CN110815201A - Method for correcting coordinates of robot arm - Google Patents
Method for correcting coordinates of robot arm Download PDFInfo
- Publication number
- CN110815201A CN110815201A CN201810889737.1A CN201810889737A CN110815201A CN 110815201 A CN110815201 A CN 110815201A CN 201810889737 A CN201810889737 A CN 201810889737A CN 110815201 A CN110815201 A CN 110815201A
- Authority
- CN
- China
- Prior art keywords
- calibration
- coordinates
- robot arm
- camera
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000001914 filtration Methods 0.000 claims abstract 3
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 239000000284 extract Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 10
- 230000036544 posture Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种机器手臂,尤其是涉及工业机器手臂及其工具中心的坐标校正方法。The invention relates to a robot arm, in particular to an industrial robot arm and a coordinate correction method for a tool center thereof.
背景技术Background technique
机器手臂具有灵活移动、精确定位及连续性作业的特性,虽然已成为产品生产线上制造组装的最佳利器。但是机器手臂经由多轴的致动器的驱动、磨耗及构件制造组装误差,形成控制及实际移动坐标的差异,导致无法精确定位,因此校正坐标为机器手臂的重要课题。The robot arm has the characteristics of flexible movement, precise positioning and continuous operation, although it has become the best tool for manufacturing and assembly on the production line. However, through the multi-axis actuator drive, wear and component manufacturing and assembly errors, the robot arm forms a difference between the control and actual movement coordinates, resulting in the inability to accurately position the robot arm. Therefore, correcting the coordinates is an important issue for the robot arm.
现有技术校正机器手臂的坐标时,通常驱动机器手臂的工具中心点(ToolCenterPoint,简称TCP),直接接触已知坐标的参考点,校正机器手臂的工具中心点的坐标。但未经校正的机器手臂,移动误差过大时,常碰撞参考点,造成机器手臂的工具及参考点仪器的毁损。因此另有现有技术,利用激光测距仪等精密测量仪器,测量工具中心点的坐标,虽可非接触式校正坐标,但激光测距仪费用高,且需要较大的装设空间,形成使用上的限制。因此另有现有技术美国公开专利案US20110320039,在机器手臂相对的已知坐标的方位,设置特定关系黑白相间的校正板,利用机器手臂上的相机提取黑白相间的校正板的影像,计算相机与已知坐标的校正板的相对关系,以校正机器手臂。When correcting the coordinates of the robot arm in the prior art, the tool center point (ToolCenterPoint, TCP for short) of the robot arm is usually driven to directly contact the reference point of known coordinates to correct the coordinates of the tool center point of the robot arm. However, when the movement error of the uncalibrated robot arm is too large, it often collides with the reference point, causing damage to the tool of the robot arm and the reference point instrument. Therefore, there is another prior art, which uses a precision measuring instrument such as a laser rangefinder to measure the coordinates of the center point of the tool. Although the coordinates can be corrected in a non-contact manner, the laser rangefinder is expensive and requires a large installation space. restrictions on use. Therefore, there is another prior art US published patent case US20110320039. In the position of the known coordinates relative to the robot arm, a black and white correction plate with a specific relationship is set, and the camera on the robot arm is used to extract the image of the black and white correction plate, and calculate the difference between the camera and the black and white correction plate. The relative relationship of the calibration plate with known coordinates to calibrate the robot arm.
然而,前述现有技术机器手臂虽然可无接触式自动进行校正,但是各厂商的校正板种类繁多,每一型式的校正板均有自己独特安装架构及计算相对关系的方式,无法交互或相容使用,对使用多种型式或厂牌机器手臂的一般作业员,在使用维护管理上并不容易。因此,机器手臂在校正坐标上,仍有亟待解决的问题。However, although the aforementioned robotic arm in the prior art can automatically perform calibration without contact, there are many types of calibration plates from various manufacturers, and each type of calibration plate has its own unique installation structure and calculation method of relative relationship, which cannot be interacted or compatible. It is not easy to use, maintain and manage for general operators who use multiple types or brands of robotic arms. Therefore, there is still an urgent problem to be solved in the coordinate correction of the robot arm.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种机器手臂校正坐标的方法,利用机器手臂上的相机提取标定方块的影像,通过标定方块与环境的差异识别标定方块的四角,取得中心点坐标,以快速对正相机的中心轴线。The purpose of the present invention is to provide a method for correcting coordinates of a robot arm, using the camera on the robot arm to extract the image of the calibration block, identifying the four corners of the calibration block by the difference between the calibration block and the environment, and obtaining the coordinates of the center point, so as to quickly align the camera the central axis.
本发明的再一目的在于提供一种机器手臂校正坐标的方法,利用深色标定方块过滤激光,获得标定方块边缘的亮端点,形成激光线条,再引导激光线条沿着相机中心轴线重合标定方块的中心点,以自动校正TCP的坐标。Another object of the present invention is to provide a method for calibrating coordinates of a robotic arm, which uses a dark calibration square to filter laser light, obtains bright endpoints on the edge of the calibration square, forms a laser line, and then guides the laser line along the camera center axis to coincide with the calibration square. Center point to automatically correct the coordinates of the TCP.
本发明的另一目的在于提供一种机器手臂校正坐标的方法,在校正目标设置多种方位的标定方块,利用不同机器手臂的姿势,对校正目标的标定方块,进行校正TCP的坐标,以自动校正机器手臂的坐标。Another object of the present invention is to provide a method for calibrating coordinates of a robot arm, setting calibration blocks with various orientations on the calibration target, and using different postures of the robot arm to correct the coordinates of the TCP on the calibration block of the calibration target, so as to automatically Correct the coordinates of the robot arm.
为了达到前述发明的目的,本发明机器手臂校正坐标的方法,机器手臂的相机与激光装置具有固定相对关系,调整设定相机的中心轴线与激光装置的激光的交点为工具中心点,接着放置标定方块,利用相机提取标定方块的影像,经由影像处理区别出标定方块的四角,利用对角线相交获得标定方块的中心点坐标,移动相机的中心轴线对正标定方块的中心点,过滤投射至标定方块的激光,取得标定方块两边缘的亮端点,建立激光线条,在维持相机的中心轴线对正标定方块的中心点下,移动相机带动激光线条重合标定方块的中心点,将重合时标定方块的中心点的坐标设为控制工具中心点坐标。In order to achieve the purpose of the foregoing invention, in the method for calibrating coordinates of a robot arm of the present invention, the camera of the robot arm and the laser device have a fixed relative relationship, and the intersection of the central axis of the camera and the laser of the laser device is adjusted and set as the center point of the tool, and then the calibration is placed. Block, use the camera to extract the image of the calibration block, distinguish the four corners of the calibration block through image processing, obtain the coordinates of the center point of the calibration block by intersecting the diagonal lines, move the center axis of the camera to align the center point of the calibration block, filter and project to the calibration block The laser of the square, obtain the bright endpoints of the two edges of the calibration square, and establish the laser line. While maintaining the center axis of the camera to be aligned with the center point of the calibration square, move the camera to drive the laser line to coincide with the center point of the calibration square. The coordinates of the center point are set as the coordinates of the center point of the control tool.
本发明机器手臂校正坐标的方法的标定方块为可识别的颜色或深色或黑色正方块,用以吸收投射的激光,在标定方块两边缘产生明显亮度差异的亮端点,以取得两亮端点。而重合时为标定方块的中心点的坐标落在激光线条,并记录重合时记录相机、激光装置及标定方块的中心点的相对固定关系。此外,放置标定方块的中心点时,实际测量坐标,作为实际工具中心点坐标,比对控制工具中心点坐标与实际工具中心点坐标获得误差,以校正机器手臂工具中心点的坐标。The calibration square of the method for calibrating coordinates of the robot arm of the present invention is an identifiable color or dark or black square, which is used to absorb the projected laser light and generate bright endpoints with obvious brightness difference between the two edges of the calibration box to obtain two bright endpoints. When coincident, the coordinates of the center point of the calibration block fall on the laser line, and the relative fixed relationship between the camera, the laser device and the center point of the calibration block is recorded when the coincidence is recorded. In addition, when placing the center point of the calibration block, the actual measurement coordinates are used as the actual tool center point coordinates, and the error is obtained by comparing the control tool center point coordinates with the actual tool center point coordinates to correct the coordinates of the robot arm tool center point.
本发明另一实施例机器手臂校正坐标的方法,使机器手臂的相机与激光装置具有固定相对关系,接着设置具有已知坐标且包含标定方块的校正目标在相对机器手臂的固定位置,校正目标为立方体且在各方位面上分别设置多个标定方块,利用机器手臂的姿势带动相机提取校正目标的影像,自动选择校正目标上的一标定方块,经由影像处理区别出标定方块的四角,利用对角线相交获得该标定方块的中心点坐标,移动相机的中心轴线对正该标定方块的中心点,过滤投射至标定方块的激光,取得标定方块两边缘的亮端点,建立激光线条,在维持相机的中心轴线对正该标定方块的中心点下,移动相机带动激光线条重合标定方块的中心点,重合时记录该标定方块的中心点的控制坐标,检查机器手臂的姿势数量未达到预设阈值时,改变机器手臂的姿势带动相机重复校正步骤,检查机器手臂的姿势数量达到预设阈值时,将取得的标定方块的中心点的控制坐标,进行矩阵数列计算,取得校正参数,以校正机器手臂坐标。Another embodiment of the present invention is a method for calibrating coordinates of a robot arm. The camera of the robot arm and the laser device have a fixed relative relationship, and then a calibration target with known coordinates and including a calibration block is set at a fixed position relative to the robot arm. The calibration target is The cube is set with a plurality of calibration squares on each plane, and the camera is used to drive the camera to extract the image of the calibration target, and a calibration square on the calibration target is automatically selected. The line intersects to obtain the coordinates of the center point of the calibration block, moves the center axis of the camera to align the center point of the calibration block, filters the laser projected to the calibration block, obtains the bright endpoints on both edges of the calibration block, and establishes laser lines. When the center axis is aligned with the center point of the calibration block, move the camera to drive the laser lines to coincide with the center point of the calibration block. Record the control coordinates of the center point of the calibration block when they overlap, and check that the number of poses of the robot arm does not reach the preset threshold. Change the posture of the robot arm to drive the camera to repeat the calibration steps, and check that when the number of postures of the robot arm reaches the preset threshold, the obtained control coordinates of the center point of the calibration block are calculated by the matrix sequence, and the calibration parameters are obtained to correct the coordinates of the robot arm.
附图说明Description of drawings
图1为本发明机器手臂校正坐标的示意图;Fig. 1 is the schematic diagram of the coordinate correction of the robot arm of the present invention;
图2为本发明相机提取的标定方块影像图;Fig. 2 is the calibration block image diagram extracted by the camera of the present invention;
图3为本发明移动激光线条的示意图;Fig. 3 is the schematic diagram of the moving laser line of the present invention;
图4为本发明激光线条重合标定方块的中心点的影像图;4 is an image diagram of the center point of the laser line coincident with the calibration square of the present invention;
图5为本发明机器手臂校正坐标的方法的流程图;Fig. 5 is the flow chart of the method for coordinate correction of the robot arm of the present invention;
图6为本发明另一实施例机器手臂校正坐标的示意图;6 is a schematic diagram of a robot arm calibrating coordinates according to another embodiment of the present invention;
图7为本发明另一实施例机器手臂校正坐标的方法的流程图。FIG. 7 is a flowchart of a method for calibrating coordinates of a robot arm according to another embodiment of the present invention.
符号说明Symbol Description
1 机器手臂1 Robot arm
2 轴臂2-axis arm
3 致动器3 Actuators
4 底座4 base
5 端末器5 terminator
6 相机6 cameras
7 激光装置7 Laser device
8 工作架8 Work Shelves
9 标定方块9 Calibration block
10 激光10 Laser
11 中心轴线11 Center axis
12 影像12 images
13 四角13 Four Corners
14 中心点14 center point
15 激光线条15 Laser Lines
16 亮端点16 bright points
17 校正目标17 Calibration target
TCP 工具中心点TCP Tool Center Point
具体实施方式Detailed ways
有关本发明为达成上述目的,所采用的技术手段及其功效,现举优选实施例,并配合附图加以说明如下。Regarding the technical means and effects adopted by the present invention in order to achieve the above-mentioned objects, preferred embodiments are now given and described below with reference to the accompanying drawings.
请同时参考图1及图2所示,图1为本发明机器手臂校正TCP坐标的示意图,图2为本发明相机提取的标定方块影像图。图1中本发明的机器手臂1由多个轴臂2间隔串联致动器3而成,一端固定在底座4,形成机器手臂坐标M,另一端在轴臂2的最后连结端末器5,端末器5可通过致动器3的转动记录,计算出在机器手臂坐标M的坐标。端末器5上设置相机6及激光装置7,相机5与端末器5具有固定相对关系,因此也可计算出在机器手臂坐标M的坐标。由机器手臂1带动提取工作架8上标定方块9的影像(参图2),而激光装置7用以发射面状的扫描激光10。本发明的相机6与激光装置7具有固定相对关系,调整设定相机6的中心轴线11与激光装置7扫描激光10的交点为工具中心点(TCP)。Please refer to FIG. 1 and FIG. 2 at the same time, FIG. 1 is a schematic diagram of a robot arm correcting TCP coordinates according to the present invention, and FIG. 2 is a calibration block image diagram extracted by a camera of the present invention. In FIG. 1 , the robot arm 1 of the present invention is formed by a plurality of
由于相机6虚拟的中心轴线11与激光装置7扫描激光10的交点TCP无法目视,因此机器手臂的TCP也无法直接目视决定。本发明为了取得机器手臂TCP的坐标,在工作架8上放置标定方块9,标定方块9可为黑色正方块,本实施例的标定方块9虽以黑色正方块举例说明,但包含且不限于黑色正方块,凡可易于识别的颜色或深色,且易于决定中心点的方块,都属于本发明的发明范畴。Since the intersection TCP of the virtual
本发明的机器手臂1带动相机6提取工作架8上标定方块9的影像12,如图2中标定方块9的影像12,利用相机6提取影像12的焦距、影像12的中心及像素,由已知坐标的相机6可计算出影像12各点的坐标。由于影像12中黑色的标定方块9与周围浅色环境明显差异,经由影像处理可快速区别出标定方块9,并决定标定方块9四角13的坐标,利用标定方块9正方块的对角线相交形成中心点14,获得标定方块9的中心点14的坐标。接着利用机器手臂1带动相机6,使相机6的中心轴线11对正标定方块9的中心点14。The robot arm 1 of the present invention drives the
图2中,激光装置7发射面状的扫描激光10,在影像12形成横越标定方块9的激光线条15,激光的激光线条15相对较亮,但投射在黑色的标定方块9的激光线条15,受黑色的标定方块9吸收光线,亮度相对黯淡许多,因而在标定方块9两边缘产生明显亮度差异的亮端点16,以利取得两亮端点16的坐标,利用两亮端点16构成的直线就可定位激光线条15。In FIG. 2, the
请同时参考图3及图4所示,图3为本发明移动激光线条的示意图,图4为本发明激光线条重合标定方块的中心点的影像图。图3中在维持相机6的中心轴线11对正标定方块9的中心点14下,机器手臂带动相机6沿着中心轴线11移动激光装置7,使激光装置7发射的激光线条15移向标定方块9的中心点14。图4中当中心点14的坐标落在激光线条15时,就可确认激光线条15重合中心点14。再记录相机6、激光装置7及中心点14的相对固定关系,并利用相机6提取影像12的焦距、影像12的中心及像素,计算中心点14的坐标,将中心点14的坐标设为TCP的坐标。Please refer to FIG. 3 and FIG. 4 at the same time, FIG. 3 is a schematic diagram of the moving laser line according to the present invention, and FIG. 4 is an image diagram of the laser line overlapping the center point of the calibration square according to the present invention. In FIG. 3, while keeping the
前述TCP的坐标为根据机器手臂控制获得的控制TCP坐标,如果机器手臂已经校正,控制TCP坐标就是实际的TCP坐标。否则在工作架8上放置标定方块9时,就可通过实际测量标定方块9的中心点14坐标,以中心点14坐标作为实际TCP坐标,利用比对控制TCP坐标与实际测量的中心点14的坐标,获得控制TCP坐标与实际TCP坐标的误差,进一步校正机器手臂TCP的坐标。The aforementioned coordinates of the TCP are the control TCP coordinates obtained from the control of the robot arm. If the robot arm has been calibrated, the control TCP coordinates are the actual TCP coordinates. Otherwise, when the
如图5所示,为本发明机器手臂校正坐标的方法的流程图。本发明机器手臂校正坐标的方法的详细步骤说明如下:在步骤S1,开始校正TCP时,使本发明的相机与激光装置具有固定相对关系,调整设定相机的中心轴线与激光装置扫描激光的交点为TCP;步骤S2,放置标定方块;步骤S3,利用相机提取标定方块的影像;步骤S4,经由影像处理区别出标定方块,取得标定方块四角,利用对角线相交获得标定方块的中心点坐标;接着步骤S5,移动相机的中心轴线对正标定方块的中心点;步骤S6,过滤激光装置发射在标定方块的激光,取得标定方块两边缘明亮的亮端点,建立激光线条;步骤S7,在维持相机的中心轴线对正标定方块的中心点下,移动相机带动激光线条,使激光线条重合标定方块的中心点;步骤S8,记录重合时相机、激光装置及中心点的相对固定关系,将中心点的坐标设为控制TCP坐标;步骤S9,将控制TCP坐标比对标定方块的中心点的已知实际坐标,进行校正补偿;然后在步骤S10,结束TCP坐标校正。As shown in FIG. 5 , it is a flowchart of a method for correcting coordinates of a robot arm according to the present invention. The detailed steps of the method for correcting the coordinates of the robotic arm of the present invention are described as follows: in step S1, when the TCP is started to be corrected, the camera of the present invention and the laser device have a fixed relative relationship, and the center axis of the camera is adjusted and set. The intersection point of the laser device scanning laser Be TCP; Step S2, place the calibration block; Step S3, utilize the camera to extract the image of the calibration block; Step S4, distinguish the calibration block through image processing, obtain the four corners of the calibration block, and utilize the diagonal intersection to obtain the center point coordinates of the calibration block; Then step S5, move the center axis of the camera to align the center point of the calibration square; Step S6, filter the laser light emitted by the laser device on the calibration square, obtain bright endpoints on both edges of the calibration square, and establish laser lines; Step S7, maintain the camera When the center axis of the calibration block is aligned with the center point of the calibration block, move the camera to drive the laser line, so that the laser line coincides with the center point of the calibration block; step S8, record the relative fixed relationship between the camera, the laser device and the center point when they overlap, and the center point The coordinates are set as the control TCP coordinates; in step S9, the control TCP coordinates are compared with the known actual coordinates of the center point of the calibration block, and correction and compensation are performed; then in step S10, the TCP coordinate correction is ended.
因此,本发明机器手臂校正坐标的方法,就可利用机器手臂上的相机提取标定方块的影像,并通过标定方块与环境的颜色明显差异,快速识别标定方块的四角的坐标,由对角线的交点计算出中心点坐标,让机器手臂自动移动相机的中心轴线,快速对正中心点。再利用深色标定方块过滤激光,获得标定方块两边缘的亮端点,形成激光线条,再让相机沿着中心轴线引导激光线条重合标定方块的中心点,在非实体接触避免毁损下,取得控制的TCP坐标,再与实际测量的中心点坐标比较,进一步达到自动校正TCP坐标的目的。Therefore, the method of the present invention for calibrating the coordinates of the robot arm can use the camera on the robot arm to extract the image of the calibration block, and quickly identify the coordinates of the four corners of the calibration block through the obvious difference between the color of the calibration block and the environment. The intersection point calculates the coordinates of the center point, so that the robot arm automatically moves the center axis of the camera to quickly align the center point. Then use the dark calibration square to filter the laser to obtain the bright endpoints of the two edges of the calibration square to form a laser line, and then let the camera guide the laser line along the central axis to coincide with the center point of the calibration square. The TCP coordinates are compared with the actual measured center point coordinates to further achieve the purpose of automatically correcting the TCP coordinates.
如图6所示,为本发明另一实施例机器手臂校正坐标的方法的示意图。本实施例基本上利用前述实施例校正TCP坐标的技术,进行校正机器手臂的坐标。为简化说明,与前实施例相同构件沿用相同件号,合先叙明。本实施例在校正目标17的各方位面上,分别设置多个标定方块9,再将校正目标17设置在相对机器手臂1的底座4的固定位置,并具有已知的机器手臂坐标。本实施例校正目标17虽以立方体举例说明,但包含且不限于立方体,例如多面体亦可。As shown in FIG. 6 , it is a schematic diagram of a method for calibrating coordinates of a robot arm according to another embodiment of the present invention. This embodiment basically utilizes the technique of correcting the TCP coordinates in the previous embodiment to correct the coordinates of the robot arm. In order to simplify the description, the same part numbers are used for the same components as in the previous embodiment, which will be described together first. In this embodiment, a plurality of
接着进行校正机器手臂1,由机器手臂1带动相机6提取校正目标17的影像,自动选择校正目标17上的一标定方块9,进行前实施例TCP校正步骤,即提取选定的标定方块9的影像,识别标定方块9的四角,由对角线决定标定方块9的中心点,自动移动相机6的中心轴线11对正标定方块9的中心点,接着过滤激光装置7投射激光形成激光线条,使相机6沿着中心轴线11移动下,带动激光线条与标定方块9的中心点重合,视为TCP与中心点重合,以取得控制的TCP坐标,作为选定的标定方块9的中心点的控制坐标。接着改变机器手臂1的姿势,选定另一标定方块9,重复前述TCP校正步骤,直到改变机器手臂1的姿势数量达到预设阈值,再将前述取得的标定方块9的中心点的控制坐标,进行例如Jacobian Matrix等现有技术的矩阵数列计算,取得坐标校正的参数,以完成机器手臂坐标的校正。Next, the robot arm 1 is calibrated, the
如图7所示,为本发明另一实施例机器手臂校正坐标的方法的流程图。本实施例机器手臂校正坐标的方法的详细步骤说明如下:在步骤T1,开始校正机器手臂的坐标;步骤T2,将已知坐标且包含标定方块的校正目标设置在相对机器手臂的固定位置;步骤T3,自动选择校正目标上的一标定方块,进行TCP校正;步骤T4,记录选择标定方块中心点控制坐标;接着步骤T5,检查改变机器手臂的姿势数量是否达到预设阈值?假如姿势数量未达到预设阈值,则进入步骤T6,改变机器手臂的姿势,再回到步骤T3重复步骤,假如姿势数量达到预设阈值,则进入步骤T7,取得的标定方块的中心点的控制坐标,进行矩阵数列计算,取得校正参数,以进行校正机器手臂坐标;然后在步骤T8,结束坐标校正。As shown in FIG. 7 , it is a flowchart of a method for calibrating coordinates of a robot arm according to another embodiment of the present invention. The detailed steps of the method for correcting the coordinates of the robotic arm of the present embodiment are described as follows: at step T1, start to correct the coordinates of the robotic arm; step T2, the known coordinates and the calibration target comprising the calibration block are set at a fixed position relative to the robotic arm; step T3, automatically select a calibration block on the calibration target to perform TCP calibration; step T4, record the control coordinates of the center point of the selected calibration block; then step T5, check whether the number of postures of the robot arm has reached the preset threshold? If the number of postures does not reach the preset threshold, then go to step T6, change the posture of the robotic arm, then go back to step T3 to repeat the steps, if the number of postures reaches the preset threshold, then go to step T7, the control of the center point of the obtained calibration block Coordinates, perform matrix sequence calculation, and obtain correction parameters to correct the coordinates of the robot arm; then in step T8, end the coordinate correction.
因此,本发明机器手臂校正坐标的方法,就可在校正目标设置多种方位的标定方块,利用不同机器手臂的姿势,对校正目标的标定方块,进行校正TCP的坐标,再将取得的标定方块的中心点坐标,利用矩阵数列计算校正参数,达到未接触的自动校正机器手臂坐标的目的。Therefore, according to the method for calibrating coordinates of the robot arm of the present invention, calibration blocks with various orientations can be set on the calibration target, and the calibration blocks of the calibration target can be calibrated by using different postures of the robot arm to correct the coordinates of the TCP, and then the obtained calibration block The coordinates of the center point are calculated by using the matrix sequence to achieve the purpose of automatically correcting the coordinates of the robot arm without contact.
以上所述者,仅为用以方便说明本发明的优选实施例,本发明的范围不限于该等优选实施例,凡依本发明所做的任何变更,在不脱离本发明的精神下,都属本发明的保护范围。The above are only for the convenience of describing the preferred embodiments of the present invention, the scope of the present invention is not limited to these preferred embodiments, any changes made according to the present invention, without departing from the spirit of the present invention, are It belongs to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810889737.1A CN110815201B (en) | 2018-08-07 | 2018-08-07 | The method of coordinate correction of robot arm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810889737.1A CN110815201B (en) | 2018-08-07 | 2018-08-07 | The method of coordinate correction of robot arm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110815201A true CN110815201A (en) | 2020-02-21 |
CN110815201B CN110815201B (en) | 2022-04-19 |
Family
ID=69533971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810889737.1A Active CN110815201B (en) | 2018-08-07 | 2018-08-07 | The method of coordinate correction of robot arm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110815201B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111890354A (en) * | 2020-06-29 | 2020-11-06 | 北京大学 | A robot hand-eye calibration method, device and system |
CN112549083A (en) * | 2020-12-24 | 2021-03-26 | 常州信息职业技术学院 | Industrial robot tool coordinate system calibration device and method |
CN112792817A (en) * | 2021-02-01 | 2021-05-14 | 中国建筑第八工程局有限公司 | Non-contact calibration device and method for manipulator workpiece coordinate system |
CN113284128A (en) * | 2021-06-11 | 2021-08-20 | 中国南方电网有限责任公司超高压输电公司天生桥局 | Image fusion display method and device based on power equipment and computer equipment |
CN113799114A (en) * | 2020-06-11 | 2021-12-17 | 台达电子工业股份有限公司 | Origin correction method of robot arm |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194302A (en) * | 1989-01-23 | 1990-07-31 | Omron Tateisi Electron Co | Method for calibrating coordinate system of visual robot and displacement measuring instrument for coordinate calibration used for the method |
WO2009059323A1 (en) * | 2007-11-01 | 2009-05-07 | Rimrock Automation, Inc. Dba Wolf Robotics | A method and system for finding a tool center point for a robot using an external camera |
CN102927908A (en) * | 2012-11-06 | 2013-02-13 | 中国科学院自动化研究所 | Robot eye-on-hand system structured light plane parameter calibration device and method |
CN105157603A (en) * | 2015-07-29 | 2015-12-16 | 华南理工大学 | Line laser sensor and method for calculating three-dimensional coordinate data of line laser sensor |
CN105783773A (en) * | 2016-03-18 | 2016-07-20 | 河北科技大学 | Numerical value calibration method for line structured light vision sensor |
CN107253190A (en) * | 2017-01-23 | 2017-10-17 | 梅卡曼德(北京)机器人科技有限公司 | The device and its application method of a kind of high precision machines people trick automatic camera calibration |
CN107256567A (en) * | 2017-01-22 | 2017-10-17 | 梅卡曼德(北京)机器人科技有限公司 | A kind of automatic calibration device and scaling method for industrial robot trick camera |
-
2018
- 2018-08-07 CN CN201810889737.1A patent/CN110815201B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02194302A (en) * | 1989-01-23 | 1990-07-31 | Omron Tateisi Electron Co | Method for calibrating coordinate system of visual robot and displacement measuring instrument for coordinate calibration used for the method |
WO2009059323A1 (en) * | 2007-11-01 | 2009-05-07 | Rimrock Automation, Inc. Dba Wolf Robotics | A method and system for finding a tool center point for a robot using an external camera |
CN102927908A (en) * | 2012-11-06 | 2013-02-13 | 中国科学院自动化研究所 | Robot eye-on-hand system structured light plane parameter calibration device and method |
CN105157603A (en) * | 2015-07-29 | 2015-12-16 | 华南理工大学 | Line laser sensor and method for calculating three-dimensional coordinate data of line laser sensor |
CN105783773A (en) * | 2016-03-18 | 2016-07-20 | 河北科技大学 | Numerical value calibration method for line structured light vision sensor |
CN107256567A (en) * | 2017-01-22 | 2017-10-17 | 梅卡曼德(北京)机器人科技有限公司 | A kind of automatic calibration device and scaling method for industrial robot trick camera |
CN107253190A (en) * | 2017-01-23 | 2017-10-17 | 梅卡曼德(北京)机器人科技有限公司 | The device and its application method of a kind of high precision machines people trick automatic camera calibration |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113799114A (en) * | 2020-06-11 | 2021-12-17 | 台达电子工业股份有限公司 | Origin correction method of robot arm |
CN113799114B (en) * | 2020-06-11 | 2023-03-14 | 台达电子工业股份有限公司 | Origin point correction method for robot arm |
CN111890354A (en) * | 2020-06-29 | 2020-11-06 | 北京大学 | A robot hand-eye calibration method, device and system |
CN111890354B (en) * | 2020-06-29 | 2022-01-11 | 北京大学 | Robot hand-eye calibration method, device and system |
CN112549083A (en) * | 2020-12-24 | 2021-03-26 | 常州信息职业技术学院 | Industrial robot tool coordinate system calibration device and method |
CN112549083B (en) * | 2020-12-24 | 2023-10-13 | 常州信息职业技术学院 | Industrial robot tool coordinate system calibration device and method |
CN112792817A (en) * | 2021-02-01 | 2021-05-14 | 中国建筑第八工程局有限公司 | Non-contact calibration device and method for manipulator workpiece coordinate system |
CN113284128A (en) * | 2021-06-11 | 2021-08-20 | 中国南方电网有限责任公司超高压输电公司天生桥局 | Image fusion display method and device based on power equipment and computer equipment |
Also Published As
Publication number | Publication date |
---|---|
CN110815201B (en) | 2022-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110815201B (en) | The method of coordinate correction of robot arm | |
US12358145B2 (en) | System and method for three-dimensional calibration of a vision system | |
US9193073B1 (en) | Robot calibration apparatus for calibrating a robot arm | |
CN111278608B (en) | Calibration article for 3D vision robot system | |
TWI408037B (en) | A position method and a calibrating method for the robot arm | |
CN102294695A (en) | Robot calibration method and calibration system | |
JP6210748B2 (en) | Three-dimensional position measurement apparatus and calibration deviation determination method for three-dimensional position measurement apparatus | |
US10210607B1 (en) | Digital projection system and method for workpiece assembly | |
JP2015530276A (en) | Camera-based automatic alignment system and method | |
US11230011B2 (en) | Robot system calibration | |
JP6576655B2 (en) | Stage mechanism | |
TW201947078A (en) | Method and System for Automatic Calibration of Needle Position | |
CN104168414A (en) | Method for shooting and splicing object images | |
TWI712473B (en) | Method for calibrating coordinate of robot arm | |
TWI504859B (en) | Method for photographing and piecing together the images of an object | |
CN107379015B (en) | Robot arm correction device and control method thereof | |
CN111716340B (en) | Correction device and method for coordinate system of 3D camera and robotic arm | |
TWI749376B (en) | Method for calibrating 3d camera | |
JPH0820207B2 (en) | Optical 3D position measurement method | |
TWI860784B (en) | Method and system for calibrating a tool on a robotic arm and two-class method for calibrating a tool on a robotic arm | |
US20240335949A1 (en) | Kinematics parameter calibration method and system of multi-axis motion platform | |
TWI758626B (en) | Positioning method for a vision system of a robot arm | |
US20240185455A1 (en) | Imaging device for calculating three-dimensional position on the basis of image captured by visual sensor | |
CN119693469A (en) | A method and system for calibrating coordinate system using two-point method | |
CN112604901A (en) | Subway shielding door gluing robot and gluing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200410 Address after: Taoyuan City, Taiwan, China Applicant after: Daming robot Co., Ltd Address before: Taoyuan City, Taiwan, China Applicant before: QUANTA STORAGE Inc. |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |