CN110828811A - Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof - Google Patents
Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof Download PDFInfo
- Publication number
- CN110828811A CN110828811A CN201911169897.XA CN201911169897A CN110828811A CN 110828811 A CN110828811 A CN 110828811A CN 201911169897 A CN201911169897 A CN 201911169897A CN 110828811 A CN110828811 A CN 110828811A
- Authority
- CN
- China
- Prior art keywords
- graphite
- silicon oxide
- matrix
- negative electrode
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域technical field
本发明涉及锂离子电池材料领域,尤其涉及一种锂离子电池用氧化亚硅-石墨复合负极材料及其制备方法。The invention relates to the field of lithium ion battery materials, in particular to a silicon oxide-graphite composite negative electrode material for lithium ion batteries and a preparation method thereof.
背景技术Background technique
石墨负极材料的理论容量为372mAh/g,已无法满足新型锂离子电池对高能量密度的要求。因此开发新的高容量锂离子电池负极材料至关重要。The theoretical capacity of graphite anode material is 372mAh/g, which can no longer meet the high energy density requirements of new lithium-ion batteries. Therefore, it is crucial to develop new anode materials for high-capacity lithium-ion batteries.
目前,国内外提升电池能量密度的主要技术途径是采用硅碳负极材料来取代传统石墨负极材料。硅基材料具有锂离子电池负极材料中最高理论比容量(4200mAh/g),是目前高能量密度锂离子电池负极材料的最佳选择。At present, the main technical way to improve the energy density of batteries at home and abroad is to use silicon carbon anode materials to replace traditional graphite anode materials. Silicon-based materials have the highest theoretical specific capacity (4200mAh/g) in lithium-ion battery anode materials, and are currently the best choice for high-energy density lithium-ion battery anode materials.
但是纯硅材料嵌锂过程中存在体积膨胀过大(≥300%)的问题。硅的氧化物同样具有较高的理论比容量,并且相对于纯硅,硅的氧化物在嵌锂过程中具有较小的体积效应,材料中存在键能更高的Si-O键,能有效抑制硅的体积膨胀,因此循环性能更具优势。However, there is a problem of excessive volume expansion (≥300%) in the process of lithium intercalation of pure silicon materials. The oxide of silicon also has a higher theoretical specific capacity, and compared with pure silicon, the oxide of silicon has a smaller volume effect in the process of lithium intercalation. There is a Si-O bond with a higher bond energy in the material, which can effectively The volume expansion of silicon is suppressed, so the cycle performance is more advantageous.
但是氧化亚硅在嵌锂过程中会生成Li2O和Li4SiO4,这些非活性相能够很好的缓冲材料的体积膨胀,但是生成的这些非活性相也消耗了部分锂,因此氧化亚硅材料同样存在首效低的问题。目前改善氧化亚硅电化学性能的主要方法有将颗粒纳米化、与各种碳材料复合、与金属及金属氧化物复合、预锂化及包覆改性等。However, Li 2 O and Li 4 SiO 4 will be formed in Si oxide during the lithium intercalation process. These inactive phases can well buffer the volume expansion of the material, but the generated inactive phases also consume part of the lithium. Silicon materials also have the problem of low first efficiency. At present, the main methods to improve the electrochemical performance of SiO2 include nano-sized particles, composite with various carbon materials, composite with metals and metal oxides, pre-lithiation and coating modification.
包覆改性是目前最为常见的改性方法。现有技术CN103647056B公开了一种SiOx基复合负极材料、制备方法及电池,该负极材料包含氧化硅材料、碳材料和非晶态碳包覆层,氧化硅材料包裹于碳材料颗粒表面,非晶态碳包覆层为最外包覆层,该发明中将氧化硅材料包裹于碳材料颗粒表面。Coating modification is the most common modification method at present. Prior art CN103647056B discloses a SiOx -based composite negative electrode material, a preparation method and a battery, the negative electrode material comprises a silicon oxide material, a carbon material and an amorphous carbon coating layer, and the silicon oxide material is wrapped on the surface of the carbon material particles, and the The crystalline carbon coating layer is the outermost coating layer, and in this invention, the silicon oxide material is wrapped on the surface of the carbon material particles.
但是在现有的包覆改性材料中,最外层的包覆层对抑制氧化硅颗粒的膨胀作用非常有限,且包覆层经过几次充放电循环之后很容易从颗粒表面脱落,导致材料的循环性能非常差,并没有从本质上解决氧化亚硅材料存在的问题。因此,开发一种循环性能好、体积膨胀效应小的氧化硅基负极材料及其制备方法是所属领域的技术难题。However, in the existing coating modified materials, the outermost coating layer has a very limited effect on inhibiting the expansion of the silicon oxide particles, and the coating layer is easily peeled off from the particle surface after several charge-discharge cycles, resulting in the material The cycle performance is very poor, and does not essentially solve the problem of siliceous oxide materials. Therefore, it is a technical problem in the art to develop a silicon oxide-based negative electrode material with good cycle performance and small volume expansion effect and a preparation method thereof.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提供了一种锂离子电池用氧化亚硅-石墨复合负极材料及其制备方法。In order to solve the above technical problems, the present invention provides a silicon oxide-graphite composite negative electrode material for lithium ion batteries and a preparation method thereof.
本发明采用的技术方案是:The technical scheme adopted in the present invention is:
一种氧化亚硅-石墨复合负极材料,所述氧化亚硅-石墨复合负极材料为一体式融合材料,由氧化亚硅基体、石墨基体、无定形碳共同融合而成,所述氧化亚硅-石墨复合负极材料的D50为10~30μm。A silicon oxide-graphite composite negative electrode material, the silicon oxide-graphite composite negative electrode material is an integrated fusion material, which is formed by the joint fusion of a silicon oxide matrix, a graphite matrix and amorphous carbon, and the silicon oxide- The D50 of the graphite composite negative electrode material is 10-30 μm.
优选的,所述氧化亚硅基体为纳米或者亚微米氧化亚硅颗粒,化学式为SiOx,其中0.8≤x≤1.2,粒径为0.05~1μm;所述石墨基体的颗粒粒径为0.1~3μm。Preferably, the silicon oxide matrix is nanometer or submicron silicon oxide particles, the chemical formula is SiO x , where 0.8≤x≤1.2, and the particle size is 0.05-1 μm; the particle size of the graphite matrix is 0.1-3 μm .
基体尺寸对复合材料的结构和电化学性能有重要的影响:氧化亚硅基体颗粒尺寸过大,充放电过程中颗粒粉化严重;氧化亚硅基体颗粒过小,比表较大与电解液副反应较多影响循环性能。石墨基体颗粒尺寸过大,在喷雾过程中很难与氧化亚硅形成一体式融合材料,而是形成大颗粒石墨为核、小颗粒氧化亚硅为壳的核-壳结构,不能有效抑制氧化亚硅充放电过程中的膨胀收缩粉化;石墨基体过小也会增加副反应的发生。因此,选择适宜的粒径是材料具有良好性能的基础。本发明中选择的材料粒径可以有效的进行融合,形成一体式的氧化亚硅-石墨复合负极材料。The size of the matrix has an important influence on the structure and electrochemical performance of the composite material: if the size of the SiO2 matrix particles is too large, the particles will be seriously pulverized during the charge and discharge process; if the SiO2 matrix particles are too small, the specific surface will be larger and the electrolyte will be adversely affected. More reactions affect the cycle performance. The particle size of graphite matrix is too large, and it is difficult to form an integrated fusion material with silicon oxide during the spraying process, but a core-shell structure with large particles of graphite as the core and small particles of silicon oxide as the shell is formed, which cannot effectively inhibit the The expansion and shrinkage of silicon during the charging and discharging process is pulverized; if the graphite matrix is too small, the occurrence of side reactions will also increase. Therefore, choosing the appropriate particle size is the basis for the material to have good properties. The particle size of the material selected in the present invention can be effectively fused to form an integrated silicon oxide-graphite composite negative electrode material.
优选的,所述氧化亚硅-石墨复合负极材料中氧化亚硅基体的质量分数为5%~90%,石墨基体的质量分数为10%~95%,无定形碳的质量分数为1%~10%。Preferably, the mass fraction of silicon oxide matrix in the silicon oxide-graphite composite negative electrode material is 5% to 90%, the mass fraction of graphite matrix is 10% to 95%, and the mass fraction of amorphous carbon is 1% to 90%. 10%.
一种氧化亚硅-石墨复合负极材料的制备方法,包括如下步骤:A preparation method of a silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将氧化亚硅基体与无水乙醇混合均匀并进行球磨处理至中值粒径为0.05~1μm,得到氧化亚硅浆料1,所述氧化亚硅基体为纳米或者亚微米SiOx颗粒,其中0.8≤x≤1.2,1) Mixing the siliceous oxide matrix with absolute ethanol uniformly and carrying out ball milling treatment until the median particle size is 0.05-1 μm, to obtain a siliceous oxide slurry 1, and the siliceous oxide matrix is nanometer or submicron SiOx particles, where 0.8≤x≤1.2,
2)将石墨基体原料与无水乙醇混合均匀并进行球磨处理至中值粒径为0.1~3μm,得到石墨浆料2;2) uniformly mixing the graphite matrix raw material with absolute ethanol, and performing ball milling until the median particle size is 0.1-3 μm to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、沥青、异丙醇铝和其他有机碳源在球磨罐中球磨混合0.5~10h后得到浆料3;3) Silica slurry 1, graphite slurry 2, pitch, aluminum isopropoxide and other organic carbon sources are ball-milled and mixed in a ball-milling tank for 0.5-10 hours to obtain slurry 3;
4)将浆料3进行喷雾干燥,喷雾干燥进口温度为100℃~300℃,得到粉料1;4) spray-drying slurry 3, and the spray-drying inlet temperature is 100°C to 300°C to obtain powder 1;
5)将粉料1在惰性气氛下,以1℃~10℃/min的升温速率升至700℃~1100℃,恒温热处理1~24h,即得到氧化亚硅-石墨复合负极材料产物。5) Under an inert atmosphere, the powder 1 is raised to 700°C to 1100°C at a heating rate of 1°C to 10°C/min, and heat treated at a constant temperature for 1 to 24 hours to obtain a silicon oxide-graphite composite negative electrode material product.
氧化亚硅和副产物氧化硅在嵌锂过程中会生成Li2O和Li4SiO4,这些非活性相能够很好的缓冲材料的体积膨胀,但是生成的这些非活性相也消耗了部分锂,从而造成了氧化亚硅材料首效低的问题。Silica and by-product silicon oxide will generate Li 2 O and Li 4 SiO 4 during the lithium intercalation process. These inactive phases can well buffer the volume expansion of materials, but these inactive phases also consume part of the lithium. , resulting in the problem of low initial efficiency of silicon oxide materials.
本发明中加入的异丙醇铝可以消耗掉SiOx氧化生成的副产物SiO2,使SiO2转变成不消耗锂的硅酸盐,减小了硅氧化物引起的不可逆容量损失,提高材料的首次效率。The aluminum isopropoxide added in the present invention can consume the by-product SiO 2 generated by the oxidation of SiO x , convert SiO 2 into silicate that does not consume lithium, reduce the irreversible capacity loss caused by silicon oxide, and improve the performance of the material. first efficiency.
优选的,所述步骤3)中异丙醇铝的质量为氧化亚硅基体质量的0.1~2%。Preferably, in the step 3), the mass of the aluminum isopropoxide is 0.1-2% of the mass of the silicon oxide matrix.
异丙醇铝的含量过少,不能和SiO2完全发生反应达到去除副产物的目的;异丙醇铝的含量过多,又在产物中引入了惰性Al2O3杂质,因此,异丙醇铝的含量对于本发明来讲为关键因素之一。通过实验,发现当异丙醇铝的质量为氧化亚硅基体质量的0.1~2%时,异丙醇铝恰好能完全反应掉SiOx被氧化产生的SiO2,去除副产物的效果较好,从而有效提升氧化亚硅材料的首次效率。The content of aluminum isopropoxide is too small to completely react with SiO to achieve the purpose of removing by-products ; the content of aluminum isopropoxide is too high, and inert Al 2 O impurities are introduced into the product. Therefore, isopropanol The aluminum content is one of the key factors for the present invention. Through experiments, it is found that when the mass of aluminum isopropoxide is 0.1-2% of the mass of the siliceous oxide matrix, aluminum isopropoxide can just completely react the SiO 2 produced by the oxidation of SiO x , and the effect of removing by-products is better. Thereby, the first efficiency of the silicon oxide material is effectively improved.
优选的,所述步骤3)中的沥青为煤沥青或石油沥青中的一种或两种。Preferably, the pitch in the step 3) is one or both of coal pitch or petroleum pitch.
优选的,所述步骤3)中沥青的质量为氧化亚硅基体和石墨基体总质量的5%~15%。Preferably, the mass of the pitch in the step 3) is 5% to 15% of the total mass of the silicon oxide matrix and the graphite matrix.
沥青在本发明中起到了熔融粘接作用,因此需要一定的含量才能达到将氧化亚硅基体和石墨基体粘接在一起;但是如果沥青含量过多,沥青高温碳化生成的碳为无定形碳,过量的无定形碳也会消耗电解液中的锂,反而会影响材料的性能。5%~15%是比较适宜的含量。The pitch plays a role in fusion bonding in the present invention, so a certain content is required to bond the siliceous oxide matrix and the graphite matrix together; but if the pitch is too high, the carbon generated by the high-temperature carbonization of the pitch is amorphous carbon, Excess amorphous carbon also consumes lithium in the electrolyte, which in turn affects the performance of the material. 5% to 15% is a more suitable content.
优选的,所述步骤3)中其他有机碳源为葡萄糖、蔗糖、聚乙二醇、聚乙烯醇、聚乙烯吡咯烷酮、酚醛树脂中的一种或多种。Preferably, other organic carbon sources in the step 3) are one or more of glucose, sucrose, polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and phenolic resin.
优选的,所述步骤3)中其他有机碳源的质量为氧化亚硅基体和石墨基体总质量的1%~10%。Preferably, the mass of other organic carbon sources in the step 3) is 1% to 10% of the total mass of the silicon oxide matrix and the graphite matrix.
上述氧化亚硅-石墨复合负极材料以及采用上述制备方法制备的氧化亚硅-石墨复合负极材料在锂离子电池中可以得到较好的应用。The above silicon oxide-graphite composite negative electrode material and the silicon oxide-graphite composite negative electrode material prepared by the above preparation method can be well used in lithium ion batteries.
本发明的有益效果是:The beneficial effects of the present invention are:
1)本发明从根本上克服了氧化亚硅首效低的缺陷,融和过程中加入的异丙醇铝可消耗掉SiOx氧化生成的副产物SiO2,使SiO2转变成不消耗锂的硅酸盐,减小了硅氧化物引起的不可逆容量损失,从本质上提高材料的首次效率;1) The present invention fundamentally overcomes the defect of low initial effect of silicon oxide, and the aluminum isopropoxide added in the melting process can consume the by-product SiO 2 generated by SiO x oxidation, so that SiO 2 is converted into silicon that does not consume lithium. acid salt, which reduces the irreversible capacity loss caused by silicon oxide, and essentially improves the first efficiency of the material;
2)本发明与现有技术相比,通过容易实现产业化的球磨工艺、喷雾干燥工艺和高温碳化工艺,制得了一种球形氧化亚硅-石墨复合材料:该材料首先将氧化亚硅原料球磨成亚微米级颗粒,大大缩短了锂离子在SiOx颗粒内部的传输距离,与微米级氧化亚硅相比,在循环上有很大的优势;2) Compared with the prior art, the present invention obtains a spherical silicon oxide-graphite composite material through the ball milling process, spray drying process and high temperature carbonization process which are easy to realize industrialization: the material first ball-mills the silicon oxide raw material It is formed into sub-micron particles, which greatly shortens the transmission distance of lithium ions inside SiO x particles, and has great advantages in cycling compared with micron-sized silicon oxide;
3)和传统的碳层包覆在外层不同,本发明首先将石墨球磨成微米级小颗粒,并利用沥青和其他有机碳源在低温加热条件下的熔融粘结作用,利用喷雾干燥的瞬间干燥(将偏析现象限制在微米尺度范围内)和成球作用,将氧化亚硅颗粒与薄片石墨融合在一起,最后通过高温歧化反应和碳化处理得到类球形氧化亚硅-石墨复合材料。3) Different from the traditional carbon layer covering the outer layer, the present invention first grinds the graphite balls into micron-sized particles, and utilizes the fusion bonding effect of pitch and other organic carbon sources under low-temperature heating conditions, and utilizes the instant drying of spray drying. (limiting the segregation phenomenon to the micrometer scale) and spheroidization, the siliceous oxide particles and flake graphite are fused together, and finally a spherical-like siliceous oxide-graphite composite material is obtained through high temperature disproportionation reaction and carbonization treatment.
这种类球形氧化亚硅-石墨复合材料的优点在于将氧化亚硅与薄片石墨融合在一起,而不是将氧化亚硅包覆在石墨颗粒表面,可有效抑制氧化亚硅在充放电过程中的体积膨胀,防止颗粒粉化和保持原始结构的完整性,从而提高材料的循环寿命。The advantage of this quasi-spherical SiO2-graphite composite material is that SiO2 and flake graphite are fused together instead of coating the surface of SiO2 on the surface of graphite particles, which can effectively suppress the volume of SiO2 during charging and discharging. Swelling, preventing particle pulverization and maintaining the integrity of the original structure, thereby increasing the cycle life of the material.
附图说明Description of drawings
图1是对比例1制得的氧化亚硅-石墨复合负极材料的扫描电镜照片;Fig. 1 is a scanning electron microscope photograph of the silicon oxide-graphite composite negative electrode material prepared in Comparative Example 1;
图2是实施例1制得的氧化亚硅-石墨复合负极材料的扫描电镜照片;2 is a scanning electron microscope photograph of the silicon oxide-graphite composite negative electrode material prepared in Example 1;
图3是实施例1制得的氧化亚硅-石墨复合负极材料的首次充放电曲线图;3 is a first charge-discharge curve diagram of the silicon oxide-graphite composite negative electrode material prepared in Example 1;
图4是实施例1制得的氧化亚硅-石墨复合负极材料的循环性能图。FIG. 4 is a cycle performance diagram of the silicon oxide-graphite composite negative electrode material prepared in Example 1. FIG.
具体实施方式Detailed ways
以下结合附图和实施例对本发明的技术方案进行详细描述。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.
实施例1Example 1
一种氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of a silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将120g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 120g of silicon oxide raw materials with 1kg of absolute ethanol and perform ball milling, and ball mill to a median particle size of 0.5um to obtain silicon oxide slurry 1;
2)将1kg天然石墨原料与2kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为1.5um,得到石墨浆料2;2) 1kg of natural graphite raw material and 2kg of dehydrated alcohol are uniformly mixed and ball-milled, and ball-milled to a median particle size of 1.5um to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青、20g聚乙烯吡咯烷酮、1g异丙醇铝在球磨罐中球磨混合4h;3) Silica slurry 1, graphite slurry 2, 100g medium-temperature coal tar pitch, 20g polyvinylpyrrolidone, 1g aluminum isopropoxide were ball-milled and mixed in a ball-milling tank for 4h;
4)将所述浆料进行喷雾干燥,进口温度为150℃,得到粉料1;4) spray drying the slurry with an inlet temperature of 150°C to obtain powder 1;
5)将所述粉料1在氮气气氛下,以2℃/min的升温速率升至980℃,恒温热处理2h,即得到所述球形氧化亚硅-石墨复合负极材料。5) Raising the powder 1 to 980°C at a heating rate of 2°C/min under a nitrogen atmosphere, and heat treatment at a constant temperature for 2 hours, to obtain the spherical silica-graphite composite negative electrode material.
对比例1Comparative Example 1
一种氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of a silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将120g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 120g of silicon oxide raw materials with 1kg of absolute ethanol and perform ball milling, and ball mill to a median particle size of 0.5um to obtain silicon oxide slurry 1;
2)将氧化亚硅浆料1、中值粒径为12um的1kg天然石墨原料、100g中温煤沥青、20g聚乙烯吡咯烷酮、1g异丙醇铝和2kg无水乙醇在球磨罐中球磨混合4h;2) Silica slurry 1, 1kg of natural graphite raw material with a median particle size of 12um, 100g of medium-temperature coal tar pitch, 20g of polyvinylpyrrolidone, 1g of aluminum isopropoxide and 2kg of absolute ethanol were ball-milled and mixed in a ball-milling tank for 4h;
3)将所述浆料进行喷雾干燥,进口温度为150℃,得到粉料1;3) spray-drying the slurry with an inlet temperature of 150° C. to obtain powder 1;
4)将所述粉料1在氮气气氛下,以2℃/min的升温速率升至980℃,恒温热处理2h,得到氧化亚硅-石墨复合负极材料。4) The powder 1 is raised to 980°C at a heating rate of 2°C/min under a nitrogen atmosphere, and heat treated at a constant temperature for 2 hours to obtain a silicon oxide-graphite composite negative electrode material.
对比例2Comparative Example 2
和实施例1相比,步骤3)改成:Compared with embodiment 1, step 3) is changed into:
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青和20g聚乙烯吡咯烷酮在球磨罐中球磨混合4h;3) Ball milling and mixing 100 g of medium-temperature coal tar pitch and 20 g of polyvinylpyrrolidone in a ball-milling tank for 4h;
其他步骤参数保持不变。Other step parameters remain unchanged.
对比例3Comparative Example 3
和实施例1相比,步骤3)改成:Compared with embodiment 1, step 3) is changed into:
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青、20g聚乙烯吡咯烷酮、0.08g异丙醇铝在球磨罐中球磨混合4h;3) Silica slurry 1, graphite slurry 2, 100g medium-temperature coal tar pitch, 20g polyvinylpyrrolidone, 0.08g aluminum isopropoxide were ball-milled and mixed in a ball-milling tank for 4h;
其他步骤参数保持不变。Other step parameters remain unchanged.
对比例4Comparative Example 4
和实施例1相比,步骤3)改成:Compared with embodiment 1, step 3) is changed into:
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青、20g聚乙烯吡咯烷酮、3g异丙醇铝在球磨罐中球磨混合4h;3) Ball milling and mixing 100 g of medium-temperature coal tar pitch, 20 g of polyvinylpyrrolidone, and 3 g of aluminum isopropoxide in a ball milling tank for 4 hours;
其他步骤参数保持不变。Other step parameters remain unchanged.
实施例2Example 2
一种球形氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of spherical silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将90g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 90g of silicon oxide raw material with 1kg of absolute ethanol and carry out ball milling, and ball mill to a median particle size of 0.5um to obtain silicon oxide slurry 1;
2)将1kg天然石墨原料与2kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为1.5um,得到石墨浆料2;2) 1kg of natural graphite raw material and 2kg of dehydrated alcohol are uniformly mixed and ball-milled, and ball-milled to a median particle size of 1.5um to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、95g中温煤沥青、20g聚乙烯吡咯烷酮、0.9g异丙醇铝在球磨罐中球磨混合4h;3) Ball milling and mixing SiO2 slurry 1, graphite slurry 2, 95g medium-temperature coal tar pitch, 20g polyvinylpyrrolidone, and 0.9g aluminum isopropoxide in a ball mill for 4h;
4)将所述浆料进行喷雾干燥,进口温度为150℃,得到粉料1;4) spray drying the slurry with an inlet temperature of 150°C to obtain powder 1;
5)将粉料1放入适量的无水乙醇溶液中进行洗涤,后将乙醇溶液倒出,再换新的无水乙醇溶液进行再次洗涤,重复三次,后经过滤、烘干后得到粉料2;5) Put the powder material 1 into an appropriate amount of anhydrous ethanol solution for washing, then pour out the ethanol solution, replace it with a new absolute ethanol solution and wash it again, repeat three times, and then obtain the powder material after filtering and drying. 2;
6)将所述粉料3在氮气气氛下,以2℃/min的升温速率升至980℃,恒温热处理2h,即得到所述球形氧化亚硅-石墨复合负极材料。6) Raising the powder 3 to 980°C at a heating rate of 2°C/min under a nitrogen atmosphere, and heat treatment at a constant temperature for 2 hours, to obtain the spherical silica-graphite composite negative electrode material.
实施例3Example 3
一种球形氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of spherical silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将120g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 120g of silicon oxide raw materials with 1kg of absolute ethanol and perform ball milling, and ball mill to a median particle size of 0.5um to obtain silicon oxide slurry 1;
2)将1kg天然石墨原料与2kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为1.5um,得到石墨浆料2;2) 1kg of natural graphite raw material and 2kg of dehydrated alcohol are uniformly mixed and ball-milled, and ball-milled to a median particle size of 1.5um to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青、20g聚乙二醇2000、1g异丙醇铝在球磨罐中球磨混合4h;3) Silica slurry 1, graphite slurry 2, 100g medium-temperature coal tar pitch, 20g polyethylene glycol 2000, 1g aluminum isopropoxide were ball-milled and mixed in a ball-milling tank for 4h;
4)将所述浆料进行喷雾干燥,进口温度为150℃,得到粉料1;4) spray drying the slurry with an inlet temperature of 150°C to obtain powder 1;
5)将粉料1放入适量的无水乙醇溶液中进行洗涤,后将乙醇溶液倒出,再换新的无水乙醇溶液进行再次洗涤,重复三次,后经过滤、烘干后得到粉料2;5) Put the powder material 1 into an appropriate amount of anhydrous ethanol solution for washing, then pour out the ethanol solution, replace it with a new absolute ethanol solution and wash it again, repeat three times, and then obtain the powder material after filtering and drying. 2;
6)将所述粉料2在氮气气氛下,以2℃/min的升温速率升至980℃,恒温热处理2h,得到所述球形氧化亚硅-石墨复合负极材料。6) Raising the powder 2 to 980°C at a heating rate of 2°C/min under a nitrogen atmosphere, and thermally treating it at a constant temperature for 2 hours to obtain the spherical silicon oxide-graphite composite negative electrode material.
实施例4Example 4
一种球形氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of spherical silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将170g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 170g of silicon oxide raw materials with 1kg of absolute ethanol and perform ball milling to obtain a silicon oxide slurry 1;
2)将1kg天然石墨原料与2kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为1.5um,得到石墨浆料2;2) 1kg of natural graphite raw material and 2kg of dehydrated alcohol are uniformly mixed and ball-milled, and ball-milled to a median particle size of 1.5um to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、105g中温煤沥青、20g聚乙烯吡咯烷酮、1.2g异丙醇铝在球磨罐中球磨混合4h;3) Ball milling and mixing 105g medium-temperature coal tar pitch, 20g polyvinylpyrrolidone, and 1.2g aluminum isopropoxide in a ball mill tank for 4h;
4)将所述浆料进行喷雾干燥,进口温度为180℃,得到粉料1;4) spray drying the slurry with an inlet temperature of 180°C to obtain powder 1;
5)将粉料1放入适量的无水乙醇溶液中进行洗涤,后将乙醇溶液倒出,再换新的无水乙醇溶液进行再次洗涤,重复三次,后经过滤、烘干后得到粉料2;5) Put the powder material 1 into an appropriate amount of anhydrous ethanol solution for washing, then pour out the ethanol solution, replace it with a new absolute ethanol solution and wash it again, repeat three times, and then obtain the powder material after filtering and drying. 2;
6)将所述粉料2在氮气气氛下,以2℃/min的升温速率升至1000℃,恒温热处理2h,得到所述球形氧化亚硅-石墨复合负极材料。6) Raising the powder 2 to 1000°C at a heating rate of 2°C/min in a nitrogen atmosphere, and heat treatment at a constant temperature for 2 hours to obtain the spherical silicon oxide-graphite composite negative electrode material.
实施例5Example 5
一种球形氧化亚硅-石墨复合负极材料的制备方法,包括以下步骤:A preparation method of spherical silicon oxide-graphite composite negative electrode material, comprising the following steps:
1)将120g氧化亚硅原料与1kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为0.5um,得到氧化亚硅浆料1;1) Mix 120g of silicon oxide raw materials with 1kg of absolute ethanol and perform ball milling, and ball mill to a median particle size of 0.5um to obtain silicon oxide slurry 1;
2)将1kg天然石墨原料与2kg无水乙醇混合均匀并进行球磨处理,球磨至中值粒径为1.5um,得到石墨浆料2;2) 1kg of natural graphite raw material and 2kg of dehydrated alcohol are uniformly mixed and ball-milled, and ball-milled to a median particle size of 1.5um to obtain graphite slurry 2;
3)将氧化亚硅浆料1、石墨浆料2、100g中温煤沥青、20g聚乙烯醇、1g异丙醇铝在球磨罐中球磨混合4h;3) Silica slurry 1, graphite slurry 2, 100g medium-temperature coal tar pitch, 20g polyvinyl alcohol, and 1g aluminum isopropoxide were ball-milled and mixed in a ball-milling tank for 4h;
4)将所述浆料进行喷雾干燥,进口温度为150℃,得到粉料1;4) spray drying the slurry with an inlet temperature of 150°C to obtain powder 1;
5)将粉料1放入适量的无水乙醇溶液中进行洗涤,后将乙醇溶液倒出,再换新的无水乙醇溶液进行再次洗涤,重复三次,后经过滤、烘干后得到粉料2;5) Put the powder material 1 into an appropriate amount of anhydrous ethanol solution for washing, then pour out the ethanol solution, replace it with a new absolute ethanol solution and wash it again, repeat three times, and then obtain the powder material after filtering and drying. 2;
6)将所述粉料2在氮气气氛下,以2℃/min的升温速率升至980℃,恒温热处理2h,得到所述球形氧化亚硅-石墨复合负极材料。6) Raising the powder 2 to 980°C at a heating rate of 2°C/min under a nitrogen atmosphere, and thermally treating it at a constant temperature for 2 hours to obtain the spherical silicon oxide-graphite composite negative electrode material.
实验情况:Experimental situation:
实施例1-5及对比例1-4所制备的复合负极材料的电化学性能测试结果如表1所示。扣式电池的测试条件为:23℃±2℃,LR2032,首次充放电I=0.1C,循环I=0.2C,0.005~2.0V vs.Li/Li+。The electrochemical performance test results of the composite negative electrode materials prepared in Examples 1-5 and Comparative Examples 1-4 are shown in Table 1. The test conditions of the button battery are: 23℃±2℃, LR2032, first charge and discharge I=0.1C, cycle I=0.2C, 0.005~2.0V vs. Li/Li + .
表1产品电化学性能测试结果Table 1 Product electrochemical performance test results
由以上对比数据可以看出,根据本发明实施例1~5中所制备的球形氧化亚硅-石墨复合负极材料的首次库伦效率及循环稳定性等电化学性能均优于对比例中的负极材料,尤其是循环性能,这得益于石墨-氧化亚硅复合材料的优异结构:通过无定形碳和小颗粒微米级石墨和氧化亚硅颗粒进行了有效的融合,起到了限域作用,从而有效抑制了氧化亚硅在充放电过程中的膨胀和粉化,也不存在传统技术中包覆碳层脱落的问题。It can be seen from the above comparative data that the electrochemical properties such as the first coulombic efficiency and cycle stability of the spherical silicon oxide-graphite composite negative electrode materials prepared in Examples 1 to 5 of the present invention are better than those of the negative electrode materials in the comparative examples. , especially the cycle performance, thanks to the excellent structure of the graphite-silicon oxide composite: the effective fusion of amorphous carbon and small particles of micron-scale graphite and silicon oxide particles plays a role of confinement, thereby effectively The expansion and pulverization of silicon oxide during charging and discharging are suppressed, and there is no problem of falling off of the coating carbon layer in the traditional technology.
图3和图4列出了实施例1制得的氧化亚硅-石墨复合负极材料的首次充放电曲线图和循环性能图,可见实施例1制备的材料,首次可逆比容量可达469.7mAh/g,100周容量保持率可达98.2%,表现出了优异的电化学性能。Figures 3 and 4 show the first charge-discharge curve and cycle performance of the silicon oxide-graphite composite negative electrode material prepared in Example 1. It can be seen that the material prepared in Example 1 has a first reversible specific capacity of 469.7mAh/ g, the 100-cycle capacity retention rate can reach 98.2%, showing excellent electrochemical performance.
对比例1没有对石墨进行预先球磨成小颗粒,因此,喷雾干燥出的球是氧化亚硅颗粒贴附在石墨大颗粒的表面,图1为对比例1制备出的材料的SEM电镜图,这种结构不能有效地抑制氧化亚硅在充放电过程中的膨胀收缩粉化,所以性能较经过球磨的实施例1性能明显下降。In Comparative Example 1, the graphite was not pre-milled into small particles. Therefore, the spray-dried spheres were silicon oxide particles attached to the surface of large graphite particles. Figure 1 is the SEM image of the material prepared in Comparative Example 1. This structure cannot effectively inhibit the expansion, shrinkage and pulverization of silicon oxide during the charging and discharging process, so the performance is obviously lower than that of the ball-milled Example 1.
对比例2没有加入异丙醇铝,因此无法消耗材料合成过程中产生的副产物SiO2,SiO2副产物在首次充放电过程中也会嵌锂消耗掉锂源,导致首次效率降低,因此影响了对比例2的首效。Comparative example 2 does not add aluminum isopropoxide, so it cannot consume the by-product SiO 2 produced during the material synthesis process. The SiO 2 by-product will also insert lithium and consume the lithium source during the first charge and discharge process, resulting in a decrease in the first efficiency, thus affecting The first effect of Comparative Example 2 was obtained.
异丙醇铝的加入量对产物性能具有较大的影响。对比例3中加入的异丙醇铝较少,导致不能完全反应消耗掉副产物SiO2,而对比例4中加入的异丙醇铝较多,又会残留较多的Al2O3惰性副产物,因此,异丙醇铝的加入量对于材料的性能影响较大。The addition amount of aluminum isopropoxide has a great influence on the properties of the product. The amount of aluminum isopropoxide added in comparative example 3 is less, resulting in incomplete reaction to consume by-product SiO 2 , while the amount of aluminum isopropoxide added in comparative example 4 is more, and more Al 2 O 3 inert secondary Therefore, the addition amount of aluminum isopropoxide has a great influence on the properties of the material.
图1为对比例1制得的氧化亚硅-石墨复合负极材料的SEM照片;图2是实施例1制得的氧化亚硅-石墨复合负极材料的SEM照片;从图中可以看出,对比例1中的石墨未经前期球磨成小颗粒的步骤,因此,经过喷雾干燥工艺会形成明显的核-壳结构,这种结构不能将氧化亚硅颗粒包埋在石墨球体中,不能有效抑制氧化亚硅的膨胀收缩粉化,而实施例1通过将石墨进行球磨缩小一次粒子尺寸,缩小与氧化亚硅颗粒尺寸的差距,从而在喷雾干燥工艺过程中不会形成核-壳结构,而是二者融合在一起的均匀分散的球体,这种将氧化亚硅包埋在石墨中的结构可以有效抑制氧化亚硅在充放电过程中的膨胀收缩,从而有效提高循环性能。Fig. 1 is the SEM photo of the silicon oxide-graphite composite negative electrode material prepared in Comparative Example 1; Fig. 2 is the SEM photo of the silicon oxide-graphite composite negative electrode material prepared in Example 1; The graphite in the ratio 1 has not been ball-milled into small particles in the early stage. Therefore, an obvious core-shell structure will be formed after the spray drying process. This structure cannot embed the silicon oxide particles in the graphite spheres and cannot effectively inhibit the oxidation. The expansion and shrinkage of silicon dioxide is pulverized, while in Example 1, the primary particle size is reduced by ball milling of graphite, and the gap with the silicon oxide particle size is narrowed, so that the core-shell structure will not be formed during the spray drying process, but the second particle size is reduced. The structure of embedding silicon oxide in graphite can effectively inhibit the expansion and contraction of silicon oxide during the charging and discharging process, thereby effectively improving the cycle performance.
综上所述,本发明的内容并不局限在上述的实施例中,相同领域内的有识之士可以在本发明的技术指导思想之内可以轻易提出其他的实施例,但这种实施例都包括在本发明的范围之内。To sum up, the content of the present invention is not limited to the above-mentioned embodiments. Persons of insight in the same field can easily propose other embodiments within the technical guidance of the present invention. All are included in the scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911169897.XA CN110828811A (en) | 2019-11-27 | 2019-11-27 | Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911169897.XA CN110828811A (en) | 2019-11-27 | 2019-11-27 | Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110828811A true CN110828811A (en) | 2020-02-21 |
Family
ID=69559241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911169897.XA Pending CN110828811A (en) | 2019-11-27 | 2019-11-27 | Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110828811A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463424A (en) * | 2020-04-09 | 2020-07-28 | 北京蒙京石墨新材料科技研究院有限公司 | Preparation method of silica negative electrode slurry |
CN111900362A (en) * | 2020-08-21 | 2020-11-06 | 珠海冠宇电池股份有限公司 | Quick-charging type high-specific-capacity negative plate and lithium ion battery comprising same |
CN112467112A (en) * | 2020-12-01 | 2021-03-09 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of lithium ion battery negative electrode material |
CN113772678A (en) * | 2021-08-30 | 2021-12-10 | 上海纳米技术及应用国家工程研究中心有限公司 | A method for preparing carbon-coated silicon oxide negative electrode material to reduce its charge transfer resistance |
CN114361416A (en) * | 2021-12-29 | 2022-04-15 | 宁波杉杉新材料科技有限公司 | Silicon-based composite material, lithium ion battery and preparation method and application thereof |
CN114464804A (en) * | 2022-02-10 | 2022-05-10 | 珠海冠宇电池股份有限公司 | Cathode material and lithium ion battery containing same |
WO2022142241A1 (en) * | 2020-12-31 | 2022-07-07 | 宁德新能源科技有限公司 | Negative electrode active material, electrochemical device, and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410158A (en) * | 2016-11-07 | 2017-02-15 | 中国科学院化学研究所 | Graphene modified silicon monoxide and carbon composite microsphere, and preparation method and application thereof |
CN108063233A (en) * | 2017-12-20 | 2018-05-22 | 天津锦美碳材科技发展有限公司 | A kind of silicon-carbon cathode material and preparation method thereof |
CN108232173A (en) * | 2018-01-31 | 2018-06-29 | 金山电池国际有限公司 | Lithium ion battery negative electrode material, preparation method thereof, negative electrode thereof and lithium ion battery |
CN108493438A (en) * | 2018-04-27 | 2018-09-04 | 天津巴莫科技股份有限公司 | A kind of lithium ion battery SiOxBase composite negative pole material and preparation method thereof |
-
2019
- 2019-11-27 CN CN201911169897.XA patent/CN110828811A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410158A (en) * | 2016-11-07 | 2017-02-15 | 中国科学院化学研究所 | Graphene modified silicon monoxide and carbon composite microsphere, and preparation method and application thereof |
CN108063233A (en) * | 2017-12-20 | 2018-05-22 | 天津锦美碳材科技发展有限公司 | A kind of silicon-carbon cathode material and preparation method thereof |
CN108232173A (en) * | 2018-01-31 | 2018-06-29 | 金山电池国际有限公司 | Lithium ion battery negative electrode material, preparation method thereof, negative electrode thereof and lithium ion battery |
CN108493438A (en) * | 2018-04-27 | 2018-09-04 | 天津巴莫科技股份有限公司 | A kind of lithium ion battery SiOxBase composite negative pole material and preparation method thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111463424A (en) * | 2020-04-09 | 2020-07-28 | 北京蒙京石墨新材料科技研究院有限公司 | Preparation method of silica negative electrode slurry |
CN111900362A (en) * | 2020-08-21 | 2020-11-06 | 珠海冠宇电池股份有限公司 | Quick-charging type high-specific-capacity negative plate and lithium ion battery comprising same |
CN112467112A (en) * | 2020-12-01 | 2021-03-09 | 上海纳米技术及应用国家工程研究中心有限公司 | Preparation method of lithium ion battery negative electrode material |
WO2022142241A1 (en) * | 2020-12-31 | 2022-07-07 | 宁德新能源科技有限公司 | Negative electrode active material, electrochemical device, and electronic device |
CN113772678A (en) * | 2021-08-30 | 2021-12-10 | 上海纳米技术及应用国家工程研究中心有限公司 | A method for preparing carbon-coated silicon oxide negative electrode material to reduce its charge transfer resistance |
CN114361416A (en) * | 2021-12-29 | 2022-04-15 | 宁波杉杉新材料科技有限公司 | Silicon-based composite material, lithium ion battery and preparation method and application thereof |
CN114464804A (en) * | 2022-02-10 | 2022-05-10 | 珠海冠宇电池股份有限公司 | Cathode material and lithium ion battery containing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111326723B (en) | Silicon-carbon composite negative electrode material for lithium ion battery and preparation method thereof | |
CN110828811A (en) | Silicon oxide-graphite composite negative electrode material for lithium ion battery and preparation method thereof | |
CN107863512B (en) | A core-shell structure silicon carbon anode material and preparation method thereof | |
CN110048101B (en) | A kind of silicon oxygen carbon microsphere composite negative electrode material and its preparation method and application | |
WO2019114555A1 (en) | Lithium ion battery negative electrode material and preparation method therefor | |
CN112467108B (en) | A kind of porous silicon-oxygen composite material and its preparation method and application | |
CN112366301A (en) | Silicon/silicon oxide/carbon composite negative electrode material for lithium ion battery and preparation method thereof | |
CN107342411B (en) | Preparation method of graphene-silicon-carbon lithium ion battery negative electrode material | |
CN111816854B (en) | Lithium ion battery | |
CN111554910B (en) | Lithium battery negative electrode material containing pre-lithiated silylene material, preparation method thereof and lithium battery | |
CN108281634A (en) | A kind of method and its application of graphene coated graphite negative material of lithium ion battery | |
CN111048764A (en) | A kind of silicon carbon composite material and its preparation method and application | |
CN106099113A (en) | A kind of nucleocapsid structure Si-C composite material and preparation method thereof | |
CN105762337A (en) | Silicon/graphene/carbon fiber composite cathode material and preparation method thereof | |
CN113206249B (en) | Lithium battery silicon-oxygen composite anode material with good electrochemical performance and preparation method thereof | |
CN112687853B (en) | Silica particle aggregate, preparation method thereof, negative electrode material and battery | |
CN106058190A (en) | Preparation method for high-capacity anode material for lithium ion battery | |
CN111029541B (en) | Silicon-carbon composite electrode material for honeycomb-like lithium ion battery and preparation method thereof | |
CN110137465A (en) | A kind of carbon@Fe2O3@carbosphere composite material and its application | |
CN103094551B (en) | Graphite/manganous oxide composite electrode material and preparation method thereof | |
CN112952048A (en) | Silicon-carbon composite negative electrode material, preparation method thereof, electrode and secondary battery | |
CN112259708B (en) | Preparation method of multilayer core-shell structure silicon monoxide lithium battery cathode | |
CN114188512B (en) | Silicon-carbon composite material and preparation method and application thereof | |
CN117712313A (en) | Coal-based porous silicon-carbon composite anode material and preparation method thereof | |
CN110550635B (en) | Preparation method of novel carbon-coated silica negative electrode material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200221 |