CN110837886A - A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network - Google Patents
A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network Download PDFInfo
- Publication number
- CN110837886A CN110837886A CN201911030774.8A CN201911030774A CN110837886A CN 110837886 A CN110837886 A CN 110837886A CN 201911030774 A CN201911030774 A CN 201911030774A CN 110837886 A CN110837886 A CN 110837886A
- Authority
- CN
- China
- Prior art keywords
- network
- output
- input
- weight
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 16
- 238000012549 training Methods 0.000 claims abstract description 25
- 238000000691 measurement method Methods 0.000 claims abstract description 5
- 230000006870 function Effects 0.000 claims description 38
- 238000012360 testing method Methods 0.000 claims description 12
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 11
- 210000002569 neuron Anatomy 0.000 claims description 11
- 230000004913 activation Effects 0.000 claims description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 238000013138 pruning Methods 0.000 abstract description 5
- 239000010865 sewage Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011478 gradient descent method Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/26—Government or public services
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Mathematical Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Tourism & Hospitality (AREA)
- Educational Administration (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Primary Health Care (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域technical field
本发明针对污水处理过程中氨氮浓度难以测量的问题,将批量梯度下降算法与L0正则化结合应用于神经网络,对污水处理过程中氨氮浓度进行预测。神经网络是智能信息处理技术的主要分支之一,基于神经网络的污水氨氮浓度预测技术不但属于水处理领域,还属于智能信息领域。Aiming at the problem that the ammonia nitrogen concentration is difficult to measure in the sewage treatment process, the invention combines the batch gradient descent algorithm with the L0 regularization and applies it to the neural network to predict the ammonia nitrogen concentration in the sewage treatment process. Neural network is one of the main branches of intelligent information processing technology. The prediction technology of ammonia nitrogen concentration in sewage based on neural network belongs not only to the field of water treatment, but also to the field of intelligent information.
背景技术Background technique
随着当今社会城市化和工业化的快速发展,我国水环境已受到严重破坏。污水排放不仅严重影响居民的日常生活,而且破坏了大自然的生态平衡。为了降低污水的排放量,实现水的循环利用,全国各地纷纷建立了污水处理厂。在污水处理过程中,NH4-N浓度是衡量污水处理工艺(WWTP)性能的一个重要参数,然而由于污水处理过程是一个具有高度非线性、大滞后、大时变、多变量耦合等特点的复杂系统,而且维护成本较高,因此对其进行预测仍然是一个悬而未决的问题。因此,如何低成本、高效率地对出水NH4-N的浓度进行预测对于出水水质的达标考核以及污水处理厂的稳定运行是非常有必要的。With the rapid development of urbanization and industrialization in today's society, my country's water environment has been seriously damaged. Sewage discharge not only seriously affects the daily life of residents, but also destroys the ecological balance of nature. In order to reduce the discharge of sewage and realize the recycling of water, sewage treatment plants have been established all over the country. In the sewage treatment process, the NH4-N concentration is an important parameter to measure the performance of the sewage treatment process (WWTP). systems, and they are expensive to maintain, so forecasting them remains an open question. Therefore, how to predict the concentration of NH4-N in the effluent with low cost and high efficiency is very necessary for the assessment of the effluent quality and the stable operation of the sewage treatment plant.
软测量方法利用易测变量,通过构建模型对难测变量进行实时预测,为污水处理过程中关键水质参数的测量提供了一种高效快速的解决方案。神经网络因其良好的学习能力、信息处理能力和自适应特性,能对非线性系统进行高精度逼近。本发明设计了一种基于ELM-SL0神经网络的出水NH4-N软测量方法,实现出水NH4-N浓度的在线预测。The soft sensing method utilizes easy-to-measure variables and builds models to predict difficult-to-measure variables in real time, providing an efficient and fast solution for the measurement of key water quality parameters in the sewage treatment process. Because of its good learning ability, information processing ability and self-adaptive characteristics, neural network can approximate nonlinear systems with high precision. The invention designs a soft measurement method of effluent NH4-N based on ELM-SL0 neural network, so as to realize the online prediction of effluent NH4-N concentration.
发明内容SUMMARY OF THE INVENTION
一种基于ELM-SL0神经网络的出水NH4-N软测量方法,主要操作流程如下:首先将L0正则化惩罚项添加到传统误差函数使不重要权值逼近于0,然后利用批量梯度下降算法对改进的误差函数进行更新以实现网络的训练和修剪。本方法利用神经网络的学习能力,根据训练误差对输出权值进行优化,消除不重要输出权值,然后对污水处理过程中的氨氮浓度进行预测,使其误差最小化,提高了网络结构稀疏性。其特征在于,包括以下步骤:A soft sensing method for effluent NH4-N based on ELM-SL0 neural network. The main operation process is as follows: First, add the L0 regularization penalty term to the traditional error function to make the
步骤1:初始化网络结构及参数Step 1: Initialize the network structure and parameters
步骤1.1:初始化网络结构Step 1.1: Initialize the network structure
将温度、溶氧量、总悬浮物含量、pH值以及出水氧化还原电位作为输入变量,氨氮浓度作为输出变量,确定回声状态网络结构为5-N-1,其中N表示储备池节点个数。典型回声状态网络的储备池节点个数N取值为50≤N≤1000,为了更好观察所提算法的修剪效果,N的取值不宜太小。该网络中N取500,即该网络含有5个输入节点,500个储备池节点,1个输出节点。Taking temperature, dissolved oxygen, total suspended solids content, pH value, and effluent redox potential as input variables, and ammonia nitrogen concentration as output variables, the network structure of the echo state is determined as 5-N-1, where N represents the number of nodes in the reservoir. The number N of the reserve pool nodes of a typical echo state network is 50≤N≤1000. In order to better observe the pruning effect of the proposed algorithm, the value of N should not be too small. In this network, N is 500, that is, the network contains 5 input nodes, 500 reserve pool nodes, and 1 output node.
步骤1.2:初始化网络参数Step 1.2: Initialize network parameters
将sigmoid函数作为网络激活函数G(·),确定初始迭代次数i=0,最大迭代次数imax≥5000,训练样本uk表示第k组输入样本,tk表示第k组实际输出值,表示输入样本维度为n,L为样本总数;随机初始化网络输入权值W和阈值向量b在(0,1)之间,设置初始输出权值W=0。Take the sigmoid function as the network activation function G( ), determine the initial number of iterations i=0, the maximum number of iterations i max ≥ 5000, and the training samples u k represents the kth group of input samples, tk represents the kth group of actual output values, Indicates that the input sample dimension is n, and L is the total number of samples; the random initialization network input weight W and the threshold vector b are between (0, 1), and the initial output weight W=0.
步骤2:采用网格搜索法确定学习率η及正则化参数λStep 2: Use the grid search method to determine the learning rate η and the regularization parameter λ
(1)首先,将正则化参数置0,即λ=0,然后以0.0005步长将学习率的搜索范围设定为[0.0005,0.01],运行程序,选取训练误差最小的最优学习率η。(1) First, set the regularization parameter to 0, that is, λ=0, then set the search range of the learning rate to [0.0005, 0.01] with a step size of 0.0005, run the program, and select the optimal learning rate η with the smallest training error .
(2)在最优学习率η情况下,以0.0025步长将正则化参数的搜索范围设定为[0.0025,0.05],保证不影响训练误差情况下选取稀疏效果最佳的最优正则化参数λ。(2) In the case of the optimal learning rate η, the search range of the regularization parameter is set to [0.0025, 0.05] with a step size of 0.0025 to ensure that the optimal regularization parameter with the best sparsity effect is selected without affecting the training error. λ.
步骤3:计算输入第k组样本的网络输出yk及预测误差dk Step 3: Calculate the network output y k and the prediction error d k of the input kth group of samples
对于给定的激活函数G(·)、输入样本uk、输入权值W以及阈值向量b,得到隐含层输出为:For a given activation function G(·), input sample uk , input weight W and threshold vector b, the output of the hidden layer is obtained as:
其中,gj,1<j<N表示储备池第j个神经元的激活函数,Wj·uk,1<j<N表示储备池第j个神经元与输入层之间的输入权值向量Wj与输入向量uk的内积,bj,1<j<N表示储备池中第j个神经元的阈值。Among them, g j ,1<j<N represents the activation function of the jth neuron in the reserve pool, and W j u k ,1<j<N represents the input weight between the jth neuron in the reserve pool and the input layer The inner product of the vector W j and the input vector uk , b j , 1<j<N represents the threshold of the jth neuron in the reserve pool.
输入第k组样本,网络输出yk由如下公式得到:Input the kth group of samples, the network output yk is obtained by the following formula:
yk=W·G(Wuk+b) (2)y k =W·G(Wuk + b) (2)
网络期望输出tk与实际输出yk之间的训练误差dk定义为:The training error d k between the expected output t k of the network and the actual output y k is defined as:
dk=tk-yk (3)d k =t k -y k (3)
步骤4:计算输出权值梯度,更新输出权值Step 4: Calculate the gradient of the output weights and update the output weights
定义标准均方误差函数为:The standard mean squared error function is defined as:
其中, in,
在误差函数上添加L0正则化项,改进的误差函数为:Adding the L0 regularization term to the error function, the improved error function is:
其中,为W的L0范数,被定义如下:in, is the L0 norm of W, defined as follows:
其中,Wj(1<j<N)是第j个输出权值。Among them, W j (1<j<N) is the jth output weight.
然而,L0范数是非凸函数,因此公式(5)是一个NP-hard极小化组合问题。为了解决这个问题,我们采用一个连续可微的函数f(·)对L0范数进行逼近,关于W的函数f(γ,Wj)被定义如下:However, the L0 norm is a non-convex function, so formula (5) is an NP-hard minimization combinatorial problem. To solve this problem, we use a continuously differentiable function f(·) to approximate the L0 norm, and the function f(γ, W j ) about W is defined as follows:
其中,γ为正数,其控制f(γ,Wj)逼近的程度,γ较大时,函数f(γ,Wj)对权值向量的修剪程度较低,γ接近0时,函数f(γ,Wj)能够更好修剪权值向量W的非零元素,本专利中γ取0.05。由此可得,f(γ,Wj)的一阶导数为:Among them, γ is a positive number, which controls the approximation of f(γ, W j ) When γ is large, the function f(γ, W j ) trims the weight vector to a lower degree. When γ is close to 0, the function f(γ, W j ) can better trim the non-zero value of the weight vector W element, γ is taken as 0.05 in this patent. From this, the first derivative of f(γ, W j ) is:
因此公式(5)更新为:So formula (5) is updated to:
引入批量梯度下降算法,在初始权值W=W0的情况下,E(W)的梯度公式为:The batch gradient descent algorithm is introduced. In the case of the initial weight W=W 0 , the gradient formula of E(W) is:
其中,为第i次E(W)的梯度,为第i次的梯度。in, is the gradient of the i-th E(W), for the ith time gradient.
由此得到,输出权值的更新公式为:From this, the update formula of the output weight is:
其中,Wi+1为第i+1次迭代的输出权值,Wi为第i次迭代的输出权值。输出权值每更新一次,i累加1,即i=i+1。Among them, Wi +1 is the output weight of the i+1th iteration, and Wi is the output weight of the i -th iteration. Each time the output weight is updated, i accumulates 1, that is, i=i+1.
步骤5:判断训练是否结束Step 5: Determine whether the training is over
若满足i≥imax,则执行步骤6,否则返回步骤3。If i≥i max is satisfied, go to step 6, otherwise go back to step 3.
步骤6:测试网络Step 6: Test the Network
利用以上步骤得到的输出权值W,输入测试样本,对网络进行测试。Use the output weight W obtained in the above steps to input test samples to test the network.
本发明的创造性主要体现在:The inventive step of the present invention is mainly reflected in:
(1)针对污水处理过程中氨氮浓度难以测量的问题,本发明根据极限学习机非线性映射能力强的特点,设计了一种基于ELM-SL0神经网络的出水NH4-N软测量方法,该方法具有预测精度高、稳定性强、维护成本低等优点。(1) Aiming at the problem that the ammonia nitrogen concentration is difficult to measure in the sewage treatment process, the present invention designs a effluent NH4-N soft measurement method based on the ELM-SL0 neural network according to the feature of the extreme learning machine's strong nonlinear mapping capability. It has the advantages of high prediction accuracy, strong stability and low maintenance cost.
(2)本发明结合了L0正则化方法和批量梯度下降法,对神经网络进行训练,有效的修剪了网络中贡献度较低的神经元,减少了网络的计算时间,提高了网络结构的稀疏性。(2) The present invention combines the L0 regularization method and the batch gradient descent method to train the neural network, effectively pruning the neurons with low contribution in the network, reducing the computing time of the network, and improving the sparseness of the network structure. sex.
附图说明Description of drawings
图1.本发明的神经网络拓扑结构图;Fig. 1. neural network topology structure diagram of the present invention;
图2.本发明的出水NH4-N浓度预测方法训练均方根误差(RMSE)变化图;Fig. 2. effluent NH4-N concentration prediction method training root mean square error (RMSE) variation diagram of the present invention;
图3.训练过程中绝对值小于0.005的输出权重个数m变化图;Figure 3. Change graph of the number of output weights m whose absolute value is less than 0.005 during the training process;
图4.本发明的出水NH4-N浓度预测结果图;Fig. 4. effluent NH4-N concentration prediction result diagram of the present invention;
图5.本发明的出水NH4-N浓度预测误差图。Figure 5. Prediction error diagram of effluent NH4-N concentration of the present invention.
具体实施方式Detailed ways
一种基于ELM-SL0神经网络的出水NH4-N软测量方法,主要操作流程如下:首先将L0正则化惩罚项添加到传统误差函数使不重要权值逼近于0,然后利用批量梯度下降算法对改进的误差函数进行更新以实现网络的训练和修剪。本方法利用神经网络的学习能力,根据训练误差对输出权值进行优化,消除不重要输出权值,然后对污水处理过程中的氨氮浓度进行预测,使其误差最小化,提高了网络结构稀疏性。其特征在于,包括以下步骤:A soft-sensor method for effluent NH4-N based on ELM-SL0 neural network. The main operation process is as follows: First, add the L0 regularization penalty term to the traditional error function to make the
步骤1:初始化网络结构及参数Step 1: Initialize the network structure and parameters
步骤1.1:初始化网络结构Step 1.1: Initialize the network structure
将温度、溶氧量、总悬浮物含量、pH值以及出水氧化还原电位作为输入变量,氨氮浓度作为输出变量,确定回声状态网络结构为5-N-1,其中N表示储备池神经元个数。该网络中N取500,即该网络含有5个输入节点,500个储备池节点,1个输出节点。Taking temperature, dissolved oxygen, total suspended solids content, pH value and effluent redox potential as input variables, and ammonia nitrogen concentration as output variables, the network structure of the echo state is determined as 5-N-1, where N represents the number of neurons in the reserve pool . In this network, N is 500, that is, the network contains 5 input nodes, 500 reserve pool nodes, and 1 output node.
步骤1.2:初始化网络参数Step 1.2: Initialize network parameters
将sigmoid函数作为网络激活函数G(·),初始迭代次数i=0,最大迭代次数imax≥5000,训练样本uk表示第k组输入样本,tk表示第k组实际输出值,表示输入样本维度为n,L为样本总数;随机初始化网络输入权值W和阈值向量b在(0,1)之间,设置初始输出权值W=0。Take the sigmoid function as the network activation function G( ), the initial number of iterations i = 0, the maximum number of iterations i max ≥ 5000, the training sample u k represents the kth group of input samples, tk represents the kth group of actual output values, Indicates that the input sample dimension is n, and L is the total number of samples; the random initialization network input weight W and the threshold vector b are between (0, 1), and the initial output weight W=0.
步骤2:采用网格搜索法确定学习率η及正则化参数λStep 2: Use the grid search method to determine the learning rate η and the regularization parameter λ
(1)首先,将正则化参数置0,即λ=0,然后以0.0005的步长将学习率的搜索范围设定为[0.0005,0.01],运行程序,选取训练误差最小的最优学习率η=0.01。(1) First, set the regularization parameter to 0, that is, λ=0, then set the search range of the learning rate to [0.0005, 0.01] with a step size of 0.0005, run the program, and select the optimal learning rate with the smallest training error n=0.01.
(2)在最优学习率η=0.01的情况下,以0.0025的步长将正则化参数的搜索范围设定为[0.0025,0.05],保证不影响训练误差情况下选取稀疏效果最佳的最优正则化参数λ=0.05。(2) In the case of the optimal learning rate η=0.01, the search range of the regularization parameter is set to [0.0025, 0.05] with a step size of 0.0025 to ensure that the best sparsity effect is selected without affecting the training error. The optimal regularization parameter λ=0.05.
步骤3:计算输入第k组样本的网络输出yk及预测误差dk Step 3: Calculate the network output y k and the prediction error d k of the input kth group of samples
对于给定的激活函数G(·)、输入样本uk、输入权值W以及阈值向量b,得到隐含层输出为:For a given activation function G(·), input sample uk , input weight W and threshold vector b, the output of the hidden layer is obtained as:
其中,gj,1<j<N表示储备池第j个神经元的激活函数,Wj·uk,1<j<N表示储备池第j个神经元与输入层之间的输入权值向量Wj与输入向量uk的内积,bj,1<j<N表示储备池中第j个神经元的阈值。Among them, g j ,1<j<N represents the activation function of the jth neuron in the reserve pool, and W j u k ,1<j<N represents the input weight between the jth neuron in the reserve pool and the input layer The inner product of the vector W j and the input vector uk , b j , 1<j<N represents the threshold of the jth neuron in the reserve pool.
输入第k组样本,网络输出yk由如下公式得到:Input the kth group of samples, the network output yk is obtained by the following formula:
yk=W·G(Wuk+b) (2)y k =W·G(Wuk + b) (2)
网络期望输出tk与实际输出yk之间的训练误差dk定义为:The training error d k between the expected output t k of the network and the actual output y k is defined as:
dk=tk-yk (3)d k =t k -y k (3)
步骤4:计算输出权值梯度,更新输出权值Step 4: Calculate the gradient of the output weights and update the output weights
定义标准均方误差函数为:The standard mean squared error function is defined as:
其中, in,
在误差函数上添加L0正则化项,改进的误差函数为:Adding the L0 regularization term to the error function, the improved error function is:
其中,为W的L0范数,被定义如下:in, is the L0 norm of W, defined as follows:
其中,Wj(1<j<N)是第j个输出权值。Among them, W j (1<j<N) is the jth output weight.
然而,L0范数是非凸函数,因此公式(5)是一个NP-hard极小化组合问题。为了解决这个问题,我们采用一个连续可微的函数f(·)对L0范数进行逼近,关于W的函数f(γ,Wj)被定义如下:However, the L0 norm is a non-convex function, so formula (5) is an NP-hard minimization combinatorial problem. To solve this problem, we use a continuously differentiable function f(·) to approximate the L0 norm, and the function f(γ, W j ) about W is defined as follows:
其中,γ为正数,其控制f(γ,Wj)逼近的程度,γ较大时,函数f(γ,Wj)对权值向量的修剪程度较低,γ接近0时,函数f(γ,Wj)能够更好修剪权值向量W的非零元素,本专利中γ取0.05。Among them, γ is a positive number, which controls the approximation of f(γ, W j ) When γ is large, the function f(γ, W j ) trims the weight vector to a lower degree. When γ is close to 0, the function f(γ, W j ) can better trim the non-zero value of the weight vector W element, γ is taken as 0.05 in this patent.
由此得到,f(γ,Wj)的一阶导数为:From this, the first derivative of f(γ,W j ) is:
因此公式(5)更新为:So formula (5) is updated to:
引入批量梯度下降算法,在初始权值W=W0的情况下,E(W)的梯度公式为:The batch gradient descent algorithm is introduced. In the case of the initial weight W=W 0 , the gradient formula of E(W) is:
其中,为第i次E(W)的梯度,为第i次的梯度。in, is the gradient of the i-th E(W), for the ith time gradient.
由此得到,输出权值的更新公式为:From this, the update formula of the output weight is:
其中,Wi+1为第i+1次迭代的输出权值,Wi为第i次迭代的输出权值。输出权值每更新一次,i累加1,即i=i+1。Among them, Wi +1 is the output weight of the i+1th iteration, and Wi is the output weight of the i -th iteration. Each time the output weight is updated, i accumulates 1, that is, i=i+1.
步骤5:判断训练是否结束Step 5: Determine whether the training is over
若满足i≥imax,则执行步骤6,否则返回步骤3。If i≥i max is satisfied, go to step 6, otherwise go back to step 3.
步骤6:测试网络Step 6: Test the Network
利用以上步骤得到的输出权值W,输入测试样本,对网络进行测试。Use the output weight W obtained in the above steps to input test samples to test the network.
数据样本data sample
表1-12是本发明实验数据。表1-5为训练输入样本:进水温度、好氧末段溶解氧、好氧末端总固体悬浮物、出水酸碱度pH、出水氧化还原电位,表6为训练样本出水氨氮的浓度,表7-11为测试输入样本:进水温度、好氧末段溶解氧、好氧末端总固体悬浮物、出水酸碱度pH、出水氧化还原电位,表12为测试样本出水氨氮的浓度。Tables 1-12 are the experimental data of the present invention. Table 1-5 is the training input sample: inlet water temperature, dissolved oxygen at the end of aerobic, total suspended solids at the end of aerobic, pH of effluent, redox potential of effluent, Table 6 is the concentration of ammonia nitrogen in the effluent of the training sample, Table 7- 11 is the test input sample: inlet water temperature, dissolved oxygen at the aerobic end, total suspended solids at the aerobic end, effluent pH, effluent redox potential, and Table 12 is the concentration of ammonia nitrogen in the effluent of the test sample.
训练样本:Training samples:
表1.辅助变量进水温度(℃)Table 1. Auxiliary Variable Inlet Water Temperature (°C)
表2.辅助变量溶解氧(mg/L)Table 2. Auxiliary Variable Dissolved Oxygen (mg/L)
表3.辅助变量总固体悬浮物(mg/L)Table 3. Auxiliary Variable Total Suspended Solids (mg/L)
表4.辅助变量pH值Table 4. Auxiliary Variable pH
表5.辅助变量氧化还原电位Table 5. Auxiliary Variable Redox Potential
表6.实测出水NH4-N浓度(mg/L)Table 6. Measured NH4-N concentration in effluent (mg/L)
测试样本:Test sample:
表7.辅助变量进水温度(℃)Table 7. Auxiliary Variable Inlet Water Temperature (°C)
表8.辅助变量溶解氧(mg/L)Table 8. Auxiliary Variable Dissolved Oxygen (mg/L)
表9.辅助变量总固体悬浮物(mg/L)Table 9. Auxiliary Variable Total Suspended Solids (mg/L)
表10.辅助变量pH值Table 10. Auxiliary Variable pH
表11.辅助变量氧化还原电位Table 11. Auxiliary Variable Redox Potential
表12.实测出水NH4-N浓度(mg/L)Table 12. Measured NH4-N concentration in effluent (mg/L)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911030774.8A CN110837886A (en) | 2019-10-28 | 2019-10-28 | A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911030774.8A CN110837886A (en) | 2019-10-28 | 2019-10-28 | A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110837886A true CN110837886A (en) | 2020-02-25 |
Family
ID=69575622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911030774.8A Pending CN110837886A (en) | 2019-10-28 | 2019-10-28 | A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110837886A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116151121A (en) * | 2023-02-21 | 2023-05-23 | 北京工业大学 | A Neural Network-Based NH4-N Soft-Sensing Method for Effluent Water |
CN116451763A (en) * | 2023-03-17 | 2023-07-18 | 北京工业大学 | Effluent NH based on EDDESN 4 -N prediction method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8200467U (en) * | 2002-03-18 | 2003-12-09 | Volnei Jaco Knorst | Synthetic marble sink with tub in differentiated material |
CN104616030A (en) * | 2015-01-21 | 2015-05-13 | 北京工业大学 | Extreme learning machine algorithm-based recognition method |
CN104965971A (en) * | 2015-05-24 | 2015-10-07 | 北京工业大学 | Ammonia nitrogen concentration soft-measuring method based on fuzzy neural network |
CN106503730A (en) * | 2016-09-30 | 2017-03-15 | 暨南大学 | A kind of bridge moving load identification method based on concatenate dictionaries and sparse regularization |
CN106803237A (en) * | 2016-12-14 | 2017-06-06 | 银江股份有限公司 | A kind of improvement self-adaptive weighted average image de-noising method based on extreme learning machine |
US20180093092A1 (en) * | 2016-04-22 | 2018-04-05 | Newton Howard | Biological co-processor (bcp) |
CN108469507A (en) * | 2018-03-13 | 2018-08-31 | 北京工业大学 | A kind of water outlet BOD flexible measurement methods based on Self organizing RBF Neural Network |
CN109242194A (en) * | 2018-09-25 | 2019-01-18 | 东北大学 | A kind of thickener underflow concentration prediction method based on mixed model |
JP2019040414A (en) * | 2017-08-25 | 2019-03-14 | 日本電信電話株式会社 | Learning device and learning method |
-
2019
- 2019-10-28 CN CN201911030774.8A patent/CN110837886A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR8200467U (en) * | 2002-03-18 | 2003-12-09 | Volnei Jaco Knorst | Synthetic marble sink with tub in differentiated material |
CN104616030A (en) * | 2015-01-21 | 2015-05-13 | 北京工业大学 | Extreme learning machine algorithm-based recognition method |
CN104965971A (en) * | 2015-05-24 | 2015-10-07 | 北京工业大学 | Ammonia nitrogen concentration soft-measuring method based on fuzzy neural network |
US20180093092A1 (en) * | 2016-04-22 | 2018-04-05 | Newton Howard | Biological co-processor (bcp) |
CN106503730A (en) * | 2016-09-30 | 2017-03-15 | 暨南大学 | A kind of bridge moving load identification method based on concatenate dictionaries and sparse regularization |
CN106803237A (en) * | 2016-12-14 | 2017-06-06 | 银江股份有限公司 | A kind of improvement self-adaptive weighted average image de-noising method based on extreme learning machine |
JP2019040414A (en) * | 2017-08-25 | 2019-03-14 | 日本電信電話株式会社 | Learning device and learning method |
CN108469507A (en) * | 2018-03-13 | 2018-08-31 | 北京工业大学 | A kind of water outlet BOD flexible measurement methods based on Self organizing RBF Neural Network |
CN109242194A (en) * | 2018-09-25 | 2019-01-18 | 东北大学 | A kind of thickener underflow concentration prediction method based on mixed model |
Non-Patent Citations (2)
Title |
---|
YU YL ET AL: "A Homotopy Iterative Hard Thresholding Algorithm With Extreme Learning Machine for scene Recognition" * |
慈能达: "车载毫米波雷达通信一体化系统中的压缩感知DOA估计" * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116151121A (en) * | 2023-02-21 | 2023-05-23 | 北京工业大学 | A Neural Network-Based NH4-N Soft-Sensing Method for Effluent Water |
CN116151121B (en) * | 2023-02-21 | 2024-03-26 | 北京工业大学 | A soft measurement method for effluent NH4-N based on neural network |
CN116451763A (en) * | 2023-03-17 | 2023-07-18 | 北京工业大学 | Effluent NH based on EDDESN 4 -N prediction method |
CN116451763B (en) * | 2023-03-17 | 2024-04-12 | 北京工业大学 | Effluent NH based on EDDESN 4 -N prediction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10570024B2 (en) | Method for effluent total nitrogen-based on a recurrent self-organizing RBF neural network | |
Wang et al. | Pan evaporation modeling using four different heuristic approaches | |
CN105740619B (en) | Weighting extreme learning machine sewage disposal on-line fault diagnosis method based on kernel function | |
CN111291937A (en) | Method for predicting quality of treated sewage based on combination of support vector classification and GRU neural network | |
CN106022954B (en) | Multiple BP neural network load prediction method based on grey correlation degree | |
CN109828089B (en) | DBN-BP-based water quality parameter nitrous acid nitrogen online prediction method | |
CN109657790B (en) | PSO-based recursive RBF neural network effluent BOD prediction method | |
CN109344971B (en) | Effluent ammonia nitrogen concentration prediction method based on adaptive recursive fuzzy neural network | |
CN110542748B (en) | A knowledge-based robust effluent ammonia nitrogen soft-sensing method | |
CN112182709B (en) | Method for rapidly predicting water drainage temperature of large reservoir stoplog gate layered water taking facility | |
CN105354620A (en) | Method for predicting fan generation power | |
CN114037163A (en) | An early warning method of wastewater treatment effluent quality based on dynamic weight PSO optimization BP neural network | |
CN108416460A (en) | Cyanobacterial bloom prediction technique based on the random depth confidence network model of multifactor sequential- | |
CN108595892A (en) | Soft-measuring modeling method based on time difference model | |
CN110837886A (en) | A Soft-Sensing Method for Effluent NH4-N Based on ELM-SL0 Neural Network | |
CN110991616B (en) | Method for predicting BOD of effluent based on pruning feedforward small-world neural network | |
CN112924646B (en) | A BOD Soft Sensing Method Based on Adaptive Pruning Feedforward Small World Neural Network | |
CN110929809B (en) | A Soft Sensing Method for Key Water Quality Indicators of Sewage with Feature Self-enhancing Recurrent Neural Network | |
Shang et al. | Research on intelligent pest prediction of based on improved artificial neural network | |
CN116306803A (en) | Method for predicting BOD concentration of outlet water of ILSTM (biological information collection flow) neural network based on WSFA-AFE | |
CN112765902A (en) | RBF neural network soft measurement modeling method based on TentFWA-GD and application thereof | |
CN115905821A (en) | State monitoring method of urban sewage treatment process based on multi-stage dynamic fuzzy width learning | |
Vaněk et al. | On-line estimation of biomass concentration using a neural network and information about metabolic state | |
CN118625667A (en) | Soft measurement and multi-objective optimization control method, device and medium for sewage treatment process | |
CN110276478B (en) | Short-term wind power prediction method based on segmented ant colony algorithm optimization SVM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200225 |