CN110819332A - Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof - Google Patents
Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof Download PDFInfo
- Publication number
- CN110819332A CN110819332A CN201911132290.4A CN201911132290A CN110819332A CN 110819332 A CN110819332 A CN 110819332A CN 201911132290 A CN201911132290 A CN 201911132290A CN 110819332 A CN110819332 A CN 110819332A
- Authority
- CN
- China
- Prior art keywords
- oil
- sulfobetaine
- trimethyl ammonium
- water
- ammonium chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 title description 25
- 238000001879 gelation Methods 0.000 title 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 claims abstract description 48
- 229940117986 sulfobetaine Drugs 0.000 claims abstract description 47
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000003292 glue Substances 0.000 claims abstract description 31
- 239000004094 surface-active agent Substances 0.000 claims abstract description 28
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229960004889 salicylic acid Drugs 0.000 claims abstract description 24
- 238000003756 stirring Methods 0.000 claims abstract description 22
- DHCDFWKWKRSZHF-UHFFFAOYSA-N sulfurothioic S-acid Chemical compound OS(O)(=O)=S DHCDFWKWKRSZHF-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000003093 cationic surfactant Substances 0.000 claims abstract description 18
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 239000003623 enhancer Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 239000003921 oil Substances 0.000 claims description 71
- 235000019198 oils Nutrition 0.000 claims description 70
- 239000000243 solution Substances 0.000 claims description 19
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 claims description 18
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 claims description 15
- -1 acyl propyl trimethyl ammonium chloride Chemical compound 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 7
- 235000009518 sodium iodide Nutrition 0.000 claims description 6
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 5
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 5
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 5
- 125000002511 behenyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 4
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 4
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 claims description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 3
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 claims description 3
- FGRVOLIFQGXPCT-UHFFFAOYSA-L dipotassium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [K+].[K+].[O-]S([O-])(=O)=S FGRVOLIFQGXPCT-UHFFFAOYSA-L 0.000 claims description 3
- CDIPRYKTRRRSEM-UHFFFAOYSA-M docosyl(trimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C CDIPRYKTRRRSEM-UHFFFAOYSA-M 0.000 claims description 3
- FRMWBRPWYBNAFB-UHFFFAOYSA-M potassium salicylate Chemical compound [K+].OC1=CC=CC=C1C([O-])=O FRMWBRPWYBNAFB-UHFFFAOYSA-M 0.000 claims description 3
- 229960003629 potassium salicylate Drugs 0.000 claims description 3
- 150000003384 small molecules Chemical class 0.000 claims description 3
- 229960004025 sodium salicylate Drugs 0.000 claims description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 2
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 claims description 2
- CXRFDZFCGOPDTD-UHFFFAOYSA-M Cetrimide Chemical compound [Br-].CCCCCCCCCCCCCC[N+](C)(C)C CXRFDZFCGOPDTD-UHFFFAOYSA-M 0.000 claims description 2
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 2
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 claims description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 2
- 239000005642 Oleic acid Substances 0.000 claims description 2
- 235000019482 Palm oil Nutrition 0.000 claims description 2
- VBIIFPGSPJYLRR-UHFFFAOYSA-M Stearyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C VBIIFPGSPJYLRR-UHFFFAOYSA-M 0.000 claims description 2
- 235000019270 ammonium chloride Nutrition 0.000 claims description 2
- 125000001204 arachidyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- XJWSAJYUBXQQDR-UHFFFAOYSA-M dodecyltrimethylammonium bromide Chemical compound [Br-].CCCCCCCCCCCC[N+](C)(C)C XJWSAJYUBXQQDR-UHFFFAOYSA-M 0.000 claims description 2
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 claims description 2
- MRAPAFWHXSJNRN-UHFFFAOYSA-M icosyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCC[N+](C)(C)C MRAPAFWHXSJNRN-UHFFFAOYSA-M 0.000 claims description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000002332 oil field water Substances 0.000 claims description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 2
- 239000002540 palm oil Substances 0.000 claims description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- SZEMGTQCPRNXEG-UHFFFAOYSA-M trimethyl(octadecyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCC[N+](C)(C)C SZEMGTQCPRNXEG-UHFFFAOYSA-M 0.000 claims description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims 2
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 claims 2
- CXTVRRQAGHQLGV-UHFFFAOYSA-M [NH4+].[Cl-].[Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C Chemical compound [NH4+].[Cl-].[Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C CXTVRRQAGHQLGV-UHFFFAOYSA-M 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 claims 1
- 229960003237 betaine Drugs 0.000 claims 1
- DDXLVDQZPFLQMZ-UHFFFAOYSA-M dodecyl(trimethyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)C DDXLVDQZPFLQMZ-UHFFFAOYSA-M 0.000 claims 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- NRWCNEBHECBWRJ-UHFFFAOYSA-M trimethyl(propyl)azanium;chloride Chemical compound [Cl-].CCC[N+](C)(C)C NRWCNEBHECBWRJ-UHFFFAOYSA-M 0.000 claims 1
- 238000011084 recovery Methods 0.000 abstract description 11
- 239000000499 gel Substances 0.000 description 14
- 239000002131 composite material Substances 0.000 description 7
- 238000003113 dilution method Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 238000011056 performance test Methods 0.000 description 7
- 239000010779 crude oil Substances 0.000 description 6
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- BURBNIPKSRJAIQ-UHFFFAOYSA-N 2-azaniumyl-3-[3-(trifluoromethyl)phenyl]propanoate Chemical compound OC(=O)C(N)CC1=CC=CC(C(F)(F)F)=C1 BURBNIPKSRJAIQ-UHFFFAOYSA-N 0.000 description 3
- MPNXSZJPSVBLHP-UHFFFAOYSA-N 2-chloro-n-phenylpyridine-3-carboxamide Chemical compound ClC1=NC=CC=C1C(=O)NC1=CC=CC=C1 MPNXSZJPSVBLHP-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229940063284 ammonium salicylate Drugs 0.000 description 3
- XYXNTHIYBIDHGM-UHFFFAOYSA-N ammonium thiosulfate Chemical compound [NH4+].[NH4+].[O-]S([O-])(=O)=S XYXNTHIYBIDHGM-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- YSJGOMATDFSEED-UHFFFAOYSA-M behentrimonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCCCCCCCC[N+](C)(C)C YSJGOMATDFSEED-UHFFFAOYSA-M 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GXIQZIDLPFZGIK-UHFFFAOYSA-N [NH4+].Cl.[Cl-].CN(C)C Chemical compound [NH4+].Cl.[Cl-].CN(C)C GXIQZIDLPFZGIK-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011218 binary composite Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940008099 dimethicone Drugs 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- MIKQUZGJQABVKX-UHFFFAOYSA-M icosyl(trimethyl)azanium;bromide Chemical compound [Br-].CCCCCCCCCCCCCCCCCCCC[N+](C)(C)C MIKQUZGJQABVKX-UHFFFAOYSA-M 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- ISWNAMNOYHCTSB-UHFFFAOYSA-N methanamine;hydrobromide Chemical compound [Br-].[NH3+]C ISWNAMNOYHCTSB-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-N sodium;2-hydroxybenzoic acid Chemical compound [Na+].OC(=O)C1=CC=CC=C1O ABBQHOQBGMUPJH-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000021 stimulant Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000011206 ternary composite Substances 0.000 description 1
- CEYYIKYYFSTQRU-UHFFFAOYSA-M trimethyl(tetradecyl)azanium;chloride Chemical compound [Cl-].CCCCCCCCCCCCCC[N+](C)(C)C CEYYIKYYFSTQRU-UHFFFAOYSA-M 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/584—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/5045—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Cosmetics (AREA)
Abstract
本发明涉及一种基于小分子凝胶对油水识别的智能驱油剂及其制备方法。所述方法包括将阳离子表面活性剂与磺基甜菜碱表面活性剂混合;向该混合物中加入水杨酸或者其盐;向上述体系中加入硫代硫酸盐;向上述体系中加入油水识别强化剂,搅拌均匀即得到智能驱油剂。该驱油剂胶液可以提高采收率16%以上,对油水的识别在80倍以上。The invention relates to an intelligent oil-displacing agent based on the identification of oil and water by small molecular gel and a preparation method thereof. The method includes mixing a cationic surfactant and a sulfobetaine surfactant; adding salicylic acid or a salt thereof to the mixture; adding a thiosulfate to the above system; adding an oil-water identification enhancer to the above system , and stir evenly to obtain an intelligent oil-displacing agent. The oil-displacing agent glue can improve the recovery rate by more than 16%, and the identification of oil and water is more than 80 times.
Description
技术领域technical field
本发明涉及提高原油采收率技术领域,具体涉及一种智能驱油剂及其使用工艺。The invention relates to the technical field of enhanced oil recovery, in particular to an intelligent oil-displacing agent and a process for using the same.
背景技术Background technique
化学驱油是油田三次采油的常用方式,是向注入水中加入化学剂,以改变驱替流体的物化性质及驱替流体与原油和岩石矿物之间的界面性质,从而有利于原油生产的一种采油方法。化学驱主要包括聚合物驱、聚合物/表面活性剂二元复合驱、表面活性剂/聚合物/碱三元复合驱等,所使用的药剂为聚合物、表面活性剂、碱以及其他辅助化学剂。这几种方式均有一定的应用,但是都存在对油水无法识别,在驱油的同时也将水大量采出,导致采出液含水率不断上升,提高采收率有限。Chemical flooding is a common method of tertiary oil recovery in oilfields. Chemical agents are added to injected water to change the physical and chemical properties of the displacing fluid and the interface properties between the displacing fluid and crude oil and rock minerals, which is beneficial to crude oil production. Oil extraction method. Chemical flooding mainly includes polymer flooding, polymer/surfactant binary composite flooding, surfactant/polymer/alkali ternary composite flooding, etc. The agents used are polymers, surfactants, alkalis and other auxiliary chemicals agent. All of these methods have certain applications, but all of them cannot identify oil and water, and a large amount of water is also produced during oil displacement, resulting in a continuous increase in the water content of the produced fluid and limited recovery.
关于驱油剂,小分子表面活性剂凝胶是在表面活性剂溶液的基础上通过加入其他组分,包括盐、醇、胺或者其他表面活性,形成对溶液或者是球形胶束的刺激,使之形成线状或者蠕虫状胶束,胶束之间的相互缠绕形成粘度。不同的表面活性剂对刺激的相应是不一样的,几乎可以说是一对一的,阳离子的受到水杨酸或者氯化钾的刺激能形成凝胶,阴离子或者两性离子的就没有相应,阴离子的与高碳醇复配能形成凝胶,阳离子的和两性离子的就不能。高碳醇加入阳离子表面活性剂凝胶中就会破胶。所以每一个凝胶体系都不一样,可能具有相似性的就是碳链的变化或者,否则即便是同一表活剂,不同的外界刺激剂的加入就是不同的凝胶,比如十六烷基三甲基氯化铵用加水杨酸可以形成凝胶,加氯化剂也可以形成,这两者没有相似性,只是都是用了十六烷基三甲基氯化铵。Regarding the oil displacement agent, the small molecule surfactant gel is based on the surfactant solution by adding other components, including salts, alcohols, amines or other surface activities, to stimulate the solution or spherical micelles, so that the It forms linear or worm-like micelles, and the entanglement between the micelles forms viscosity. Different surfactants have different responses to stimuli, almost one-to-one. The cationic ones can be stimulated by salicylic acid or potassium chloride to form gels, while the anionic or zwitterionic ones have no corresponding response. It can form a gel when compounded with higher alcohols, but cationic and zwitterionic cannot. The addition of higher alcohols to the cationic surfactant gel will break the gel. Therefore, each gel system is different, and there may be similarities in the change of carbon chain or, otherwise, even if it is the same surfactant, the addition of different external stimulants will result in different gels, such as cetyl trimethyl. The gel can be formed by adding salicylic acid to ammonium chloride, and it can also be formed by adding a chlorinating agent. There is no similarity between the two, but cetyltrimethylammonium chloride is used.
发明内容SUMMARY OF THE INVENTION
为了克服现有压裂液的缺点,本发明的目的在于提供一种可以识别储层中原油和水的智能驱油体系。In order to overcome the shortcomings of the existing fracturing fluids, the purpose of the present invention is to provide an intelligent oil displacement system that can identify crude oil and water in the reservoir.
该驱油体系是由小分子表面活性化合物溶于水后与其他化合物协同作用形成的弱凝胶,因此具有表面活性剂驱油剂的特点,同时具有聚合物驱油剂的性质。更重要的是该体系遇到油和水都可以破胶,即粘度大幅度下降,直至与水的粘度相同。该体系遇到5-10倍的水才可以破胶,但是5-10%的原油就可以使该体系破胶,即该体系对油和水的感应有显著差别,敏感程度相差约100倍。本发明即利用这一特点研发驱油剂,使其进入储层运移过程中遇到水粘度不发生显著变化,遇到原油则容易粘度急剧降低形成表面活性剂溶液,即可以通过粘度响应产生对油水的识别作用。这样高粘度的驱油剂体系在高含水区域流动性差,形成一定的调剖作用;而在高含油区域高粘度的胶体转变为低粘度的驱油剂体系,流动性好,产生导向作用。在源头设计上向该智能驱油剂引入了能够降低界面张力和具有较好乳化作用的活性组分,使得破胶后的表面活性剂溶液成为表面活性剂驱油剂,容易将原油携带出储层,而对储层中原有的水影响较小,最终实现智能驱油。The oil displacement system is a weak gel formed by the synergistic action of other compounds after dissolving small molecular surface active compounds in water, so it has the characteristics of a surfactant oil displacement agent and the properties of a polymer oil displacement agent. More importantly, the system can break the gel when it encounters both oil and water, that is, the viscosity drops greatly until the viscosity is the same as that of water. The system can break the gel when it encounters 5-10 times of water, but 5-10% crude oil can break the gel, that is, the system has a significant difference in the induction of oil and water, and the difference in sensitivity is about 100 times. The present invention utilizes this feature to develop the oil displacement agent, so that the viscosity of water does not change significantly when it enters the reservoir and migrates, but when it encounters crude oil, the viscosity is easily reduced sharply to form a surfactant solution, which can be generated by the viscosity response. Identification of oil and water. Such a high-viscosity oil-displacing agent system has poor fluidity in the high-water-cut area, forming a certain profile control effect; while in the high-oil-content area, the high-viscosity colloid transforms into a low-viscosity oil-displacing agent system, with good fluidity and a guiding effect. In the source design, active components that can reduce interfacial tension and have better emulsification are introduced into the intelligent oil displacement agent, so that the surfactant solution after gel breaking becomes a surfactant oil displacement agent, which is easy to carry crude oil out of storage. It has less impact on the original water in the reservoir, and finally realizes intelligent oil flooding.
为了达到上述目的,本发明采用的技术方案为:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种智能驱油剂及其使用工艺,包括以下步骤:An intelligent oil displacing agent and a using process thereof, comprising the following steps:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1-2混合搅拌均匀,所述阳离子表面活性剂为工业级及其以上纯度的十二烷基三甲基氯化铵、十四烷基三甲基氯化铵、十六烷基三甲基氯化铵、十八烷基三甲基氯化铵、二十烷基三甲基氯化铵、二十二烷基三甲基氯化铵、十二烷基三甲基溴化铵、十四烷基三甲基溴化铵、十六烷基三甲基溴化铵、十八烷基三甲基溴化铵、二十烷基三甲基溴化铵、二十二烷基三甲基溴化铵、椰油酰丙基三甲基氯化铵、棕榈油酰丙基三甲基氯化铵、油酰丙基三甲基氯化铵及其组合物,所述磺基甜菜碱表面活性剂为工业级及其以上纯度的十二烷基二甲基磺基甜菜碱、十四烷基二甲基磺基甜菜碱、十六烷基二甲基磺基甜菜碱、十八烷基二甲基磺基甜菜碱、二十烷基二甲基磺基甜菜碱、二十二烷基二甲基磺基甜菜碱、月桂酰胺丙基磺基甜菜碱、油酸酰胺丙基磺基甜菜碱、芥酸酰胺丙基磺基甜菜碱、椰油酰胺基丙基磺基甜菜碱及其组合物;The first step, in the reactor, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:1-2, and the cationic surfactant is the dodecyl triglyceride of technical grade and its above purity. Methyl ammonium chloride, tetradecyl trimethyl ammonium chloride, hexadecyl trimethyl ammonium chloride, octadecyl trimethyl ammonium chloride, eicosyl trimethyl ammonium chloride, Behenyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, octadecyltrimethylammonium bromide Methyl Ammonium Bromide, Eicosyl Trimethyl Ammonium Bromide, Behenyl Trimethyl Ammonium Bromide, Cocoylpropyl Trimethyl Ammonium Chloride, Palmoleoylpropyl Trimethyl Ammonium Chloride Ammonium chloride, oleoyl propyl trimethyl ammonium chloride and composition thereof, the sulfobetaine surfactant is industrial grade and above purity dodecyl dimethyl sulfobetaine, tetradecane Dimethyl sulfobetaine, cetyl dimethyl sulfobetaine, octadecyl dimethyl sulfobetaine, eicosyl dimethyl sulfobetaine, behenyl Dimethyl sulfobetaine, lauramidopropyl sulfobetaine, oleamidopropyl sulfobetaine, erucamidopropyl sulfobetaine, cocamidopropyl sulfobetaine, and combinations thereof thing;
第二步,向该混合物中加入总质量40-60%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为工业级及其以上纯度的水杨酸、水杨酸钠、水杨酸铵、水杨酸钾及其组合物;In the second step, add 40-60% salicylic acid or its salt of the total mass to the mixture, stir evenly, and the salicylic acid or its salt are salicylic acid and sodium salicylic acid of technical grade and above purity , ammonium salicylate, potassium salicylate and compositions thereof;
第三步,向上述体系中加入总质量2-5%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为工业级及其以上纯度的硫代硫酸钠、硫代硫酸钾、硫代硫酸铵及其组合物;The 3rd step, add the thiosulfate of total mass 2-5% in the above-mentioned system, stir, described thiosulfate is the sodium thiosulfate, potassium thiosulfate, thiosulfate of technical grade and its purity above Ammonium sulfate and its composition;
第四步,向上述体系中加入总质量1-3%的油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为工业级及其以上纯度的碘化钠、碘化钾及其组合物。The fourth step is to add 1-3% oil-water identification enhancer of the total mass to the above-mentioned system, and stir evenly to obtain an intelligent oil-displacing agent. The oil-water identification enhancer is sodium iodide, potassium iodide and its composition.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.3-1%的胶液,形成粘度为3-10mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率16%以上。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别在80倍以上。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.3-1% to form a glue solution with a viscosity of 3-10 mPa·s, which can be injected into the reservoir along with the oilfield water injection well. The "SY/T 6424-2014 composite flooding system performance test method" was used to conduct oil displacement experiments, and the experimental results showed that the oil recovery could be increased by more than 16%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. The recognition is more than 80 times.
附图说明Description of drawings
图1小分子表面活性化合物形成凝胶;Figure 1. Small molecule surface active compounds form gels;
图2智能驱油剂对储层中油水的识别。Fig. 2 Identification of oil and water in reservoirs by intelligent oil displacement agents.
实施例Example
下面通过实施例对本发明作进一步说明。应该理解的是,本发明实施例所述方法仅仅是用于说明本发明,而不是对本发明的限制,在本发明的构思前提下对本发明制备方法的简单改进都属于本发明要求保护的范围。实施例中用到的所有原料和溶剂均为市售产品。The present invention will be further described below through examples. It should be understood that the methods described in the embodiments of the present invention are only used to illustrate the present invention, rather than to limit the present invention, and simple improvements to the preparation method of the present invention under the concept of the present invention all belong to the scope of protection of the present invention. All raw materials and solvents used in the examples are commercially available products.
实施例1:Example 1:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1混合搅拌均匀,所述阳离子表面活性剂为工业级十六烷基三甲基氯化铵,所述磺基甜菜碱表面活性剂为工业级椰油酰胺基丙基磺基甜菜碱;The first step, in the reactor, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred at a ratio of 10:1, and the cationic surfactant is technical grade cetyltrimethyl ammonium chloride, so Described sulfobetaine surfactant is technical grade cocamidopropyl sulfobetaine;
第二步,向该混合物中加入总质量50%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为质量比为1:1的工业级水杨酸铵和水杨酸钾;In the second step, add 50% salicylic acid or its salt of total mass to the mixture, stir evenly, and the salicylic acid or its salt are technical grade ammonium salicylate and salicylic acid whose mass ratio is 1:1 potassium;
第三步,向上述体系中加入总质量2%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为工业级硫代硫酸钠;The 3rd step, add the thiosulfate of total mass 2% in above-mentioned system, stir, and described thiosulfate is technical grade sodium thiosulfate;
第四步,向上述体系中加入总质量3%的碘化物抗油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为工业级碘化钾。In the fourth step, 3% of the total mass of iodide anti-oil and water identification enhancer is added to the above system, and the intelligent oil-displacing agent is obtained by stirring evenly. The oil and water identification enhancer is industrial grade potassium iodide.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.4%的胶液,形成粘度为5mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率23%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为120倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.4% to form a glue solution with a viscosity of 5mPa·s, which can be injected into the reservoir with the water injection well in the oil field. Using the "SY/T 6424-2014 composite flooding system performance test method" to conduct oil displacement experiments, the experimental results show that the oil recovery can be increased by 23%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. Recognition is 120 times.
实施例2:Example 2:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1.1混合搅拌均匀,所述阳离子表面活性剂为化学纯的十八烷基三甲基溴化铵,所述磺基甜菜碱表面活性剂为化学纯油酸酰胺丙基磺基甜菜碱;The first step, in the reactor, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:1.1, and the cationic surfactant is chemically pure octadecyltrimethylammonium bromide, The sulfobetaine surfactant is chemically pure oleic acid amidopropyl sulfobetaine;
第二步,向该混合物中加入总质量45%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为化学纯水杨酸钠;In the second step, add 45% of total mass salicylic acid or its salt to the mixture, stir evenly, and the salicylic acid or its salt is chemically pure sodium salicylate;
第三步,向上述体系中加入总质量5%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为分析纯硫代硫酸铵;The 3rd step, add the thiosulfate of total mass 5% in the above-mentioned system, stir, and described thiosulfate is analytical pure ammonium thiosulfate;
第四步,向上述体系中加入总质量2.5%的碘化物油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为化学纯碘化钾。In the fourth step, 2.5% of the total mass of iodide oil-water identification enhancer is added to the above system, and the intelligent oil-displacing agent is obtained by stirring evenly. The oil-water identification enhancer is chemically pure potassium iodide.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.25%的胶液,形成粘度为3mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率18%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为110倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.25% to form a glue solution with a viscosity of 3 mPa·s, which can be injected into the reservoir with the water injection well in the oil field. The "SY/T 6424-2014 composite flooding system performance test method" was used to conduct oil displacement experiments, and the experimental results showed that the oil recovery could be increased by 18%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. Recognition is 110 times.
实施例3:Example 3:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1.2混合搅拌均匀,所述阳离子表面活性剂为质量比为9:1的分析纯十八烷基三甲基氯化铵和二十二烷基三甲基溴化铵,所述磺基甜菜碱表面活性剂为分析纯二十二烷基二甲基磺基甜菜碱;The first step, in the reaction kettle, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:1.2, and the cationic surfactant is an analytically pure octadecyl triacetate with a mass ratio of 9:1. Methyl ammonium chloride and behenyl trimethyl ammonium bromide, the sulfobetaine surfactant is analytical pure behenyl dimethyl sulfobetaine;
第二步,向该混合物中加入总质量42%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为分析纯水杨酸;In the second step, 42% of total mass salicylic acid or its salt is added to the mixture, and the mixture is uniformly stirred, and the salicylic acid or its salt is analytically pure salicylic acid;
第三步,向上述体系中加入总质量3%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为分析纯硫代硫酸钾;The 3rd step, add the thiosulfate of total mass 3% in the above-mentioned system, stir, and described thiosulfate is analytically pure potassium thiosulfate;
第四步,向上述体系中加入总质量2%的碘化物油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为分析纯碘化钠。In the fourth step, 2% of the total mass of iodide oil-water identification enhancer is added to the above system, and the intelligent oil-displacing agent is obtained by stirring evenly. The oil-water identification enhancer is analytically pure sodium iodide.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.15%的胶液,形成粘度为3mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率19%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为85倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.15% to form a glue solution with a viscosity of 3 mPa·s, which can be injected into the reservoir with the water injection well in the oil field. Using the "SY/T 6424-2014 composite flooding system performance test method" to carry out oil displacement experiments, the experimental results show that the oil recovery can be increased by 19%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. Recognition is 85 times.
实施例4:Example 4:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1.5混合搅拌均匀,所述阳离子表面活性剂为质量比为5:1的工业级十八烷基三甲基氯化铵和棕榈油酰丙基三甲基氯化铵,所述磺基甜菜碱表面活性剂为质量比为2:1的工业级十六烷基二甲基磺基甜菜碱和二十烷基二甲基磺基甜菜碱;The first step, in the reaction kettle, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:1.5, and the cationic surfactant is an industrial grade octadecyl triacetate with a mass ratio of 5:1. Methyl ammonium chloride and palm oil acyl propyl trimethyl ammonium chloride, the sulfobetaine surfactant is technical grade cetyl dimethyl sulfobetaine and dimethicone with a mass ratio of 2:1. dodecyl dimethyl sulfobetaine;
第二步,向该混合物中加入总质量55%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为工业级杨酸钠;In the second step, add 55% of total mass salicylic acid or its salt to the mixture, stir evenly, and the salicylic acid or its salt is technical grade sodium salicylate;
第三步,向上述体系中加入总质量2.5%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为工业级硫代硫酸铵;The 3rd step, add the thiosulfate of total mass 2.5% in the above-mentioned system, stir, and described thiosulfate is technical grade ammonium thiosulfate;
第四步,向上述体系中加入总质量1%的碘化物油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为工业级碘化钠。In the fourth step, 1% of the total mass of iodide oil-water identification enhancer is added to the above system, and the intelligent oil-displacing agent is obtained by stirring evenly. The oil-water identification enhancer is industrial grade sodium iodide.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.3%的胶液,形成粘度为6mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率19%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为140倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.3% to form a glue solution with a viscosity of 6 mPa·s, which can be injected into the reservoir with the water injection well in the oil field. Using the "SY/T 6424-2014 composite flooding system performance test method" to carry out oil displacement experiments, the experimental results show that the oil recovery can be increased by 19%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. Recognition is 140 times.
实施例5:Example 5:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:1.8混合搅拌均匀,所述阳离子表面活性剂为质量比为8:1的化学纯十六烷基三甲基溴化铵和椰油酰丙基三甲基氯化铵,所述磺基甜菜碱表面活性剂为化学纯芥酸酰胺丙基磺基甜菜碱;The first step, in the reactor, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:1.8, and the cationic surfactant is a chemically pure hexadecyl triacetate with a mass ratio of 8:1. Methyl ammonium bromide and cocoylpropyl trimethyl ammonium chloride, the sulfobetaine surfactant is chemically pure erucic acid amidopropyl sulfobetaine;
第二步,向该混合物中加入总质量60%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为化学纯水杨酸铵;In the second step, add 60% of total mass salicylic acid or its salt to the mixture, stir evenly, and the salicylic acid or its salt is chemically pure ammonium salicylate;
第三步,向上述体系中加入总质量4%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为质量比为1:2的工业级硫代硫酸钠和硫代硫酸铵。In the third step, 4% of total mass thiosulfate is added to the above-mentioned system, and the mixture is stirred evenly. The thiosulfate is technical grade sodium thiosulfate and ammonium thiosulfate with a mass ratio of 1:2.
第四步,向上述体系中加入总质量2%的碘化物油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为质量比为1:2的工业级碘化钠和碘化钾。In the fourth step, add 2% iodide oil-water identification enhancer by total mass to the above system, and stir evenly to obtain an intelligent oil-displacing agent. The oil-water identification enhancer is industrial-grade sodium iodide and Potassium iodide.
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.5%的胶液,形成粘度为9mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率24%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为150倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a glue solution of 0.5% to form a glue solution with a viscosity of 9 mPa·s, which can be injected into the reservoir with the water injection well in the oil field. The "SY/T 6424-2014 composite flooding system performance test method" was used to conduct oil displacement experiments, and the experimental results showed that the oil recovery could be increased by 24%. The ability of the glue to identify water and oil was determined by the dilution method, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce the viscosity of water to the viscosity of the water. Recognition is 150 times.
实施例6:Example 6:
第一步,在反应釜中将阳离子表面活性剂与磺基甜菜碱表面活性剂按照10:2混合搅拌均匀,所述阳离子表面活性剂为质量比为1:8:1的工业级十二烷基三甲基氯化铵、十六烷基三甲基氯化铵、二十二烷基三甲基氯化铵,所述磺基甜菜碱表面活性剂为质量比为2:5:3的工业级十二烷基二甲基磺基甜菜碱、二十二烷基二甲基磺基甜菜碱和月桂酰胺丙基磺基甜菜碱;The first step, in the reactor, the cationic surfactant and the sulfobetaine surfactant are mixed and stirred uniformly according to 10:2, and the cationic surfactant is an industrial grade dodecane with a mass ratio of 1:8:1 trimethyl ammonium chloride, cetyl trimethyl ammonium chloride, behenyl trimethyl ammonium chloride, the sulfobetaine surfactant is a mass ratio of 2:5:3 Industrial grade dodecyl dimethyl sulfobetaine, behenyl dimethyl sulfobetaine and lauramidopropyl sulfobetaine;
第二步,向该混合物中加入总质量60%的水杨酸或者其盐,搅拌均匀,所述水杨酸或者其盐为工业级水杨酸钾;In the second step, add 60% of total mass salicylic acid or its salt to the mixture, stir evenly, and the salicylic acid or its salt is technical grade potassium salicylate;
第三步,向上述体系中加入总质量5%的硫代硫酸盐,搅拌均匀,所述硫代硫酸盐为工业级硫代硫酸钠。In the third step, 5% of the total mass of thiosulfate is added to the above system, and the mixture is stirred evenly. The thiosulfate is technical grade sodium thiosulfate.
第四步,向上述体系中加入总质量2.5%的碘化物油水识别强化剂,搅拌均匀即得到智能驱油剂,所述油水识别强化剂为工业级碘化钠;The fourth step, adding 2.5% of the total mass of iodide oil-water identification enhancer to the above system, and stirring evenly to obtain an intelligent oil-displacing agent, the oil-water identification enhancer is industrial-grade sodium iodide;
应用时将该驱油剂溶于水中,搅拌均匀,配制成0.2%的胶液,形成粘度为5mPa·s的胶液,随油田注水井注入储层即可。采用“SY/T 6424-2014复合驱油体系性能测试方法”进行驱油实验,实验结果显示可以提高采收率18%。采用稀释法测定胶液对水、油的识别能力,即向胶液中加入水或者油使其降低至水的粘度所消耗的水、油的体积之比,该驱油剂胶液对油水的识别为100倍。In application, the oil displacement agent is dissolved in water, stirred evenly, and prepared into a 0.2% glue solution to form a glue solution with a viscosity of 5 mPa·s, which can be injected into the reservoir along with the water injection well in the oil field. The "SY/T 6424-2014 composite flooding system performance test method" was used to conduct oil displacement experiments, and the experimental results showed that the oil recovery could be increased by 18%. Dilution method was used to determine the ability of glue to identify water and oil, that is, the ratio of the volume of water and oil consumed by adding water or oil to the glue to reduce it to the viscosity of water. Recognition is 100 times.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911132290.4A CN110819332B (en) | 2019-11-19 | 2019-11-19 | Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911132290.4A CN110819332B (en) | 2019-11-19 | 2019-11-19 | Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110819332A true CN110819332A (en) | 2020-02-21 |
CN110819332B CN110819332B (en) | 2022-03-15 |
Family
ID=69556508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911132290.4A Active CN110819332B (en) | 2019-11-19 | 2019-11-19 | Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110819332B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115678517A (en) * | 2022-11-29 | 2023-02-03 | 四川大学 | High temperature resistant viscoelastic fluid based on ultra-long chain surfactant and its preparation method and application |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0323916D0 (en) * | 2003-10-11 | 2003-11-12 | Schlumberger Holdings | Viscoelastic surfactant gels with reduced salt concentration |
US20060128598A1 (en) * | 2004-01-21 | 2006-06-15 | Yiyan Chen | Viscoelastic surfactant rheology modification |
US20060183646A1 (en) * | 2005-02-15 | 2006-08-17 | Halliburton Energy Services, Inc. | Viscoelastic surfactant fluids and associated methods |
CN1930266A (en) * | 2004-01-21 | 2007-03-14 | 施蓝姆伯格技术公司 | Additive for viscoelastic fluid |
US20070281869A1 (en) * | 2006-06-06 | 2007-12-06 | Bruno Drochon | Thermoviscoelastic System Fluid and Well Treatment Method |
CN101124291A (en) * | 2004-12-15 | 2008-02-13 | 施蓝姆伯格技术公司 | Viscoelastic surfactant rheology modification |
CN101310093A (en) * | 2005-11-16 | 2008-11-19 | 罗迪亚公司 | Methods of recovering oil from oil reservoirs |
CA2793339A1 (en) * | 2011-11-11 | 2013-05-11 | Baker Hughes Incorporated | Metallic particle induced saponification of fatty acids as breakers for viscoelastic surfactant-gelled fluids |
CN103980876A (en) * | 2014-05-22 | 2014-08-13 | 西安石油大学 | Clean fracturing fluid applicable to construction in low-temperature environment and preparation method thereof |
CN104498014A (en) * | 2014-12-30 | 2015-04-08 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | Gel breaking liquid based modifying and flooding agent and preparation method thereof |
CN104531118A (en) * | 2014-12-25 | 2015-04-22 | 郑州正佳能源环保科技有限公司 | Method for preparing intelligent nanometer oil-displacing agent |
CN105419767A (en) * | 2014-09-23 | 2016-03-23 | 中国石油化工股份有限公司 | Novel cleaning fracturing fluid system and preparation method thereof |
CN105505370A (en) * | 2014-09-23 | 2016-04-20 | 中国石油化工股份有限公司 | Clean fracturing fluid and preparation method thereof |
RU2016147033A3 (en) * | 2016-11-30 | 2018-05-30 | ||
CN108707454A (en) * | 2018-06-05 | 2018-10-26 | 中国石油集团川庆钻探工程有限公司 | Thickening agent and application thereof |
-
2019
- 2019-11-19 CN CN201911132290.4A patent/CN110819332B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0323916D0 (en) * | 2003-10-11 | 2003-11-12 | Schlumberger Holdings | Viscoelastic surfactant gels with reduced salt concentration |
US20060128598A1 (en) * | 2004-01-21 | 2006-06-15 | Yiyan Chen | Viscoelastic surfactant rheology modification |
CN1930266A (en) * | 2004-01-21 | 2007-03-14 | 施蓝姆伯格技术公司 | Additive for viscoelastic fluid |
CN101124291A (en) * | 2004-12-15 | 2008-02-13 | 施蓝姆伯格技术公司 | Viscoelastic surfactant rheology modification |
US20060183646A1 (en) * | 2005-02-15 | 2006-08-17 | Halliburton Energy Services, Inc. | Viscoelastic surfactant fluids and associated methods |
CN101310093A (en) * | 2005-11-16 | 2008-11-19 | 罗迪亚公司 | Methods of recovering oil from oil reservoirs |
CN101310093B (en) * | 2005-11-16 | 2013-01-02 | 罗迪亚公司 | Methods for recovering oil from an oil reservoir |
US20070281869A1 (en) * | 2006-06-06 | 2007-12-06 | Bruno Drochon | Thermoviscoelastic System Fluid and Well Treatment Method |
CA2793339A1 (en) * | 2011-11-11 | 2013-05-11 | Baker Hughes Incorporated | Metallic particle induced saponification of fatty acids as breakers for viscoelastic surfactant-gelled fluids |
CN103980876A (en) * | 2014-05-22 | 2014-08-13 | 西安石油大学 | Clean fracturing fluid applicable to construction in low-temperature environment and preparation method thereof |
CN105419767A (en) * | 2014-09-23 | 2016-03-23 | 中国石油化工股份有限公司 | Novel cleaning fracturing fluid system and preparation method thereof |
CN105505370A (en) * | 2014-09-23 | 2016-04-20 | 中国石油化工股份有限公司 | Clean fracturing fluid and preparation method thereof |
CN104531118A (en) * | 2014-12-25 | 2015-04-22 | 郑州正佳能源环保科技有限公司 | Method for preparing intelligent nanometer oil-displacing agent |
CN104498014A (en) * | 2014-12-30 | 2015-04-08 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | Gel breaking liquid based modifying and flooding agent and preparation method thereof |
RU2016147033A3 (en) * | 2016-11-30 | 2018-05-30 | ||
CN108707454A (en) * | 2018-06-05 | 2018-10-26 | 中国石油集团川庆钻探工程有限公司 | Thickening agent and application thereof |
Non-Patent Citations (2)
Title |
---|
NURUDEEN YEKEEN,等: "Nanoparticles applications for hydraulic fracturing of unconventional reservoirs: A comprehensive review of recent advances and prospects", 《JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING》 * |
何军,赵诗,许潇: "季铵盐类清洁压裂液抗温性实验研究", 《石化技术》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115678517A (en) * | 2022-11-29 | 2023-02-03 | 四川大学 | High temperature resistant viscoelastic fluid based on ultra-long chain surfactant and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
CN110819332B (en) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7789143B2 (en) | Methods for recovering oil from an oil reservoir | |
CN103422840B (en) | Use the flooding method of anions and canons complexed surfactant | |
CN100523117C (en) | Use of bi-alkyl carboxylate surface activator in triple oil recovery | |
CN104371689B (en) | A kind of ultralow interfacial tension surfactant compound system and preparation method thereof | |
EA010604B1 (en) | Viscoelastic surfactant rheology modification | |
US3920073A (en) | Miscible flooding process | |
Li et al. | Rheological properties of a new class of viscoelastic surfactant | |
Fogang et al. | Viscosity-reducing agents (breakers) for viscoelastic surfactant gels for well stimulation | |
CN110819332A (en) | Intelligent oil displacement agent for oil-water recognition based on small molecular gel and preparation method thereof | |
CN106928957A (en) | A kind of foam fracturing structural type polymer foam stabilizer and preparation method thereof | |
CN115044360B (en) | Oil displacement system for improving recovery ratio and preparation method and application thereof | |
US3482632A (en) | Miscible flooding process using improved soluble oil compositions | |
CN113214473B (en) | Preparation method and application of low-permeability reservoir water injection well pressure-reducing and injection-increasing polyamide | |
CN111592870A (en) | Composite clean fracturing fluid, preparation method and application thereof in oil-gas field fracturing | |
US11649394B2 (en) | Ionic liquid-based products for IOR applications | |
CN109666473A (en) | Surfactant binary built flooding method | |
CN106590565A (en) | Compound type surfactant composite for oil displacement of medium and low salinity oil reservoirs | |
CN111073620A (en) | Surfactant composition | |
CN110819331A (en) | Intelligent oil displacement agent capable of identifying oil and water and preparation method thereof | |
CN110819333A (en) | Intelligent oil displacement agent capable of automatically finding oil and preparation method thereof | |
Zebarjad et al. | Effect of Fe III and chelating agents on performance of new VES-based acid solution in high-temperature wells | |
CN114181718B (en) | Bola type surfactant, nanoemulsion and application | |
Zhou et al. | Optimization on self-assembled ultra-micro foam system for carbon dioxide flooding | |
CN114644915B (en) | Viscosity-reducing oil displacement agent and preparation method thereof | |
Oduola et al. | The potential of a locally made ASP Formulation ogbonor (Irvingia Gabonensis) in enhanced oil recovery processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |