CN110825076B - Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback - Google Patents
Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback Download PDFInfo
- Publication number
- CN110825076B CN110825076B CN201910920285.3A CN201910920285A CN110825076B CN 110825076 B CN110825076 B CN 110825076B CN 201910920285 A CN201910920285 A CN 201910920285A CN 110825076 B CN110825076 B CN 110825076B
- Authority
- CN
- China
- Prior art keywords
- formation
- mobile
- slave
- robot
- operator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0287—Control of position or course in two dimensions specially adapted to land vehicles involving a plurality of land vehicles, e.g. fleet or convoy travelling
- G05D1/0291—Fleet control
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Manipulator (AREA)
Abstract
本发明公开了基于视线和力反馈的移动机器人编队导航半自主控制方法;该系统由主端,从端和通讯环节三部分组成。主端包含一个操作员,一台眼动仪,一台手控器和一台控制计算机。从端包括多移动机器人系统,摄像头和工作环境。主从端之间通过WiFi等进行无线通信。从端的多移动机器人系统具有半自主控制能力,利用虚拟刚体算法实现多移动机器人的自动避障与队形保持。主端通过利用眼动仪捕捉操作员的视线信号将其转换成从端的队形切换命令,结合手控器末端控制器的三个自由度进而对从端进行远程干预。该控制方法将力反馈与视线跟踪相结合,将视线跟踪应用到多移动机器人的控制中,减轻了操作员的认知负荷,提高了遥操作控制系统的效率与稳定性。
The invention discloses a mobile robot formation navigation semi-autonomous control method based on line of sight and force feedback; the system consists of three parts: a master end, a slave end and a communication link. The master side contains an operator, an eye tracker, a hand control and a control computer. The slave side includes multiple mobile robot systems, cameras and work environments. The master and slave communicate wirelessly through WiFi. The multi-mobile robot system from the end has semi-autonomous control capability, and uses virtual rigid body algorithm to realize automatic obstacle avoidance and formation maintenance of multi-mobile robots. The master end uses the eye tracker to capture the operator's line of sight signal and converts it into the formation switching command of the slave end, and combines the three degrees of freedom of the end controller of the hand controller to perform remote intervention on the slave end. The control method combines force feedback and gaze tracking, and applies gaze tracking to the control of multiple mobile robots, which reduces the cognitive load of the operator and improves the efficiency and stability of the teleoperation control system.
Description
技术领域technical field
本发明涉及基于视线和力反馈的移动机器人编队导航半自主控制方法。The invention relates to a semi-autonomous control method for formation navigation of mobile robots based on line of sight and force feedback.
背景技术Background technique
多机器人系统具有良好的冗余性、鲁棒性以及可扩展性等优点,近年来被广泛研究,并用于大范围的侦察探测、安全巡检以及搜救等任务。然而这些环境往往复杂多变,而对多移动机器人采用全自主的控制方法实现困难,因此目前比较可行有效的方法是与遥操作技术相结合以在那些人类难以接近的或者会对人类造成伤害的复杂环境执行任务。Multi-robot systems have the advantages of good redundancy, robustness, and scalability. They have been widely studied in recent years and are used in large-scale reconnaissance detection, security inspections, and search and rescue tasks. However, these environments are often complex and changeable, and it is difficult to implement a fully autonomous control method for multiple mobile robots. Therefore, a more feasible and effective method is to combine with teleoperation technology in those places that are difficult for humans to approach or that will cause harm to humans. Perform tasks in complex environments.
为了应对复杂多变的环境,多机器人在执行任务时需要实现队形的切换。在已有技术中,队形切换的实现主要采用两种方法:一种是利用人机交互设备的末端HIP的位置给出不同的目标队形命令,另一种利用算法让从端机器人根据不同的环境自动实现队形的切换。对于第一种方法而言,由于人机交互设备同时还需控制从端机器人的目标速度,而且将位置信息转换成目标队形命令不够直观需要操作者时刻保持高度警觉。这种方式加重了操作员的认知负荷,效率低,容易疲劳。对于第二种方法,算法实现困难,系统容易不稳定。In order to cope with complex and changeable environments, multi-robots need to switch formations when performing tasks. In the existing technology, two methods are mainly used to realize the formation switching: one is to use the position of the terminal HIP of the human-computer interaction device to give different target formation commands; The environment automatically realizes the switching of formations. For the first method, since the human-computer interaction equipment also needs to control the target speed of the slave robot, and the conversion of position information into target formation commands is not intuitive enough, the operator needs to be highly alert at all times. This method increases the cognitive load of the operator, which is inefficient and prone to fatigue. For the second method, it is difficult to implement the algorithm, and the system is prone to instability.
发明内容Contents of the invention
本发明的目的是将视线跟踪引入多移动机器人的主端控制回路中,结合力信息的反馈,使得多移动机器人在编队导航过程中可以根据不同的环境在躲避障碍物的同时及时准确地完成队形的切换顺利到达目标位置。The purpose of the present invention is to introduce line-of-sight tracking into the main-end control loop of multiple mobile robots, combined with the feedback of force information, so that multiple mobile robots can accurately and timely complete formation while avoiding obstacles according to different environments during formation navigation. The shape switching reaches the target position smoothly.
本发明采取的技术方案为:基于视线和力反馈的移动机器人编队导航半自主控制方法,由主端、从端和通讯环节组成;所述主端包括操作员、视觉跟踪设备、力反馈人机接口设备和控制计算机;所述从端包括多移动机器人、摄像头和工作环境组成;所述通讯环节采用WiFi或其他无线通讯方式;The technical solution adopted by the present invention is: a semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback, which is composed of a master end, a slave end and a communication link; the master end includes an operator, a visual tracking device, and a force feedback man-machine interface equipment and control computer; the slave end includes multiple mobile robots, cameras and working environment; the communication link adopts WiFi or other wireless communication methods;
所述主端的操作员通过视觉跟踪设备和力反馈人机接口设备进行交互,将控制命令通过通讯环节发送给从端的多移动机器人系统;所述多移动机器人系统包括由n个移动机器人组成的多移动平台系统;The operator at the master terminal interacts with the visual tracking device and the force feedback human-machine interface device, and sends the control command to the multi-mobile robot system at the slave-end through the communication link; the multi-mobile robot system includes a multi-robot system composed of n mobile robots. mobile platform system;
所述视觉跟踪设备用于捕捉操作员的视觉信号,并将这种信息转换为从端多移动机器人的目标队形控制指令;从端的多移动系统根据收到的指令形成预期队形。The vision tracking device is used to capture the visual signal of the operator, and convert this information into the target formation control instruction of the multi-mobile robot at the slave end; the multi-mobile system at the slave end forms an expected formation according to the received instruction.
所述力反馈人机接口设备具有三自由度的输出反馈,用于将从端多机器人系统的状态以力信号的方式反馈给主端;The force feedback human-machine interface device has output feedback with three degrees of freedom, and is used to feed back the state of the multi-robot system from the slave end to the master end in the form of force signals;
所述控制计算机利用可视化界面对从端多移动平台的目标队形进行预定义,并以图片的形式显示在界面上,利用视觉跟踪设备捕捉操作员的眼动信息,根据操作员所注视的图形,形成对应的点击事件;从端机器人做相应的队形切换。The control computer uses a visual interface to pre-define the target formation of the multi-mobile platform at the slave end, and displays it on the interface in the form of a picture, and uses a visual tracking device to capture the operator's eye movement information, and according to the graphic that the operator is looking at , to form a corresponding click event; the slave robot makes a corresponding formation switch.
所述摄像头用于将多机器人的状态以及从端环境以视频或图片的方式反馈给主端。The camera is used to feed back the status of the multi-robots and the slave-end environment to the master-end in the form of video or pictures.
根据操作员所注视的图形,所述多移动机器人系统采用虚拟刚体算法进行编队控制,将从端的多机器人系统看作一个整体,其中每个机器人自动实现队形保持与自动避障,通过这种方式操作者可以专注于从端机器人群的整体控制,而不用担心单个机器人是否会碰到障碍物。According to the graphics that the operator is looking at, the multi-robot system uses a virtual rigid body algorithm for formation control, and the multi-robot system at the slave end is regarded as a whole, in which each robot automatically realizes formation maintenance and automatic obstacle avoidance, through this In this way, the operator can focus on the overall control of the slave robot group without worrying about whether a single robot will encounter obstacles.
其中每个机器人与相邻机器人之间的位姿时一定,不会随着虚拟刚体的运动而发生变化,当虚拟刚体察觉到障碍物或者接收到队形切换的指令时,虚拟刚体中的矢量间的相对位姿就会发生相应的变化重新以另外一种刚体出现;用这种方式来自动实现队形保持与自动避障。The pose between each robot and the adjacent robot is constant and will not change with the movement of the virtual rigid body. When the virtual rigid body perceives an obstacle or receives an instruction to switch formation, the vector in the virtual rigid body The relative pose between them will change accordingly and reappear as another rigid body; in this way, formation maintenance and automatic obstacle avoidance can be realized automatically.
本发明的进一步改进在于:所述力反馈人机接口设备具有三自由度的输出反馈,其中x方向和z方向反映机器人与障碍物之间的距离和角度信息,y方向的输出量则反应整个多移动平台系统的队形大小。The further improvement of the present invention is that: the force feedback human-machine interface device has output feedback with three degrees of freedom, wherein the x direction and z direction reflect the distance and angle information between the robot and the obstacle, and the output quantity in the y direction reflects the entire Formation size for multiple mobile platform systems.
对于控制多机器人系统的力反馈人机接口设备,利用其末端执行器的x与z这两个自由度分别控制从端多机器人系统中虚拟刚体的角速度与线速度;本发明中多机器人系统需要最终到达指定位置,并且在整个运动过程中尽可能避开一切障碍物。尽管所采用的虚拟刚体算法已经可以实现自动避障,但是由于该算法与人工势场法一样存在死锁问题,所以利用力反馈协助避障,For the force feedback man-machine interface equipment of control multi-robot system, utilize these two degrees of freedom of x and z of its end effector to control respectively the angular velocity and the linear velocity of the virtual rigid body in the multi-robot system from the end; Multi-robot system needs in the present invention Eventually reach the designated location, and avoid all obstacles as much as possible during the entire movement. Although the virtual rigid body algorithm adopted can realize automatic obstacle avoidance, since the algorithm has the same deadlock problem as the artificial potential field method, force feedback is used to assist obstacle avoidance.
因此力反馈人机接口设备的输出x方向对应角速度信息以及机器人与障碍物之间的距离和角度信息,z方向对应线速度信息以及机器人与障碍物之间的距离和角度信息,反馈力与机器人的线速度和角速度相关,这样可以让机器人不断接近最终抵达目标位置。Therefore, the output x direction of the force feedback human-machine interface device corresponds to the angular velocity information and the distance and angle information between the robot and the obstacle, and the z direction corresponds to the linear velocity information and the distance and angle information between the robot and the obstacle. The feedback force and the robot The linear velocity is related to the angular velocity, so that the robot can keep approaching and finally reach the target position.
本发明的进一步改进在于:所述力反馈人机接口设备采用手控器。A further improvement of the present invention is that: the force feedback man-machine interface device adopts a hand controller.
本发明的进一步改进在于:所述视觉跟踪设备采用眼动仪。A further improvement of the present invention is that: the vision tracking device adopts an eye tracker.
采用本发明技术方案将有以下优点及有益效果:Adopting the technical solution of the present invention will have the following advantages and beneficial effects:
(1)本发明方案通过捕捉操作员的视线信号来实现从端机器人系统的队形切换,同时利用手控器末端控制器余下的自由度,控制队形的大小增加了预定义队形的灵活性,减轻了操作员的认知负荷,避免实现局部自治的困难,提高遥操作控制系统的效率与稳定性。(1) The solution of the present invention realizes the formation switching of the slave robot system by capturing the line-of-sight signal of the operator, and at the same time utilizes the remaining degrees of freedom of the end controller of the hand controller to control the size of the formation and increase the flexibility of the predefined formation It reduces the operator's cognitive load, avoids the difficulty of realizing local autonomy, and improves the efficiency and stability of the teleoperation control system.
(2)本发明中从端的多移动平台采用虚拟刚体算法,将从端的多机器人系统看作一个整体,其中这个虚拟刚体中每一个机器人可以自动实现队形的保持与避障。便于操作者专注于对多移动机器人平台的集中控制。(2) In the present invention, the multi-mobile platform at the slave end adopts a virtual rigid body algorithm, and the multi-robot system at the slave end is regarded as a whole, wherein each robot in the virtual rigid body can automatically realize formation maintenance and obstacle avoidance. It is convenient for the operator to focus on the centralized control of multiple mobile robot platforms.
(3)本发明方案将视线跟踪应用到多移动机器人系统的控制回路中,通过这种方式能够在多移动机器人系统碰到复杂任务的时候,依靠人的高级认知和决策能力给予合理控制。(3) The solution of the present invention applies line-of-sight tracking to the control loop of the multi-mobile robot system. In this way, when the multi-mobile robot system encounters complex tasks, it can rely on human's advanced cognition and decision-making ability to give reasonable control.
附图说明Description of drawings
图1是本发明基于力反馈和视线跟踪的多移动机器人编队导航的系统框架。Fig. 1 is the system framework of the multi-mobile robot formation navigation based on force feedback and line-of-sight tracking in the present invention.
图2是本发明主端结合视线跟踪和力反馈的高级任务控制示意图。Fig. 2 is a schematic diagram of a high-level task control in which the main terminal of the present invention combines gaze tracking and force feedback.
图3是本发明中基于虚拟刚体算法的多移动机器人完成队形切换任务的原理示意图。Fig. 3 is a schematic diagram of the principle of multi-mobile robots completing formation switching tasks based on the virtual rigid body algorithm in the present invention.
图4是本发明中基于力反馈和视线跟踪的多移动机器人平台的控制框图。Fig. 4 is a control block diagram of a multi-mobile robot platform based on force feedback and line of sight tracking in the present invention.
图5为基于视线跟踪的多移动机器人队形切换过程图。Figure 5 is a diagram of the formation switching process of multiple mobile robots based on line-of-sight tracking.
图6为robot1的实际线速度和角速度。Figure 6 shows the actual linear velocity and angular velocity of robot1.
图7为robot1的误差。Figure 7 shows the error of robot1.
具体实施方式detailed description
下面结合附图和实施例,对本发明的工作原理和工作过程作进一步详细说明。The working principle and working process of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参照图1,基于力反馈和视线跟踪的移动机器人编队导航半自主控制系统包括主端1,主从端之间的通讯环节2和从端3。其中主端1包括操作员1-1,计算机控制平台1-2,指手控器1-3和眼动仪1-4,所述系统的指手控器1-3具有六自由度输入和三自由度输出;Referring to Fig. 1, the mobile robot formation navigation semi-autonomous control system based on force feedback and line of sight tracking includes a
通讯环节2采用Internet无线通信方式;从端3包括多移动机器人系统,环境中的障碍物3-2,多机器人系统所要到达的目标位置3-3,以及用于将从端多机器人系统的工作状态反馈给主端的摄像头3-4。The
所述多移动机器人系统包括由n个移动机器人3-1-i(i=1,2,…,n)组成的多移动平台系统3-1,所述摄像头3-4被装载在无人机上,可随着多移动机器人系统的移动而移动,扩大了多机器人系统的活动范围。The multi-mobile robot system includes a multi-mobile platform system 3-1 composed of n mobile robots 3-1-i (i=1, 2,...,n), and the camera 3-4 is mounted on the drone , can move with the movement of the multi-robot system, expanding the range of activities of the multi-robot system.
所述计算机控制平台1-2可以通过通讯环节2给从端的多移动机器人系统下达控制指令,同时将传感器所采集到的信息以文本或图像的方式反馈给操作员1-1.同时也能对摄像头3-4采集到的视频信息进行实时显示,以使操作员1-1掌握从端多移动机器人系统平台的工作状态。The computer control platform 1-2 can issue control instructions to the multi-mobile robot system at the slave end through the
主端的操作员通过与人机接口设备1-3和眼动仪1-4进行交互,将控制命令通过通讯环节2发送至从端的多移动平台系统3-1,眼动仪1-4通过捕捉主端操作员的眼动信息,获得所要切换队形的点击指令,从端3的多移动平台3-1根据它接收到的指令形成目标队形,在接收到操作员下达的高级任务指令后,多移动平台3-1根据虚拟刚体算法自动完成队形的保持与避障。The operator at the master end interacts with the human-machine interface device 1-3 and the eye tracker 1-4, and sends the control command to the multi-mobile platform system 3-1 at the slave end through the
所述系统从端的多移动平台系统3-1中,每个移动机器人都配备能够获得自身的位姿信息,以及与障碍物的相对距离和相对角度等相关信息的传感器。In the multi-mobile platform system 3-1 at the slave end of the system, each mobile robot is equipped with sensors capable of obtaining its own position and posture information, as well as relative information such as relative distances and relative angles to obstacles.
根据虚拟刚体算法,将从端的多机器人看作一个整体,其中每个机器人与相邻机器人之间的位姿时是一定的,类比于一个刚体中的两个矢量,不会随着刚体的运动而发生变化,但是与真正的刚体所不同的是,当这个虚拟刚体察觉到障碍物或者接收到队形切换的指令时,虚拟刚体中的矢量间的相对位姿就会发生相应的变化;重新以另外一种面貌出现,用这种方式来自动实现队形保持与自动避障。同时操作者可以专注于从端机器人群的整体控制,而不用担心单个机器人是否会碰到障碍物。According to the virtual rigid body algorithm, the multi-robots at the slave end are regarded as a whole, and the pose between each robot and the adjacent robot is constant, which is analogous to two vectors in a rigid body, which will not follow the movement of the rigid body and change, but different from the real rigid body, when the virtual rigid body perceives obstacles or receives formation switching instructions, the relative pose between the vectors in the virtual rigid body will change accordingly; Appears in another form, using this method to automatically realize formation maintenance and automatic obstacle avoidance. At the same time, the operator can focus on the overall control of the slave robot group without worrying whether a single robot will encounter obstacles.
参照图2,利用可视化界面,根据从端多移动平台可能面临的工作环境事先设定好需要的队形。眼动追踪器通过捕捉操作者的视觉信息,确定操作者所注视的区域,由此获取点击刺激。得到目标队形命令,再结合力反馈接口设备,最终确定主端的高级控制命令如队形,队形尺度,目标速度等。Referring to Figure 2, using a visual interface, the required formation is set in advance according to the working environment that the slave multi-mobile platform may face. The eye tracker captures the operator's visual information to determine the area the operator is looking at, thereby obtaining the click stimulus. Get the target formation command, combined with the force feedback interface device, and finally determine the advanced control commands of the main end, such as formation, formation scale, target speed, etc.
对于手控器1-3的末端控制器的位置P(x,y,z),本实施例将x坐标轴代表虚拟刚体的角速度,x轴正方向为右转,x轴负方向为左转;z坐标轴代表虚拟刚体的线速度,z轴正方向为后退,z轴负方向为前进;y坐标轴用于控制虚拟刚体的大小;即多移动机器人平台所形成队形的大小;为了防止操作员控制的不稳定例如手部抖动等造成的非预期控制命令。For the position P(x, y, z) of the end controller of the hand controller 1-3, in this embodiment, the x-coordinate axis represents the angular velocity of the virtual rigid body, the positive direction of the x-axis is turning right, and the negative direction of the x-axis is turning left ; The z coordinate axis represents the linear velocity of the virtual rigid body, the positive direction of the z axis is backward, and the negative direction of the z axis is forward; the y coordinate axis is used to control the size of the virtual rigid body; that is, the size of the formation formed by the multi-mobile robot platform; Unexpected control commands caused by operator control instability such as hand shaking.
对移动机器人的预期队形定义如下:The expected formation for a mobile robot is defined as follows:
T=[Ld,Φd]T=[L d ,Φ d ]
其中 in
Ld和Φd分别代表各个移动机器人之间的相对距离和相对角度矩阵,两者共同决定了多移动机器人系统的队形共有m种队形,队形的大小由人机接口设备末端控制器的y坐标轴定义,为了防止由于操作员的抖动引起不需要的运动和意外事件,将y分割区域[yM1,yM2,…,yMm],每个区域对应一种尺度,队形的大小主要根据改变相对距离来实现。则主端的眼动仪1-4和力反馈人机接口设备1-3与从端多移动平台系统3-1之间的对应关系为:L d and Φ d represent the relative distance and relative angle matrix between each mobile robot, respectively, and the two together determine the formation of the multi-mobile robot system There are m types of formations, and the size of the formation is defined by the y-coordinate axis of the terminal controller of the human-machine interface device. In order to prevent unwanted movements and accidents caused by the operator's shaking, the y-divided area [y M1 , y M2 ,…,y Mm ], each area corresponds to a scale, and the size of the formation is mainly realized by changing the relative distance. Then the corresponding relationship between the eye tracker 1-4 at the master end, the force feedback man-machine interface device 1-3 and the multi-mobile platform system 3-1 at the slave end is:
其中v和w分别代表从端多移动机器人系统中虚拟刚体VRB的线速度和角速度;kv,kω,kT和kS则分别为线速度,角速度,队形和队形大小的增益系数;[qx,qy,qz]T代表力反馈人机接口设备末端控制器的位置坐标[xM,yM,zM],而qS则是根据由眼动跟踪仪捕捉操作员视线所获得的目标队形的点击刺激得到。where v and w respectively represent the linear velocity and angular velocity of the virtual rigid body VRB in the multi-mobile robot system from the end; k v , k ω , k T and k S are the gain coefficients of linear velocity, angular velocity, formation and formation size, respectively ; [q x ,q y ,q z ] T represents the position coordinates [x M ,y M ,z M ] of the end controller of the force feedback human-machine interface device, and q S is based on the position coordinates of the operator captured by the eye tracker The click stimulus of the target formation obtained by the line of sight is obtained.
参照图3,虚拟刚体算法有如下定义。Referring to Fig. 3, the virtual rigid body algorithm is defined as follows.
定义1:对于{1,2,...,N}标记为N的移动机器人组,用Fi表示机器人i的局部参考坐标系,用r表示位置,同时Ri(t)∈SO(3)表示在时间t内机器人i相对于Fw的位置。Definition 1: For {1,2,...,N} a group of mobile robots labeled N, let F i denote the local reference frame of robot i, let r denote the position, and R i (t)∈SO(3 ) represents the position of robot i relative to F w within time t.
定义2(虚拟刚体):虚拟刚体由一组数量为N的移动机器人组和一个局部参考系坐标系Fv组成。其中机器人的局部位置由一组时变矢量{r1(t),r1(t),...,RN(t)}所指定。Definition 2 (virtual rigid body): The virtual rigid body consists of a group of mobile robots whose number is N and a local reference frame coordinate system Fv . The local position of the robot is specified by a set of time-varying vectors {r 1 (t), r 1 (t), . . . , R N (t)}.
定义3(形成):形成Π是虚拟刚体,对于一组大小为N的机器人组,在Fv中具有恒定的局部位置{r1,r2,...,rN},持续时间TΠ>0.Definition 3 (Formation): Formation Π is a virtual rigid body with a constant local position {r 1 , r 2 , ..., r N } in F v for a group of robots of size N for duration T Π >0.
定义4(变换):变换Φ是一个虚拟刚体,具有相对于局部参考系Fv的时变位置{r1(t),r1(t),...,RN(t)},这样一组数量为N的移动机器人组,在持续时间TΦ>0中,Pv(t)∈R3和Rv(t)∈SO(3)分别表示在时间t的Fw中Fv原点的位置和方向。机器人i的pi(t)和ri(t)之间的关系为pi=pv+RV*ri,i∈{1,2,...,N}。Definition 4 (Transformation): Transformation Φ is a virtual rigid body with a time-varying position {r 1 (t), r 1 (t), ..., R N (t)} relative to the local reference frame F v , such that A group of mobile robots whose number is N, in duration T Φ > 0, P v (t) ∈ R 3 and R v (t) ∈ SO(3) denote the origin of F v in F w at time t position and direction. The relationship between p i (t) and r i (t) of robot i is p i =p v +R V *r i , i∈{1,2,...,N}.
在以上定义的基础上,在二维坐标p处定义了从障碍物的位置指向VRB的排斥矢量,其大小是与该障碍物的位置和半径相关的高斯函数,假设环境中存在数量为n的障碍物组,将障碍物k在全局坐标系Fw中的水平位置表示为ow,k,那么从二维坐标p处的n障碍物生成的矢量场中的整体排斥矢量On the basis of the above definition, the repulsion vector from the position of the obstacle to the VRB is defined at the two-dimensional coordinate p, and its size is a Gaussian function related to the position and radius of the obstacle. It is assumed that there are n Obstacle group, the horizontal position of obstacle k in the global coordinate system F w is expressed as o w, k , then the overall repulsion vector in the vector field generated from n obstacles at two-dimensional coordinate p
其中in
其中Bk是与障碍物k的半径rk相关的正标量参数。可以选择Bk的值,使得VRB的命令速度vv仍然可以克服最大的排斥矢量,因为VRB是虚拟的,2×2矩阵Σ是正定的,它通过以下方式定义动态类高斯函数的长轴和短轴。where B k is a positive scalar parameter related to the radius r k of obstacle k. The value of B k can be chosen such that the command velocity v of VRB can still overcome the largest repelling vector, because VRB is virtual and the 2×2 matrix Σ is positive definite, which defines the long axis of the dynamic Gaussian-like function by and minor axis.
虚拟刚体算法为单个移动机器人定义了比VRB更强的矢量场,这样当移动机器人接近障碍物时,排斥矢量可以将其“推开”。从而远离障碍物。The virtual rigid body algorithm defines a stronger vector field than VRB for a single mobile robot, so that when the mobile robot approaches an obstacle, the repulsive vector can "push it away". away from obstacles.
上式是在全局坐标系Fw中表示的,而在局部坐标系Fv中将它们表达为The above formulas are expressed in the global coordinate system Fw , while in the local coordinate system Fv they are expressed as
为本发明中主从端基于视线跟踪的多移动平台的队形切换的仿真结果,在该仿真实验中,四个移动机器人,先完成平行四边形编队,然后保持队形做直线运动运行一段时间,当操作员的视线转向计算机界面的线形按钮时,触发点击事件,从端的多机器人系统接收到队形切换命令,根据虚拟刚体算法,VRB与各个机器人的相对位姿改变。从而完成队形的转变。机器人的初始位姿和编队过程及其相应的运动轨迹如图5所示,为基于视线跟踪的多移动机器人队形切换过程。In the present invention, it is the simulation result of the formation switching of the multi-mobile platform based on the line-of-sight tracking of the master-slave end. In this simulation experiment, four mobile robots first complete the parallelogram formation, and then keep the formation and do linear motion for a period of time. When the operator's gaze turns to the linear button on the computer interface, a click event is triggered, and the multi-robot system at the slave end receives a formation switching command. According to the virtual rigid body algorithm, the relative pose of VRB and each robot changes. Thus completing the transformation of formation. The initial pose and formation process of the robot and its corresponding motion trajectory are shown in Figure 5, which is the formation switching process of multiple mobile robots based on line-of-sight tracking.
其中圆形代表虚拟刚体VRB,三角形代表实际的移动机器人。虚线表示VRB与各个移动机器人的相对位置,实线表示移动机器人之间的相对位置。由于四个机器人结构相同,故在此只对机器人1做分析,Among them, the circle represents the virtual rigid body VRB, and the triangle represents the actual mobile robot. The dotted lines represent the relative positions of VRB and each mobile robot, and the solid lines represent the relative positions between mobile robots. Since the four robots have the same structure, only
如图7所示;robot1的实际线速度和角速度误差;As shown in Figure 7; the actual linear velocity and angular velocity error of robot1;
移动机器人1的实际位姿与目标位姿的误差robot1.xe,robot1.ye,robot1.thetae;The error between the actual pose and the target pose of
如图6所示为robot1的实际线速度和角速度。如图可以看出在变换队形时,机器人的速度发生突变,误差增大,随后在10s后误差收敛到较小数值。As shown in Figure 6, the actual linear velocity and angular velocity of robot1. It can be seen from the figure that when the formation is changed, the speed of the robot changes suddenly, and the error increases, and then the error converges to a smaller value after 10s.
参照图4,基于力反馈和视线跟踪的多移动机器人平台的控制框图。操作员施加力Fh给手控器,得到手控器末端控制器的位置信息PM(xM,yM,zM),通过对应控制器的处理进而转化为从端虚拟刚体VRB的线速度vMl,角速度ωMl以及相应的队形形状T及大小S。这些控制信息进入通讯环节发送给从端多机器人平台。通讯环节的延迟问题利用无源处理方法来解决。从端的多移动平台在高级任务指令下根据虚拟刚体算法改变各自的位置。当从端多移动平台与环境交互时,障碍物提供给移动机器人群环境反作用,该反作用与各机器人的线速度,角速度以及整个机器人群形成的队形相关。经过通讯环节反馈给主端,得到各方向的反馈力(Fx,Fy,Fz)。Referring to Figure 4, the control block diagram of a multi-mobile robot platform based on force feedback and line-of-sight tracking. The operator applies force F h to the hand controller, and obtains the position information P M (x M , y M , z M ) of the end controller of the hand controller, which is converted into the line of the virtual rigid body VRB at the slave end through the processing of the corresponding controller Velocity v Ml , angular velocity ω Ml and corresponding formation shape T and size S. The control information enters the communication link and is sent to the slave multi-robot platform. The delay problem of the communication link is solved by passive processing method. The multi-mobile platforms at the slave end change their respective positions according to the virtual rigid body algorithm under the command of the high-level task. When interacting with the environment from multiple mobile platforms, obstacles provide environmental reactions to the mobile robot swarm, which are related to the linear velocity and angular velocity of each robot and the formation formed by the entire robot swarm. Feedback to the main end through the communication link, and get the feedback force (F x , F y , F z ) in each direction.
其中,力反馈设备三个方向的作用力定义如下:Among them, the force in three directions of the force feedback device is defined as follows:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910920285.3A CN110825076B (en) | 2019-09-26 | 2019-09-26 | Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910920285.3A CN110825076B (en) | 2019-09-26 | 2019-09-26 | Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110825076A CN110825076A (en) | 2020-02-21 |
CN110825076B true CN110825076B (en) | 2022-12-09 |
Family
ID=69548403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910920285.3A Active CN110825076B (en) | 2019-09-26 | 2019-09-26 | Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110825076B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111459161B (en) * | 2020-04-03 | 2021-07-06 | 北京理工大学 | A Human Intervention Control Method for Multi-Robot System |
CN111890389B (en) * | 2020-06-22 | 2021-10-08 | 东南大学 | Multi-mobile robot collaborative control system based on multi-modal interactive interface |
CN112051780B (en) * | 2020-09-16 | 2022-05-17 | 北京理工大学 | A mobile robot formation control system and method based on brain-computer interface |
CN112363389B (en) * | 2020-11-11 | 2022-07-05 | 西北工业大学 | Shared autonomous formation planning control method for single-master multi-slave teleoperation mode |
CN112944287B (en) * | 2021-02-08 | 2023-05-30 | 西湖大学 | Air repair system with active light source |
CN112959342B (en) * | 2021-03-08 | 2022-03-15 | 东南大学 | Teleoperation method for grasping operation of flying manipulator based on operator's intention recognition |
CN113031651B (en) * | 2021-03-12 | 2022-09-27 | 南京工程学院 | Bilateral teleoperation control system and method of UAV hanging system based on value function approximation |
CN113419631B (en) * | 2021-06-30 | 2022-08-09 | 珠海云洲智能科技股份有限公司 | Formation control method, electronic device and storage medium |
CN113386142A (en) * | 2021-07-07 | 2021-09-14 | 天津大学 | Grinding and cutting integrated processing system and method of teleoperation robot based on virtual clamp |
CN116631262A (en) * | 2023-05-31 | 2023-08-22 | 东南大学 | Man-machine collaborative training system based on virtual reality and touch feedback device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096415B (en) * | 2010-12-31 | 2012-09-26 | 重庆邮电大学 | Multi-robot formation method based on Ad-Hoc network and leader-follower algorithm |
CN104950885B (en) * | 2015-06-10 | 2017-12-22 | 东南大学 | A kind of view-based access control model and power feel the UAV group's bilateral teleoperation control system and its method of feedback |
CN108594846A (en) * | 2018-03-23 | 2018-09-28 | 哈尔滨工程大学 | More AUV flight patterns optimal control methods under a kind of obstacle environment |
CN109933069B (en) * | 2019-03-21 | 2022-03-08 | 东南大学 | Remote control system and control method of wire flaw detection robot based on vision and force feedback |
-
2019
- 2019-09-26 CN CN201910920285.3A patent/CN110825076B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110825076A (en) | 2020-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110825076B (en) | Semi-autonomous control method for mobile robot formation navigation based on line of sight and force feedback | |
CN107139178B (en) | Unmanned aerial vehicle and vision-based grabbing method thereof | |
US9862090B2 (en) | Surrogate: a body-dexterous mobile manipulation robot with a tracked base | |
US10759051B2 (en) | Architecture and methods for robotic mobile manipulation system | |
CN104950885B (en) | A kind of view-based access control model and power feel the UAV group's bilateral teleoperation control system and its method of feedback | |
US8577126B2 (en) | System and method for cooperative remote vehicle behavior | |
CN104808668B (en) | Multiple mobile robot's cooperation transporting flat plate shape object method based on force information | |
CN109571513B (en) | Immersive mobile grabbing service robot system | |
CN108563235B (en) | A multi-rotor unmanned aerial vehicle, method, device and equipment for grabbing a target object | |
CN113829343B (en) | Real-time multitasking and multi-man-machine interaction system based on environment perception | |
US20090180668A1 (en) | System and method for cooperative remote vehicle behavior | |
Mashood et al. | A gesture based kinect for quadrotor control | |
Li et al. | Localization and navigation for indoor mobile robot based on ROS | |
CN112828916B (en) | Remote operation combined interaction device for redundant mechanical arm and remote operation system for redundant mechanical arm | |
CN112975939A (en) | Dynamic trajectory planning method for cooperative mechanical arm | |
Angelopoulos et al. | Drone brush: Mixed reality drone path planning | |
Sriram et al. | Mobile robot assistance for disabled and senior citizens using hand gestures | |
Sugiyama et al. | A wearable visuo-inertial interface for humanoid robot control | |
KR101864758B1 (en) | Egocentric Tele-operation Control With Minimum Collision Risk | |
CN117301056A (en) | A robot remote control system and method based on real-time capture of arm postures | |
Palla et al. | Position based visual servoing control of a wheelchair mounter robotic arm using parallel tracking and mapping of task objects | |
CN114888768A (en) | Mobile duplex robot cooperative grabbing system and method based on multi-sensor fusion | |
CN209919901U (en) | Immersive mobile grabbing service robot hardware system | |
Wang et al. | Vision based robotic grasping with a hybrid camera configuration | |
Manschitz et al. | Shared autonomy for intuitive teleoperation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |