CN110797363A - Back-illuminated time-delay integral image sensor and method of forming the same - Google Patents
Back-illuminated time-delay integral image sensor and method of forming the same Download PDFInfo
- Publication number
- CN110797363A CN110797363A CN201911071212.8A CN201911071212A CN110797363A CN 110797363 A CN110797363 A CN 110797363A CN 201911071212 A CN201911071212 A CN 201911071212A CN 110797363 A CN110797363 A CN 110797363A
- Authority
- CN
- China
- Prior art keywords
- image sensor
- layer
- reflection
- time delay
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000000758 substrate Substances 0.000 claims abstract description 75
- 239000010410 layer Substances 0.000 claims description 144
- 239000011241 protective layer Substances 0.000 claims description 50
- 150000002500 ions Chemical class 0.000 claims description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052710 silicon Inorganic materials 0.000 claims description 29
- 239000010703 silicon Substances 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 26
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 18
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 18
- 238000002955 isolation Methods 0.000 claims description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 13
- 230000010354 integration Effects 0.000 claims description 11
- 150000004767 nitrides Chemical class 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 7
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 6
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 6
- 238000005229 chemical vapour deposition Methods 0.000 claims description 5
- 238000005240 physical vapour deposition Methods 0.000 claims description 5
- 238000000231 atomic layer deposition Methods 0.000 claims description 4
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims description 4
- 229910001632 barium fluoride Inorganic materials 0.000 claims description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 4
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 claims description 4
- 229910001635 magnesium fluoride Inorganic materials 0.000 claims description 4
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 4
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 229910052582 BN Inorganic materials 0.000 description 6
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 description 6
- 239000002019 doping agent Substances 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 5
- -1 boron ions Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 229910001845 yogo sapphire Inorganic materials 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/805—Coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/011—Manufacture or treatment of image sensors covered by group H10F39/12
- H10F39/024—Manufacture or treatment of image sensors covered by group H10F39/12 of coatings or optical elements
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/10—Integrated devices
- H10F39/12—Image sensors
- H10F39/199—Back-illuminated image sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F39/00—Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
- H10F39/80—Constructional details of image sensors
- H10F39/811—Interconnections
Landscapes
- Solid State Image Pick-Up Elements (AREA)
Abstract
一种背照式时间延迟积分图像传感器及其形成方法,其中背照式时间延迟积分图像传感器包括:基底,所述基底包括相对的第一面和第二面,所述基底包括若干光电掺杂区,且所述第一面暴露出所述光电掺杂区表面;位于所述第一面上的电路器件层;位于第二面上的抗反射增透层,且所述抗反射增透层覆盖若干所述光电掺杂区。所述背照式时间延迟积分图像传感器的性能较高。
A backside illuminated time delay integral image sensor and a method for forming the same, wherein the backside illuminated time delay integral image sensor comprises: a substrate, the substrate includes a first face and a second face opposite, the substrate includes a plurality of photoelectric doping the first surface exposes the surface of the photoelectric doped region; the circuit device layer on the first surface; the anti-reflection and anti-reflection layer on the second surface, and the anti-reflection and anti-reflection layer covering several of the photoelectrically doped regions. The back-illuminated time delay integrating image sensor has higher performance.
Description
技术领域technical field
本发明涉及半导体领域,尤其涉及一种背照式时间延迟积分图像传感器及其形成方法。The present invention relates to the field of semiconductors, and in particular, to a back-illuminated time-delay integral image sensor and a method for forming the same.
背景技术Background technique
时间延时积分(Time Delay Integration,TDI)图像传感器是线性图像传感器的一种演变。时间延时积分图像传感器的成像机理为对拍摄物体所经过的像素逐行进行曝光,将曝光结果累加,从而解决高速运动物体曝光时间不足所引起的成像信号弱问题。时间延时积分图像传感器能够增加有效曝光时间,提高图像信噪比。Time Delay Integration (TDI) image sensor is an evolution of linear image sensor. The imaging mechanism of the time-delay integral image sensor is to expose the pixels passing through the photographed object line by line, and accumulate the exposure results, so as to solve the problem of weak imaging signal caused by insufficient exposure time of high-speed moving objects. The time-delay integral image sensor can increase the effective exposure time and improve the image signal-to-noise ratio.
时间延时积分图像传感器分为CCD和CMOS两种。一种为在CCD工艺上制作TDI图像传感器,由于CCD工艺的特殊性,无法在图像传感器上集成其他处理电路,通用性和灵活性较差。另外一种TDI图像传感器为CMOS类型,该TDI图像传感器是基于通用CMOS制造工艺,嵌入类似CCD功能的器件,即eCCD(embedded CCD),从而形成TDI-CMOS图像传感器。Time-delay integral image sensors are divided into two types: CCD and CMOS. One is to make a TDI image sensor on the CCD process. Due to the particularity of the CCD process, other processing circuits cannot be integrated on the image sensor, and the versatility and flexibility are poor. Another TDI image sensor is a CMOS type. The TDI image sensor is based on a general CMOS manufacturing process, and a device similar to a CCD function is embedded, namely an eCCD (embedded CCD), thereby forming a TDI-CMOS image sensor.
然而,现有的TDI-CMOS图像传感器的性能仍较差。However, the performance of existing TDI-CMOS image sensors is still poor.
发明内容SUMMARY OF THE INVENTION
本发明解决的技术问题是提供一种背照式时间延迟积分图像传感器及其形成方法,以提高背照式时间延迟积分图像传感器的性能。The technical problem solved by the present invention is to provide a back-illuminated time-delay integral image sensor and a method for forming the same, so as to improve the performance of the back-illuminated time-delay integral image sensor.
为解决上述技术问题,本发明技术方案提供一种背照式时间延迟积分图像传感器,包括:基底,所述基底包括相对的第一面和第二面,所述基底包括若干光电掺杂区,且所述第一面暴露出所述光电掺杂区表面;位于所述第一面上的电路器件层;位于第二面上的抗反射增透层,且所述抗反射增透层覆盖若干所述光电掺杂区。In order to solve the above technical problems, the technical solution of the present invention provides a backside-illuminated time-delay integral image sensor, comprising: a substrate, the substrate includes a first surface and a second surface opposite to each other, the substrate includes a plurality of photoelectric doped regions, and the first surface exposes the surface of the photoelectric doped region; the circuit device layer on the first surface; the anti-reflection and anti-reflection layer on the second surface, and the anti-reflection and anti-reflection layer covers several the photoelectrically doped region.
可选的,所述抗反射增透层的材料包括:氟化物、氧化物或者氮化物;所述氟化物包括:氟化镁或者氟化钡;所述氧化物包括:氧化铪、氧化锆、氧化钽或者三氧化二铝;所述氮化物包括:氮化硅或者氮氧硅化物。Optionally, the material of the anti-reflection and anti-reflection layer includes: fluoride, oxide or nitride; the fluoride includes: magnesium fluoride or barium fluoride; the oxide includes: hafnium oxide, zirconium oxide, Tantalum oxide or Al2O3; the nitride includes: silicon nitride or oxynitride silicide.
可选的,所述抗反射增透层的厚度范围为:200埃~1500埃。Optionally, the thickness of the anti-reflection and anti-reflection layer ranges from 200 angstroms to 1500 angstroms.
可选的,所述电路器件层包括:位于基底上的介质层;位于所述介质层内的若干栅极结构,所述若干栅极结构位于各个所述光电掺杂区表面,且若干所述栅极结构位于第一面上;位于所述介质层内的互连结构。Optionally, the circuit device layer includes: a dielectric layer on a substrate; a plurality of gate structures located in the dielectric layer, the plurality of gate structures are located on the surface of each of the photoelectric doped regions, and a plurality of the gate structures are located in the dielectric layer. The gate structure is located on the first side; the interconnect structure is located in the dielectric layer.
可选的,若干所述栅极结构沿第一方向平行排列,若干所述栅极结构沿第二方向横跨一个所述光电掺杂区,所述第二方向垂直于所述第一方向。Optionally, a plurality of the gate structures are arranged in parallel along a first direction, and a plurality of the gate structures straddle one of the photoelectric doped regions along a second direction, and the second direction is perpendicular to the first direction.
可选的,所述互连结构包括:位于栅极结构上的若干层重叠的导电层;位于相邻两层导电层之间、导电层与基底之间或导电层和栅极结构之间的导电插塞。Optionally, the interconnection structure includes: a plurality of overlapping conductive layers located on the gate structure; conductive layers located between two adjacent conductive layers, between the conductive layer and the substrate, or between the conductive layer and the gate structure plug.
可选的,还包括:位于所述介质层表面的第一保护层。Optionally, it further includes: a first protective layer on the surface of the dielectric layer.
可选的,所述第一保护层的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。Optionally, the material of the first protective layer includes: silicon oxide, silicon nitride, silicon nitride carbide, silicon boron nitride, silicon oxynitride or silicon oxynitride.
可选的,还包括:位于第二面表面的第二保护层,且所述第二保护层位于所述抗反射增透层和基底之间。Optionally, it further includes: a second protective layer located on the surface of the second surface, and the second protective layer is located between the anti-reflection and anti-reflection layer and the substrate.
可选的,所述第二保护层的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。Optionally, the material of the second protective layer includes: silicon oxide, silicon nitride, silicon nitride carbide, silicon boron nitride, silicon oxynitride or silicon oxynitride.
可选的,所述栅极结构包括:位于第一面表面的栅介质层和位于所述栅介质层表面的栅电极层。Optionally, the gate structure includes: a gate dielectric layer on the surface of the first surface and a gate electrode layer on the surface of the gate dielectric layer.
可选的,所述基底还包括:若干隔离区,所述隔离区位于相邻光电掺杂区之间;所述隔离区内具有隔离结构。Optionally, the substrate further includes: a plurality of isolation regions, the isolation regions are located between adjacent photoelectric doping regions; and an isolation structure is provided in the isolation regions.
可选的,所述基底内掺杂有第一离子;所述光电掺杂区内掺杂有第二离子,且所述第一离子和第二离子的导电类型相反。Optionally, the substrate is doped with first ions; the photoelectric doped region is doped with second ions, and the conductivity types of the first ions and the second ions are opposite.
相应的,本发明技术方案还提供一种上述任一项背照式时间延迟积分图像传感器的形成方法,包括:提供基底,所述基底包括相对的第一面和第二面,所述基底包括若干光电掺杂区,且所述第一面暴露出所述光电掺杂区表面;在所述第一面上形成电路器件层;在所述第二面上形成抗反射增透层,且所述抗反射增透层覆盖若干所述光电掺杂区。Correspondingly, the technical solution of the present invention also provides a method for forming a backside illuminated time-delay integral image sensor according to any of the above, including: providing a substrate, the substrate includes a first surface and a second surface opposite to each other, and the substrate includes a plurality of a photoelectric doped region, and the first surface exposes the surface of the photoelectric doped region; a circuit device layer is formed on the first surface; an anti-reflection and antireflection layer is formed on the second surface, and the The anti-reflection and anti-reflection layer covers several of the photoelectric doped regions.
可选的,所述抗反射增透层的形成工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。Optionally, the formation process of the anti-reflection and anti-reflection layer includes: chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.
可选的,所述电路器件层包括:位于基底上的介质层;位于所述介质层内的若干栅极结构,所述若干栅极结构位于各个所述光电掺杂区表面,且若干所述栅极结构位于第一面上;位于所述介质层内的互连结构;所述背照式时间延迟积分图像传感器的形成方法还包括:形成所述介质层之后,形成所述抗反射增透层之前,在所述介质层表面形成第一保护层。Optionally, the circuit device layer includes: a dielectric layer on a substrate; a plurality of gate structures located in the dielectric layer, the plurality of gate structures are located on the surface of each of the photoelectric doped regions, and a plurality of the gate structures are located in the dielectric layer. The gate structure is located on the first surface; the interconnection structure is located in the dielectric layer; the method for forming the back-illuminated time delay integration image sensor further includes: after forming the dielectric layer, forming the anti-reflection and anti-reflection Before the layer, a first protective layer is formed on the surface of the dielectric layer.
可选的,还包括:形成第一保护层之后,形成所述抗反射增透层之前,在所述第二面表面形成第二保护层。Optionally, the method further includes: after forming the first protective layer and before forming the anti-reflection and anti-reflection layer, forming a second protective layer on the surface of the second surface.
可选的,还包括:形成第一保护层之后,形成第二保护层之前,对所述基底进行减薄处理。Optionally, the method further includes: performing a thinning process on the substrate after forming the first protective layer and before forming the second protective layer.
与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:
本发明技术方案提供的背照式时间延迟积分图像传感器中,所述第二面上具有抗反射增透层。当从所述图像传感器的背面进行光照时,即,经过所述抗反射增透层的光线从第二面进入基底,这样,能够使光线入射直接进入光电掺杂区中进行光电转换,从而避免受到电路器件层内器件的阻挡,有利于光线入射量的提高,从而提高了所述背照式时间延迟积分图像传感器的灵敏度、信噪比以及量子效果,使得所述背照式时间延迟积分图像传感器的性能较好。In the back-illuminated time-delay integral image sensor provided by the technical solution of the present invention, the second surface has an anti-reflection and anti-reflection layer. When the light is illuminated from the back of the image sensor, that is, the light passing through the anti-reflection and anti-reflection layer enters the substrate from the second surface, so that the incident light can directly enter the photoelectric doped region for photoelectric conversion, thereby avoiding Being blocked by the devices in the circuit device layer, it is beneficial to increase the amount of incident light, thereby improving the sensitivity, signal-to-noise ratio and quantum effect of the back-illuminated time delay integral image sensor, so that the back-illuminated time delay integral image sensor is blocked. The performance of the sensor is better.
进一步,所述背照式时间延迟积分图像传感器还包括:位于互连结构表面的第一保护层,所述第一保护层能够减少互连结构中的导电层和导电插塞受到后续工艺的影响,对所述互连结构起到保护的作用。进一步,所述背照式时间延迟积分图像传感器还包括:位于第二面表面的第二保护层,且所述第二保护层位于所述抗反射增透层和基底之间。一方面,所述第二保护层能够增加所述抗反射增透层和基底之间的结合力,另一方面,所述第二保护层能够钝化硅表面,减小硅衬底受到的破坏和离子污染。Further, the back-illuminated time-delay integral image sensor further includes: a first protective layer on the surface of the interconnect structure, the first protective layer can reduce the influence of the conductive layer and the conductive plug in the interconnect structure by subsequent processes , to protect the interconnect structure. Further, the back-illuminated time delay integral image sensor further includes: a second protective layer on the second surface, and the second protective layer is located between the anti-reflection and anti-reflection layer and the substrate. On the one hand, the second protective layer can increase the bonding force between the anti-reflection and anti-reflection layer and the substrate; on the other hand, the second protective layer can passivate the silicon surface and reduce the damage to the silicon substrate and ionic contamination.
附图说明Description of drawings
图1至图3是一种时间延迟积分图像传感器的结构示意图;1 to 3 are schematic structural diagrams of a time-delay integral image sensor;
图4至图11是本发明一实施例中的背照式时间延迟积分图像传感器形成方法各步骤的结构示意图。4 to 11 are schematic structural diagrams of steps of a method for forming a backside-illuminated time-delay integral image sensor according to an embodiment of the present invention.
具体实施方式Detailed ways
正如背景技术所述,现有时间延迟积分图像传感器的性能较差。As mentioned in the background, existing time delay integrating image sensors have poor performance.
以下结合附图进行详细说明,现有时间延迟积分图像传感器的性能较差的原因,图1至图3是一种时间延迟积分图像传感器的结构示意图。The reasons for the poor performance of the existing time delay integration image sensor will be described in detail below with reference to the accompanying drawings. FIG. 1 to FIG. 3 are schematic structural diagrams of a time delay integration image sensor.
请参考图1至图3,图2是图1沿A-A1切线的剖面结构示意图,图3是图1沿B-B1切线的剖面示意图,图1是图2沿X方向上的俯视图,需要说明的是,所述图1为省略了位于栅极结构上的结构的示意图,图像传感器包括:基底100,所述基底100包括相对的第一面101和第二面102,所述基底100包括若干个像素区I,相邻像素区I之间具有隔离区II;位于所述像素区I内的光电掺杂区110;位于所述第一面101上的若干栅极结构120,且若干所述栅极结构120横跨一个所述光电掺杂区上;位于所述栅极结构上的互连结构130;位于所述互连结构130上的抗反射增透层140。Please refer to FIGS. 1 to 3. FIG. 2 is a schematic cross-sectional view of FIG. 1 along the tangent line A-A1, FIG. 3 is a schematic cross-sectional view of FIG. 1 along the tangent line B-B1, and FIG. 1 is a top view of FIG. 2 along the X direction. 1 is a schematic diagram omitting the structure on the gate structure, the image sensor includes: a
上述时间延迟积分图像传感器中,所述基底100内具有第一掺杂离子,所述光电掺杂110区内具有第二掺杂离子,且所述第一掺杂离子的导电类型和第二掺杂离子的导电类型相反,因而能够形成光电二极管。当光线照射基底100时,所述光电二极管通过光生伏特效应将光子转换为电子,从而实现信号电荷的产生;通过在栅极结构120上施加电压,在所述栅极结构120下方的基底100内形成势阱,则所述光电二极管产生的电子被收集到势阱中,从而实现信号电荷的存储;通过在不同栅极结构120上施加不同电压,从而驱动势阱中存储的电荷能够朝向某个方向进行传输。In the above time-delay integral image sensor, the
然而,当光线从正面照射所述时间延迟积分图像传感器,即,从第一面101上的抗反射增透层120入射时,所述光线进入基底100内之前,会受到堆叠的互连结构130和若干栅极结构120的阻挡,导致所述图像传感器的灵敏度、信噪比以及量子效率较低,使得所述图像传感器的性能较差。However, when light irradiates the time-delay integrator image sensor from the front, that is, from the anti-reflection and
为了解决上述技术问题,本发明实施例提供一种背照式时间延迟积分图像传感器,包括:基底包括相对的第一面和第二面,所述基底包括若干光电掺杂区,且所述第一面暴露出所述光电掺杂区表面;位于所述第一面上的电路器件层;位于第二面上的抗反射增透层,且所述抗反射增透层覆盖若干所述光电掺杂区。所述图形传感器的性能较好。In order to solve the above technical problem, an embodiment of the present invention provides a backside-illuminated time-delay integrator image sensor, including: a substrate includes a first surface and a second surface opposite to each other, the substrate includes a plurality of photoelectric doped regions, and the first surface The surface of the photoelectric doped region is exposed on one side; the circuit device layer is located on the first side; the anti-reflection and anti-reflection layer is located on the second side, and the anti-reflection and anti-reflection layer covers a plurality of the photoelectric doped regions Miscellaneous area. The performance of the graphics sensor is better.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图4至图11是本发明一实施例中的背照式时间延迟积分图像传感器的形成方法各步骤的结构示意图。4 to 11 are schematic structural diagrams of each step of a method for forming a backside-illuminated time delay integrating image sensor according to an embodiment of the present invention.
请参考图4和图5,图5为图4沿M-N切线方向上的截面示意图,图4为图5沿X方向上的俯视图,提供基底200,所述基底200包括相对的第一面201和第二面202,所述基底200包括若干光电掺杂区210,且所述第一面201暴露出所述光电掺杂区210表面。Please refer to FIGS. 4 and 5. FIG. 5 is a schematic cross-sectional view of FIG. 4 along the M-N tangent direction, and FIG. 4 is a top view of FIG. 5 along the X direction. On the
所述基底200的材料为半导体材料。在本实施例中,所述基底200的材料为硅。在其他实施例中,所述衬底的材料包括碳化硅、硅锗、Ⅲ-Ⅴ族元素构成的多元半导体材料、绝缘体上硅(SOI)或者绝缘体上锗。其中,Ⅲ-Ⅴ族元素构成的多元半导体材料包括InP、GaAs、GaP、InAs、InSb、InGaAs或者InGaAsP。The material of the
在本实施例中,所述基底200还包括:若干隔离区(图中未标出),所述隔离区位于相邻光电掺杂区210之间;所述隔离区内具有隔离结构211。In this embodiment, the
在本实施例中,所述基底200内掺杂有第一离子;所述光电掺杂区210内掺杂有第二离子,且所述第一离子和第二离子的导电类型相反。In this embodiment, the
具体地,所述基底200包括衬底(图中未示出)和位于衬底表面的硅外延层(图中未示出),所述第一面201为硅外延层暴露出的表面,所述第二面202为衬底暴露出的表面。Specifically, the
由于光电掺杂区210内的第二掺杂离子与基底200内的第一掺杂离子的导电类型相反,因此,构成光电二极管。所述光电二极管用于将入射光中的光子转化为电子。Since the conductivity types of the second dopant ions in the
在本实施例中,所述第一离子为P型离子,包括:硼离子,所述第二离子为N型离子,包括:磷离子或者砷离子。In this embodiment, the first ions are P-type ions, including boron ions, and the second ions are N-type ions, including phosphorus ions or arsenic ions.
在其他实施例中,所述第一离子为N型离子,所述第二离子为P型离子。In other embodiments, the first ions are N-type ions, and the second ions are P-type ions.
请参考图6和图7,图6为在图4基础上的示意图,图7为在图5基础上的示意图,需要说明的是,图6为省略了栅极结构上的结构的示意图,在所述第一面201上形成电路器件层220。Please refer to FIGS. 6 and 7 , FIG. 6 is a schematic diagram based on FIG. 4 , and FIG. 7 is a schematic diagram based on FIG. 5 . It should be noted that FIG. 6 is a schematic diagram omitting the structure on the gate structure. A
所述电路器件层220用于使光电二极管与外围电路电连接。The
所述电路器件层220包括:位于基底200上的介质层(图中未标出);位于所述介质层内的若干栅极结构221,所述若干栅极结构221位于各个所述光电掺杂区210表面,且若干所述栅极结构210位于第一面201上;位于所述介质层内的互连结构224。The
所述电路器件层220的形成方法包括:在所述第一面201上形成若干栅极结构221;在所述第一面201上形成第一介质层222,且所述第一介质层222覆盖若干所述栅极结构221的顶部表面和侧壁表面;在所述第一介质层221表面形成第二介质层223,所述第二介质层223内具有互连结构224。The method for forming the
在本实施例中,所述介质层包括位于第一面201上的第一介质层222和位于所述第一介质层222表面的第二介质层223。In this embodiment, the dielectric layer includes a first
在本实施例中,若干所述栅极结构221沿第一方向Y1平行排列,若干所述栅极结构沿第二方向Y2横跨一个所述光电掺杂区210,所述第二方向Y2垂直于所述第一方向Y1。In this embodiment, a plurality of the
在本实施例中,所述互连结构224包括:位于栅极结构221上的若干层重叠的导电层(图中未标出);位于相邻两层导电层之间、导电层与基底之间或导电层和栅极结构之间的导电插塞(图中未标出)。In this embodiment, the
请参考图8,在所述电路器件层220表面形成第一保护层230。Referring to FIG. 8 , a first
在本实施例中,具体地,在所述介质层表面形成所述第一保护层230。In this embodiment, specifically, the first
所述第一保护层230用于减少外界环境对电路器件层220内器件的影响。The first
所述第一保护层230的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the first
在本实施例中,所述第一保护层230的材料为氧化硅。In this embodiment, the material of the first
所述第一保护层230的形成工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The formation process of the first
请参考图9,形成所述第一保护层230之后,对所述基底200进行减薄处理。Referring to FIG. 9 , after the first
需要说明的是,减薄之后的基底200仍为基底200,且减薄之后的所述基底200包括相对的第一面201和第二面202。It should be noted that the thinned
所述减薄处理的方法包括:提供承载衬底(图中未示出);将所述承载衬底表面与所述基底200上的第一保护层230表面进行键合;所述键合处理之后,从所述第二面202表面对基底200进行减薄工艺,形成最终的基底200。The method for the thinning process includes: providing a carrier substrate (not shown in the figure); bonding the surface of the carrier substrate with the surface of the first
所述减薄工艺包括:化学机械研磨工艺。The thinning process includes: a chemical mechanical polishing process.
请参考图10,所述减薄处理之后,在所述第二面202表面形成第二保护层240。Referring to FIG. 10 , after the thinning process, a second
所述第二保护层240的作用在于,一方面,用于增加后续形成的抗反射增透层与基底200之间的结合力,一方面,减小硅衬底受到破坏和离子污染。The function of the second
所述第二保护层240的形成工艺包括:热氧化工艺、化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The formation process of the second
所述第二保护层240的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the second
在本实施例中,所述第二保护层240的材料为氧化硅。In this embodiment, the material of the second
请参考图11,形成所述第二保护层240之后,在所述第二面202上形成抗反射增透层250,且所述抗反射增透层250覆盖若干所述光电掺杂区210。Referring to FIG. 11 , after the second
所述抗反射增透层250用于减少对光线的反射,从而有助于提高光线入射量。The anti-reflection and
所述抗反射增透层250的材料包括:氟化物、氧化物或者氮化物;所述氟化物包括:氟化镁或者氟化钡;所述氧化物包括:氧化铪、氧化锆、氧化钽或者三氧化二铝;所述氮化物包括:氮化硅或者氮氧硅化物。在本实施例中,所述抗反射增透层250的材料为氧化钽,所述抗反射增透层的厚度为520埃,所述抗反射增透层250能够有效减少光线的反射,从而增大进入基底200光线的入射量。The material of the anti-reflection and
形成所述抗反射增透层250的工艺包括:化学气相沉积工艺、物理气相沉积工艺或者旋涂工艺。The process of forming the anti-reflection and
通过在所述第二面202上形成所述抗反射增透层250。当从所述时间延迟积分图像传感器的背面进行光照时,即,经过所述抗反射增透层250的光线从第二面202进入基底200,这样,能够使光线入射直接进入光电掺杂区210中进行光电转换,从而避免受到电路器件层220内器件的阻挡,有利于光线入射量的提高,从而提高了所述图像传感器的灵敏度、信噪比以及量子效果,使得所述图像传感器的性能较好。By forming the anti-reflection and
相应的,本发明实施例还提供一种采用上述方法形成的背照式时间延迟积分图像传感器,请继续参考图11,包括:基底200,所述基底200包括相对的第一面201和第二面202,所述基底200包括若干光电掺杂区210,且所述第一面201暴露出所述光电掺杂区210表面;位于所述第一面201上的电路器件层220;位于第二面202上的抗反射增透层250,且所述抗反射增透层250覆盖若干所述光电掺杂区210。Correspondingly, an embodiment of the present invention further provides a back-illuminated time-delay integrator image sensor formed by the above method. Please continue to refer to FIG. 11 .
由于所述第二面202上具有抗反射增透层250。当从所述图像传感器的背面进行光照时,即,经过所述抗反射增透层250的光线从第二面202进入基底200,这样,能够使光线入射直接进入光电掺杂区210中进行光电转换,从而避免受到电路器件层220内器件的阻挡,有利于光线入射量的提高,从而提高了所述图像传感器的灵敏度、信噪比以及量子效果,使得所述图像传感器的性能较好。Because the
以下结合附图进行详细说明。The following detailed description is given in conjunction with the accompanying drawings.
所述抗反射增透层250的材料包括:氟化物、氧化物或者氮化物;所述氟化物包括:氟化镁或者氟化钡;所述氧化物包括:氧化铪、氧化锆、氧化钽或者三氧化二铝;所述氮化物包括:氮化硅或者氮氧硅化物。The material of the anti-reflection and
在本实施例中,所述抗反射增透层250的材料为氧化钽。In this embodiment, the material of the anti-reflection and
所述抗反射增透层250的厚度范围为:200埃~1500埃。The thickness of the anti-reflection and
选择所述厚度范围的意义在于:若所述厚度小于200埃,则厚度太薄的所述抗反射增透层250不能有效降低光线的反射,导致进入基底200内的光线入射量仍较低,使得形成的图像传感器的性能较差;若所述厚度大于1500埃,在保证充分避免对光线的反射的情况下,形成厚度太厚的抗反射增透层250相应会增加工艺成本和工艺时间,不利于提高工作效率。The significance of selecting the thickness range is: if the thickness is less than 200 angstroms, the anti-reflection and
所述电路器件层220包括:位于基底200上的介质层(图中未示出);位于所述介质层内的若干栅极结构221,所述若干栅极结构221位于各个所述光电掺杂区210表面,且若干所述栅极结构221位于第一面201上;位于所述介质层内的互连结构224。The
在本实施例中,所述介质层包括位于第一面201上的第一介质层222和位于所述第一介质层222表面的第二介质层223。In this embodiment, the dielectric layer includes a first
在本实施例中,若干所述栅极结构221沿第一方向Y1(图7中所示)平行排列,若干所述栅极结构221沿第二方向Y2(图7中所示)横跨一个所述光电掺杂区210,所述第二方向Y2垂直于所述第一方向Y1。In this embodiment, a plurality of the
所述栅极结构221包括:位于第一面201表面的栅介质层(图中未示出)和位于所述栅介质层表面的栅电极层(图中未示出)。The
在本实施例中,所述栅介质层的材料为氧化硅,所述栅电极层的材料为多晶硅。In this embodiment, the material of the gate dielectric layer is silicon oxide, and the material of the gate electrode layer is polysilicon.
所述互连结构224包括:位于栅极结构221上的若干层重叠的导电层(图中未示出);位于相邻两层导电层之间、导电层与基底之间或导电层和栅极结构之间的导电插塞(图中未示出)。The
所述背照式时间延迟积分图像传感器还包括:位于所述介质层表面的第一保护层230。The backside illuminated time delay integral image sensor further includes: a first
所述第一保护层230能够减少互连结构224中的导电层和导电插塞受到后续工艺的影响,对所述互连结构224起到保护的作用,从而提高所述图像传感器的性能。The first
所述第一保护层230的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the first
在本实施例中,所述第一保护层230的材料为:氧化硅。In this embodiment, the material of the first
所述背照式时间延迟积分图像传感器还包括:位于第二面202表面的第二保护层240,且所述第二保护层240位于所述抗反射增透层250和基底200之间。The BSI image sensor further includes: a second
所述第二保护层240的作用在于,一方面,所述第二保护层240能够增加所述抗反射增透层250和基底200之间的结合力,另一方面,所述第二保护层能够钝化硅表面,减小硅衬底受到的破坏和离子污染。The role of the second
所述第二保护层240的材料包括:氧化硅、氮化硅、氮碳化硅、氮硼化硅、氮碳氧化硅或氮氧化硅。The material of the second
在本实施例中,所述第二保护层240的材料为氧化硅。In this embodiment, the material of the second
在本实施例中,所述基底200还包括:若干隔离区(图中未示出),所述隔离区位于相邻光电掺杂区210之间;所述隔离区内具有隔离结构211。In this embodiment, the
在本实施例中,所述基底200内掺杂有第一离子;所述光电掺杂区内掺杂有第二离子,且所述第一离子和第二离子的导电类型相反。In this embodiment, the
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911071212.8A CN110797363A (en) | 2019-11-05 | 2019-11-05 | Back-illuminated time-delay integral image sensor and method of forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911071212.8A CN110797363A (en) | 2019-11-05 | 2019-11-05 | Back-illuminated time-delay integral image sensor and method of forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110797363A true CN110797363A (en) | 2020-02-14 |
Family
ID=69442812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911071212.8A Pending CN110797363A (en) | 2019-11-05 | 2019-11-05 | Back-illuminated time-delay integral image sensor and method of forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110797363A (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727941A (en) * | 2004-07-30 | 2006-02-01 | 惠普开发有限公司 | Light modulator with a light-absorbing layer |
JP2010258155A (en) * | 2009-04-23 | 2010-11-11 | Mitsubishi Electric Corp | TDI image sensor and method for driving the image sensor |
JP2011146924A (en) * | 2010-01-14 | 2011-07-28 | Mitsubishi Electric Corp | Image sensor and imaging apparatus employing the same |
JP2018061079A (en) * | 2016-10-03 | 2018-04-12 | 三菱電機株式会社 | Imaging apparatus, and driving method thereof |
CN108470741A (en) * | 2018-03-16 | 2018-08-31 | 昆山锐芯微电子有限公司 | Imaging sensor and forming method thereof |
CN109216392A (en) * | 2018-09-12 | 2019-01-15 | 德淮半导体有限公司 | Imaging sensor and forming method thereof |
CN109411499A (en) * | 2018-10-31 | 2019-03-01 | 昆山锐芯微电子有限公司 | CMOS-TDI imaging sensor and forming method thereof |
CN209282203U (en) * | 2017-12-13 | 2019-08-20 | DB HiTek 株式会社 | Back side illumination image sensor |
-
2019
- 2019-11-05 CN CN201911071212.8A patent/CN110797363A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1727941A (en) * | 2004-07-30 | 2006-02-01 | 惠普开发有限公司 | Light modulator with a light-absorbing layer |
JP2010258155A (en) * | 2009-04-23 | 2010-11-11 | Mitsubishi Electric Corp | TDI image sensor and method for driving the image sensor |
JP2011146924A (en) * | 2010-01-14 | 2011-07-28 | Mitsubishi Electric Corp | Image sensor and imaging apparatus employing the same |
JP2018061079A (en) * | 2016-10-03 | 2018-04-12 | 三菱電機株式会社 | Imaging apparatus, and driving method thereof |
CN209282203U (en) * | 2017-12-13 | 2019-08-20 | DB HiTek 株式会社 | Back side illumination image sensor |
CN108470741A (en) * | 2018-03-16 | 2018-08-31 | 昆山锐芯微电子有限公司 | Imaging sensor and forming method thereof |
CN109216392A (en) * | 2018-09-12 | 2019-01-15 | 德淮半导体有限公司 | Imaging sensor and forming method thereof |
CN109411499A (en) * | 2018-10-31 | 2019-03-01 | 昆山锐芯微电子有限公司 | CMOS-TDI imaging sensor and forming method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102699394B1 (en) | Backside structure for image sensor | |
KR101864481B1 (en) | Image sensor and method of forming the same | |
CN110783356B (en) | Time delay integral image sensor and forming method thereof | |
US12369421B2 (en) | Image sensor and method of fabricating same | |
CN109786410B (en) | Image sensing device | |
US11837621B2 (en) | Image sensor including a semiconductor pattern | |
CN101471363A (en) | Image sensor and method for manufacturing the sensor | |
KR20180027852A (en) | Backside illuminated image sensor and method of manufacturing the same | |
CN105826331A (en) | Method of manufacturing back-illuminated image sensor adopting back-illuminated deep trench isolation | |
CN110797363A (en) | Back-illuminated time-delay integral image sensor and method of forming the same | |
US10170515B2 (en) | Implantation process for semiconductor device | |
CN108428711A (en) | Imaging sensor and forming method thereof | |
CN110137193B (en) | Image sensor, forming method and working method thereof | |
US9431446B2 (en) | Mechanisms for forming image sensor device | |
KR102817686B1 (en) | Isolation structures in image sensors | |
US20240204025A1 (en) | Image sensor | |
EP4089735B1 (en) | Image sensor | |
US20220310674A1 (en) | Semiconductor device and method of manufacturing semiconductor device | |
CN112002719B (en) | Image sensor pixel unit and its forming method and working method | |
US20230411421A1 (en) | Semiconductor structure with isolation structure | |
CN117936555A (en) | Image sensor and method for forming the same | |
CN104282697B (en) | The forming method of imaging sensor | |
CN110277417A (en) | Image sensor and method of forming the same | |
CN115863368A (en) | Forming method of back-illuminated image sensor and back-illuminated image sensor | |
CN115911072A (en) | Semiconductor device, method of manufacturing the same, and CMOS image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: Room 508-511, building a, Modern Plaza, No. 18, Weiye Road, Kunshan Development Zone, Suzhou, Jiangsu Applicant after: Ruixin Microelectronics Co.,Ltd. Address before: Room 508-511, block A, Modern Plaza, 18 Weiye Road, Kunshan, Jiangsu, Suzhou, 215300 Applicant before: BRIGATES MICROELECTRONICS (KUNSHAN) Co.,Ltd. |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200214 |