜中,通入氮气,以5.0℃/min升温速率升温至275℃,在反应釜中以2250rpm 搅拌速度搅拌1.5h,然后以8.0℃/min升温速率升温至400℃,控制压力12MPa,保温3h得到第一前驱体;通过溶剂分离得到第二前驱体;(2) place the modified nano-silicon aluminum alloy and petroleum residue in a high-temperature and high-pressure reaction kettle at a mass ratio of 42:58, feed nitrogen, and heat up to 275°C at a heating rate of 5.0°C/min, in the reaction kettle at 2250rpm Stir at a stirring speed for 1.5h, then heat up to 400°C at a heating rate of 8.0°C/min, control the pressure to 12MPa, and keep the temperature for 3h to obtain the first precursor; the second precursor is obtained by solvent separation;
(3)将第二前驱体和沥青按95:5置于VC高效混合机中,调节转速为1500.0 r/min,混合4h,得到第三前驱体;将第三前驱体置于箱式炉中,通入氮气气体,以5.0℃/min升温速率升温至600℃,保温10.0h,自然冷却至室温,得到高容量复合负极材料。(3) Place the second precursor and asphalt in a VC high-efficiency mixer at a ratio of 95:5, adjust the rotational speed to 1500.0 r/min, and mix for 4 hours to obtain a third precursor; place the third precursor in a box furnace , nitrogen gas was introduced, the temperature was raised to 600°C at a heating rate of 5.0°C/min, maintained for 10.0 h, and cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
实施例6Example 6
(1)将粒径为80nm的硅锡合金置于回转炉中,调节回转速度为2r/min,通入氩气,以10.0℃/min升温速率升温至1000℃,通入丙酮气体,流量为 1.0L/min,保温8h,自然冷却至室温,得到改性纳米硅锡合金;(1) Place the silicon-tin alloy with a particle size of 80nm in a rotary furnace, adjust the rotation speed to 2r/min, feed argon gas, heat up to 1000°C at a heating rate of 10.0°C/min, feed acetone gas, and the flow rate is 1.0L/min, heat preservation for 8h, and natural cooling to room temperature to obtain modified nano-silicon-tin alloy;
(2)将性纳米硅锡合金和重油按质量比35:65置于高温高压反应釜中,通入氩气,以4.0℃/min升温速率升温至200℃,在反应釜中以2000rpm搅拌速度搅拌2h,然后以8.0℃/min升温速率升温至500℃,控制压力6.5MPa,保温 3h得到第一前驱体;通过离心分离得到第二前驱体;(2) Put the nano-silicon-tin alloy and heavy oil in a high temperature and high pressure reaction kettle at a mass ratio of 35:65, feed argon gas, heat up to 200°C at a heating rate of 4.0°C/min, and stir at a speed of 2000rpm in the reaction kettle. Stir for 2h, then raise the temperature to 500°C at a heating rate of 8.0°C/min, control the pressure to 6.5MPa, and keep the temperature for 3h to obtain the first precursor; the second precursor is obtained by centrifugal separation;
(3)将第二前驱体和葡萄糖按80:20分散在甲醚中,干燥,得到第三前驱体;将第三前驱体置于回转炉中,通入氦气气体,以8.0℃/min升温速率升温至 800℃,保温7.0h,自然冷却至室温,得到高容量复合负极材料。(3) Disperse the second precursor and glucose in methyl ether at a ratio of 80:20, and dry to obtain the third precursor; place the third precursor in a rotary kiln, feed helium gas, and heat at 8.0°C/min The heating rate was increased to 800° C., the temperature was maintained for 7.0 h, and then cooled to room temperature naturally to obtain a high-capacity composite negative electrode material.
对比例1Comparative Example 1
按照与实施例1基本相同的方法制备高容量复合负极材料,区别在于:将改性纳米硅铁合金更换成纳米硅,不进行改性处理,第三前驱体不进行包覆处理;按与实施例1相同的方法制作电池。The high-capacity composite negative electrode material was prepared in the same manner as in Example 1, except that the modified nano-ferrosilicon alloy was replaced with nano-silicon, no modification treatment was performed, and the third precursor was not subjected to coating treatment; 1 Make the battery in the same way.
表1Table 1
本发明各实施例的负极材料具有高比容量、高效率和优异的循环寿命。而对比例1中使用膨胀和电导率较差的纳米硅作为活性物质,且不进行改性处理,导致硅在中间相碳微球内部分散效果较差,颗粒团聚导致材料膨胀较大,循环性能不好;对比例1在中间相碳微球表面不做碳包覆,由于纳米硅在中间相碳微球原料中分散性较差,有可能有部分纳米硅裸露在中间相碳微球表面,从而导致比表面积增大,电解液副反应增多,材料库伦效率较低,硅的膨胀无法得到很好的抑制,循环性能进一步劣化。The negative electrode materials of the embodiments of the present invention have high specific capacity, high efficiency and excellent cycle life. In Comparative Example 1, nano-silicon with poor expansion and electrical conductivity was used as the active material, and no modification treatment was performed, resulting in poor dispersion of silicon in the mesocarbon microspheres, and particle agglomeration caused the material to expand greatly and cycle performance. Not good; in Comparative Example 1, the surface of the mesocarbon microspheres was not coated with carbon. Due to the poor dispersion of nano-silicon in the raw material of mesocarbon microspheres, some nano-silicon may be exposed on the surface of the mesocarbon microspheres. As a result, the specific surface area is increased, the side reactions of the electrolyte are increased, the coulombic efficiency of the material is low, the expansion of silicon cannot be well suppressed, and the cycle performance is further deteriorated.
申请人声明,本发明通过上述实施例来说明本发明的详细方法,但本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。The applicant declares that the present invention illustrates the detailed method of the present invention through the above-mentioned embodiments, but the present invention is not limited to the above-mentioned detailed method, that is, it does not mean that the present invention must rely on the above-mentioned detailed method to be implemented. Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the protection scope and disclosure scope of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810935025.9A CN110838574A (en) | 2018-08-16 | 2018-08-16 | High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material |
CN202410079814.2A CN117790759A (en) | 2018-08-16 | 2018-08-16 | Composite negative electrode material and preparation method thereof, lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810935025.9A CN110838574A (en) | 2018-08-16 | 2018-08-16 | High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410079814.2A Division CN117790759A (en) | 2018-08-16 | 2018-08-16 | Composite negative electrode material and preparation method thereof, lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110838574A true CN110838574A (en) | 2020-02-25 |
Family
ID=69574134
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410079814.2A Pending CN117790759A (en) | 2018-08-16 | 2018-08-16 | Composite negative electrode material and preparation method thereof, lithium ion battery |
CN201810935025.9A Pending CN110838574A (en) | 2018-08-16 | 2018-08-16 | High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410079814.2A Pending CN117790759A (en) | 2018-08-16 | 2018-08-16 | Composite negative electrode material and preparation method thereof, lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN117790759A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023184125A1 (en) * | 2022-03-29 | 2023-10-05 | 宁德新能源科技有限公司 | Electrochemical device and electronic apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1851961A (en) * | 2006-05-26 | 2006-10-25 | 清华大学 | Active-carbon-microball coated metal composition negative polar material and preparing method |
CN1913200A (en) * | 2006-08-22 | 2007-02-14 | 深圳市贝特瑞电子材料有限公司 | Silicon carbone compound negative polar material of lithium ion battery and its preparation method |
CN102637872A (en) * | 2012-01-07 | 2012-08-15 | 天津市贝特瑞新能源材料有限责任公司 | High-capacity silicon-carbon composited anode material, preparation method and application thereof |
CN107221673A (en) * | 2017-06-16 | 2017-09-29 | 安徽科达洁能新材料有限公司 | A kind of preparation method of lithium ion battery silicon-carbon cathode material |
CN108075110A (en) * | 2016-11-14 | 2018-05-25 | 微宏动力系统(湖州)有限公司 | Negative electrode for lithium ion battery composite material and lithium ion battery |
-
2018
- 2018-08-16 CN CN202410079814.2A patent/CN117790759A/en active Pending
- 2018-08-16 CN CN201810935025.9A patent/CN110838574A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1851961A (en) * | 2006-05-26 | 2006-10-25 | 清华大学 | Active-carbon-microball coated metal composition negative polar material and preparing method |
CN1913200A (en) * | 2006-08-22 | 2007-02-14 | 深圳市贝特瑞电子材料有限公司 | Silicon carbone compound negative polar material of lithium ion battery and its preparation method |
CN102637872A (en) * | 2012-01-07 | 2012-08-15 | 天津市贝特瑞新能源材料有限责任公司 | High-capacity silicon-carbon composited anode material, preparation method and application thereof |
CN108075110A (en) * | 2016-11-14 | 2018-05-25 | 微宏动力系统(湖州)有限公司 | Negative electrode for lithium ion battery composite material and lithium ion battery |
CN107221673A (en) * | 2017-06-16 | 2017-09-29 | 安徽科达洁能新材料有限公司 | A kind of preparation method of lithium ion battery silicon-carbon cathode material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023184125A1 (en) * | 2022-03-29 | 2023-10-05 | 宁德新能源科技有限公司 | Electrochemical device and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN117790759A (en) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114447325B (en) | Porous carbon material, preparation method thereof, negative electrode and lithium metal battery | |
WO2019063006A1 (en) | Carbon matrix composite material, preparation method therefor and lithium ion battery comprising same | |
WO2020238658A1 (en) | Silicon oxide/carbon composite negative electrode material and preparation method therefor, and lithium-ion battery | |
CN113964307B (en) | A lithium-ion battery silicon-carbon negative electrode material and preparation method thereof | |
CN109686952B (en) | Silicon-carbon negative electrode material and coating preparation method | |
CN107394152B (en) | High-conductivity graphene-based lithium iron phosphate spherical composite material, preparation method thereof, and lithium ion battery comprising the same | |
WO2016008455A2 (en) | Multiple-element composite material for negative electrodes, preparation method therefor, and lithium-ion battery having same | |
CN109616638B (en) | Spherical core-shell structure mixed graphite @ hard carbon composite material and preparation method and application thereof | |
CN106784640A (en) | Lithium ion battery silicon substrate composite negative pole material, its preparation method and the lithium ion battery negative comprising the material | |
CN112018346A (en) | A kind of phosphorus-doped CoSe2/Mxene composite material and preparation method thereof | |
CN114068891B (en) | Silicon-carbon composite negative electrode material and preparation method thereof, lithium-ion battery | |
CN106784741B (en) | Carbon-silicon composite material, preparation method thereof and lithium ion battery containing composite material | |
CN103346302A (en) | Lithium battery silicon-carbon nanotube composite cathode material as well as preparation method and application thereof | |
CN101728517A (en) | Method for preparing surface self-grown titanium nitride conducting film modified lithium titanate | |
CN114944470A (en) | Lithium metal composite material and modified material thereof, and preparation method and application thereof | |
CN110085823B (en) | A kind of nanocomposite negative electrode material and its preparation method and application | |
CN111952550A (en) | A core-shell composite negative electrode material, its preparation method and application | |
CN116722139A (en) | High-capacity compact hard carbon negative electrode material and preparation method and application thereof | |
CN114300671B (en) | Graphite composite negative electrode material and preparation method and application thereof | |
CN108899488A (en) | Modified carbon-coated silicon monoxide composite material, preparation method and application thereof | |
CN100379059C (en) | A kind of lithium ion battery silicon/carbon/graphite composite negative electrode material and preparation method thereof | |
CN114520328A (en) | A lithium ion battery negative electrode material and its preparation and negative electrode and battery | |
CN115275175A (en) | Silicon-carbon composite material and preparation method and application thereof | |
CN110061198B (en) | A kind of silicon carbon composite negative electrode material and its preparation method and application | |
CN110838574A (en) | High-capacity composite negative electrode material for lithium ion battery, preparation method thereof, and lithium ion battery comprising the composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 518106 Gongming City, Guangdong province Guangming New District Office of the West community high and New Technology Industrial Park, building eighth, Applicant after: Beitrei New Materials Group Co.,Ltd. Applicant after: HUAWEI TECHNOLOGIES Co.,Ltd. Address before: 518106 Gongming City, Guangdong province Guangming New District Office of the West community high and New Technology Industrial Park, building eighth, Applicant before: Shenzhen BTR New Energy Materials Inc. Applicant before: HUAWEI TECHNOLOGIES Co.,Ltd. |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200225 |