CN110797208A - Preparation method and application of electrode material - Google Patents
Preparation method and application of electrode material Download PDFInfo
- Publication number
- CN110797208A CN110797208A CN201911086139.1A CN201911086139A CN110797208A CN 110797208 A CN110797208 A CN 110797208A CN 201911086139 A CN201911086139 A CN 201911086139A CN 110797208 A CN110797208 A CN 110797208A
- Authority
- CN
- China
- Prior art keywords
- disodium
- solution
- preparation
- metal hydroxide
- electrode material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 52
- 238000002360 preparation method Methods 0.000 title claims abstract description 39
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 62
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract description 62
- -1 dicarboxylic acid disodium salt Chemical class 0.000 claims abstract description 26
- 239000011229 interlayer Substances 0.000 claims abstract description 25
- 239000002253 acid Substances 0.000 claims abstract description 24
- 159000000000 sodium salts Chemical class 0.000 claims abstract description 22
- 239000002135 nanosheet Substances 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 4
- 229910001960 metal nitrate Inorganic materials 0.000 claims description 48
- 239000000243 solution Substances 0.000 claims description 42
- 239000012266 salt solution Substances 0.000 claims description 31
- 238000006243 chemical reaction Methods 0.000 claims description 28
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 claims description 26
- 238000009830 intercalation Methods 0.000 claims description 25
- 230000002687 intercalation Effects 0.000 claims description 25
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 16
- 239000004312 hexamethylene tetramine Substances 0.000 claims description 13
- 235000010299 hexamethylene tetramine Nutrition 0.000 claims description 13
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 claims description 13
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 238000001556 precipitation Methods 0.000 claims description 10
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 claims description 9
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 8
- NCXUIEDQTCQZRK-UHFFFAOYSA-L disodium;decanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCCCCCCC([O-])=O NCXUIEDQTCQZRK-UHFFFAOYSA-L 0.000 claims description 4
- KYKFCSHPTAVNJD-UHFFFAOYSA-L sodium adipate Chemical compound [Na+].[Na+].[O-]C(=O)CCCCC([O-])=O KYKFCSHPTAVNJD-UHFFFAOYSA-L 0.000 claims description 4
- 235000011049 sodium adipate Nutrition 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- NTBUQGGJVYNYFE-UHFFFAOYSA-N [Na].[Na].[Na].C(C1=CC(C(=O)O)=CC(C(=O)O)=C1)(=O)O Chemical compound [Na].[Na].[Na].C(C1=CC(C(=O)O)=CC(C(=O)O)=C1)(=O)O NTBUQGGJVYNYFE-UHFFFAOYSA-N 0.000 claims description 3
- DZPASORATYKGCB-UHFFFAOYSA-N [Na].[Na].[Na].[Na].OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O Chemical compound [Na].[Na].[Na].[Na].OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O DZPASORATYKGCB-UHFFFAOYSA-N 0.000 claims description 3
- RJXWZICHMZWALQ-UHFFFAOYSA-L disodium;2-decylpropanedioate Chemical compound [Na+].[Na+].CCCCCCCCCCC(C([O-])=O)C([O-])=O RJXWZICHMZWALQ-UHFFFAOYSA-L 0.000 claims description 3
- UISIYYCJKZNXDU-UHFFFAOYSA-L disodium;naphthalene-2,6-dicarboxylate Chemical compound [Na+].[Na+].C1=C(C([O-])=O)C=CC2=CC(C(=O)[O-])=CC=C21 UISIYYCJKZNXDU-UHFFFAOYSA-L 0.000 claims description 3
- SDWYUQHONRZPMW-UHFFFAOYSA-L disodium;octanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCCCCC([O-])=O SDWYUQHONRZPMW-UHFFFAOYSA-L 0.000 claims description 3
- ZUDYLZOBWIAUPC-UHFFFAOYSA-L disodium;pentanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCC([O-])=O ZUDYLZOBWIAUPC-UHFFFAOYSA-L 0.000 claims description 3
- FEUHTVTVEHJIMB-UHFFFAOYSA-L [Na+].[Na+].[O-]C(=O)c1ccc(C([O-])=O)c2ccccc12 Chemical compound [Na+].[Na+].[O-]C(=O)c1ccc(C([O-])=O)c2ccccc12 FEUHTVTVEHJIMB-UHFFFAOYSA-L 0.000 claims description 2
- ZPYNSWLWBUVYKC-UHFFFAOYSA-N [Na].[Na].C(CCCCCC(=O)O)(=O)O Chemical compound [Na].[Na].C(CCCCCC(=O)O)(=O)O ZPYNSWLWBUVYKC-UHFFFAOYSA-N 0.000 claims description 2
- QFYNUCAKHMSPCY-UHFFFAOYSA-L disodium;nonanedioate Chemical compound [Na+].[Na+].[O-]C(=O)CCCCCCCC([O-])=O QFYNUCAKHMSPCY-UHFFFAOYSA-L 0.000 claims description 2
- RDKMRHWFTLMFDD-UHFFFAOYSA-L disodium;4-(4-carboxylatophenyl)benzoate Chemical compound [Na+].[Na+].C1=CC(C(=O)[O-])=CC=C1C1=CC=C(C([O-])=O)C=C1 RDKMRHWFTLMFDD-UHFFFAOYSA-L 0.000 claims 1
- 230000005518 electrochemistry Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 9
- 239000000463 material Substances 0.000 abstract description 5
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 230000000052 comparative effect Effects 0.000 description 20
- 229940039748 oxalate Drugs 0.000 description 12
- 229910021642 ultra pure water Inorganic materials 0.000 description 8
- 239000012498 ultrapure water Substances 0.000 description 8
- 238000001914 filtration Methods 0.000 description 7
- 229940039790 sodium oxalate Drugs 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910018058 Ni-Co-Al Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 229910018144 Ni—Co—Al Inorganic materials 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910017709 Ni Co Inorganic materials 0.000 description 2
- 229910003267 Ni-Co Inorganic materials 0.000 description 2
- 229910003262 Ni‐Co Inorganic materials 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 2
- 238000007872 degassing Methods 0.000 description 2
- PJDCQFWDRCADJP-UHFFFAOYSA-L disodium 2-undecylpropanedioate Chemical compound [Na+].C(CCCCCCCCCCC)(C(=O)[O-])C(=O)[O-].[Na+] PJDCQFWDRCADJP-UHFFFAOYSA-L 0.000 description 2
- 238000012983 electrochemical energy storage Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 230000001706 oxygenating effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910020639 Co-Al Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 229910020675 Co—Al Inorganic materials 0.000 description 1
- 229910003310 Ni-Al Inorganic materials 0.000 description 1
- 229910003271 Ni-Fe Inorganic materials 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IRXRGVFLQOSHOH-UHFFFAOYSA-L dipotassium;oxalate Chemical compound [K+].[K+].[O-]C(=O)C([O-])=O IRXRGVFLQOSHOH-UHFFFAOYSA-L 0.000 description 1
- HQWKKEIVHQXCPI-UHFFFAOYSA-L disodium;phthalate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C([O-])=O HQWKKEIVHQXCPI-UHFFFAOYSA-L 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- MDGRUBNBPOYDKU-UHFFFAOYSA-K trisodium benzene-1,3,5-tricarboxylate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)C1=CC(C([O-])=O)=CC(C([O-])=O)=C1 MDGRUBNBPOYDKU-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Nanotechnology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明涉及电极材料技术领域,尤其涉及一种电极材料的制备方法和应用,本发明通过直链型二羧酸二钠盐或共轭型多羧酸钠盐增大双金属氢氧化物纳米片的层间距,从而实现改善OH‑层间扩散动力学,得到电极材料。根据实施例的记载,所述电极材料在150A/g的电流密度下仍具有≥173F/g的高比容量;且所述方法具有材料组分可控、易于规模化生产、成本低廉等优点。
The invention relates to the technical field of electrode materials, and in particular to a preparation method and application of an electrode material. The invention increases double metal hydroxide nanosheets by straight-chain dicarboxylic acid disodium salt or conjugated polycarboxylic acid sodium salt The interlayer spacing can be improved to achieve improved OH - interlayer diffusion kinetics, resulting in electrode materials. According to the records of the examples, the electrode material still has a high specific capacity of ≥173 F/g at a current density of 150 A/g; and the method has the advantages of controllable material composition, easy mass production, and low cost.
Description
技术领域technical field
本发明涉及电极材料技术领域,尤其涉及一种电极材料的制备方法和应用。The invention relates to the technical field of electrode materials, in particular to a preparation method and application of an electrode material.
背景技术Background technique
超级电容器具有功率密度高、循环寿命长等优点,被广泛应用于汽车、电子器件及可再生能源高效利用等领域。但是,超级电容器的能量密度较低,大大地限制了其应用范围,并激发了人们开发具有高能量密度超级电容器电极材料的研究热情。近年来,研究人员发现过渡金属基材料具有高的理论能量密度,可通过发生法拉第反应实现电荷的存储和释放。但是该类材料发生法拉第反应中电荷传输动力学过程缓慢,会导致其容量和倍率性能差。因此,通过改善电极材料的电荷传输动力学,可大大提升其倍率性能。Supercapacitors have the advantages of high power density and long cycle life, and are widely used in automobiles, electronic devices and efficient utilization of renewable energy. However, the low energy density of supercapacitors greatly limits its application range and stimulates the research enthusiasm to develop supercapacitor electrode materials with high energy density. In recent years, researchers have found that transition metal-based materials have high theoretical energy density, and can store and release charges through the occurrence of Faradaic reactions. However, the kinetics of charge transport in the Faradaic reaction of such materials is slow, resulting in poor capacity and rate performance. Therefore, by improving the charge transport kinetics of the electrode material, its rate capability can be greatly improved.
层状双金属氢氧化物(LDHs)由带正电荷的双金属氢氧化物层板与带负电的层间阴离子及部分插层水分子组成,其通式为[M2+ 1-xM3+ x(OH)2]x+[An- x/n]x-·mH2O,其中M2+或M3+代表二价(如Ni2+,Mg2+,Co2+,Mn2+,Zn2+等)或三价(如Al3+,Cr3+,Fe3+等)金属离子,An-代表带-n价的阴离子,x代表层板电荷密度由二价与三价金属离子的比例决定(例如x=M3+/(M2++M3 +))。在碱性电解液中,LDHs发生可逆的法拉第反应(即氢氧化物与羟基氧化物之间的可逆转变)进行电化学储能,具有高的理论比容量;LDHs还具有合成简单、组分可调、可大规模制备等优点,是一类极具潜力的储能材料,被广泛用于超级电容器领域。Layered double metal hydroxides (LDHs) are composed of positively charged double metal hydroxide layers, negatively charged interlayer anions and partially intercalated water molecules, and their general formula is [M 2+ 1-x M 3 + x (OH) 2 ] x+ [A n- x/n ] x- mH 2 O, where M 2+ or M 3+ represents divalent (eg Ni 2+ , Mg 2+ , Co 2+ , Mn 2 + , Zn 2+ , etc.) or trivalent (such as Al 3+ , Cr 3+ , Fe 3+ , etc.) metal ions, An- represents an anion with -n valence, x represents the charge density of the laminate by divalent and trivalent The ratio of valence metal ions is determined (eg x=M 3+ /(M 2+ +M 3 + )). In alkaline electrolyte, LDHs undergo a reversible Faradaic reaction (i.e., the reversible transition between hydroxide and oxyhydroxide) for electrochemical energy storage, and have a high theoretical specific capacity; LDHs also have the advantages of simple synthesis and flexible components. It is a class of potential energy storage materials and is widely used in the field of supercapacitors.
但通常情况下,LDHs的层间距较小,在电化学储能过程中不利于OH-在层间的扩散,限制了电极材料参与反应的程度。因此,LDHs表现出较差的容量和倍率性能。However, in general, the interlayer spacing of LDHs is small, which is not conducive to the diffusion of OH between the layers during the electrochemical energy storage process, limiting the extent to which the electrode material participates in the reaction. Therefore, LDHs exhibit poor capacity and rate performance.
发明内容SUMMARY OF THE INVENTION
为了解决上述技术问题,本发明提供了一种电极材料的制备方法和应用。In order to solve the above technical problems, the present invention provides a preparation method and application of an electrode material.
为了实现上述发明目的,本发明提供以下具体技术方案:In order to achieve the above-mentioned purpose of the invention, the present invention provides the following specific technical solutions:
本发明提供了一种电极材料的制备方法,包括以下步骤:The invention provides a preparation method of an electrode material, comprising the following steps:
将插层溶液和层状双金属氢氧化物混合,进行插层反应,得到电极材料;Mixing the intercalation solution and the layered double metal hydroxide to carry out an intercalation reaction to obtain an electrode material;
所述插层溶液为直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液。The intercalation solution is a straight-chain dicarboxylic acid disodium salt solution or a conjugated polycarboxylic acid sodium salt solution.
优选的,所述层状双金属氢氧化物为由双金属氢氧化物纳米片相互交叉连接的花球状;Preferably, the layered double metal hydroxide is in the shape of a curd that is cross-connected by double metal hydroxide nanosheets;
所述层状双金属氢氧化物中双金属氢氧化物纳米片的层间距为0.8~0.85nm;The interlayer spacing of the double metal hydroxide nanosheets in the layered double metal hydroxide is 0.8-0.85 nm;
所述电极材料为由双金属氢氧化物纳米片相互交叉连接的花球状;The electrode material is in the shape of a flower ball that is cross-connected by double metal hydroxide nanosheets;
所述电极材料中双金属氢氧化物纳米片的层间距为0.7~1.3nm。The interlayer spacing of the double metal hydroxide nanosheets in the electrode material is 0.7-1.3 nm.
优选的,所述直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液的浓度独立地为(0.08~0.12)mol/L。Preferably, the concentration of the linear dicarboxylic acid disodium salt solution or the conjugated polycarboxylic acid sodium salt solution is independently (0.08-0.12) mol/L.
优选的,所述直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液中的溶质与层状双金属氢氧化物的质量比独立地为(5~40):1。Preferably, the mass ratio of the solute in the straight-chain dicarboxylic acid disodium salt solution or the conjugated polycarboxylic acid sodium salt solution to the layered double metal hydroxide is independently (5-40):1.
优选的,所述直链型二羧酸二钠盐溶液中的直链型二羧酸二钠盐为草酸二钠、丁二酸二钠、戊二酸二钠、己二酸二钠、庚二酸二钠、辛二酸二钠、壬二酸二钠、癸二酸二钠、正十一烷二羧酸二钠和正十二烷二羧酸二钠中的一种或几种。Preferably, the linear dicarboxylic acid disodium salt in the linear dicarboxylic acid disodium salt solution is disodium oxalate, disodium succinate, disodium glutarate, disodium adipate, heptane One or more of disodium diacid, disodium suberate, disodium azelaate, disodium sebacate, disodium n-undecanedicarboxylate and disodium n-dodecanedicarboxylate.
优选的,所述共轭型多羧酸钠盐溶液中的共轭型多羧酸钠盐为1,3,5-苯三甲酸三钠、1,2,4,5-苯四甲酸四钠、1,4-对苯二甲酸二钠、1,4-萘二甲酸二钠、2,6-萘二甲酸二钠、3,4,9,10-芘四甲酸四钠和4,4'-联苯二甲酸二钠中的一种或几种。Preferably, the conjugated polycarboxylic acid sodium salt in the conjugated polycarboxylic acid sodium salt solution is trisodium 1,3,5-benzenetricarboxylic acid, tetrasodium 1,2,4,5-benzenetetracarboxylic acid , disodium 1,4-terephthalate, disodium 1,4-naphthalate, disodium 2,6-naphthalate, tetrasodium 3,4,9,10-pyrenetetracarboxylate and 4,4' - One or more of disodium biphthalate.
优选的,所述插层反应的温度为60~100℃,所述插层反应的时间为12~72h。Preferably, the temperature of the intercalation reaction is 60˜100° C., and the time of the intercalation reaction is 12˜72 h.
优选的,所述层状双金属氢氧化物的制备方法,包括以下步骤:Preferably, the preparation method of the layered double metal hydroxide comprises the following steps:
将金属硝酸盐溶液、草酸盐和六亚甲基四胺的水溶液混合,进行沉淀反应,得到层状双金属氢氧化物;Mix the aqueous solution of metal nitrate solution, oxalate and hexamethylenetetramine, carry out precipitation reaction to obtain layered double metal hydroxide;
所述金属硝酸盐溶液为二价金属硝酸盐溶液或二价金属硝酸盐和三价金属硝酸盐的混合溶液。The metal nitrate solution is a divalent metal nitrate solution or a mixed solution of a divalent metal nitrate and a trivalent metal nitrate.
优选的,当所述金属硝酸盐溶液为二价金属硝酸盐和三价金属硝酸盐的混合溶液时:Preferably, when the metal nitrate solution is a mixed solution of divalent metal nitrate and trivalent metal nitrate:
所述二价金属硝酸盐中的二价金属为Ni2+、Co2+、Mn2+或Zn2+;所述三价金属硝酸盐中的三价金属为Al3+、Cr3+或Fe3+;The divalent metal in the divalent metal nitrate is Ni 2+ , Co 2+ , Mn 2+ or Zn 2+ ; the trivalent metal in the trivalent metal nitrate is Al 3+ , Cr 3+ or Fe 3+ ;
当所述金属硝酸盐溶液为二价金属硝酸盐溶液时:When the metal nitrate solution is a divalent metal nitrate solution:
所述二价金属硝酸盐中的二价金属为Ni2+、Co2+、Mn2+和Zn2+中的两种。The divalent metal in the divalent metal nitrate is two of Ni 2+ , Co 2+ , Mn 2+ and Zn 2+ .
本发明还提供了上述技术方案所述的制备方法制备得到的电极材料作为电极材料的应用。The present invention also provides the application of the electrode material prepared by the preparation method described in the above technical solution as an electrode material.
本发明提供了一种电极材料的制备方法,包括以下步骤:将插层溶液和层状双金属氢氧化物混合,进行插层反应,得到电极材料;所述插层溶液为直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液。本发明通过直链型二羧酸二钠盐或共轭型多羧酸钠盐增大双金属氢氧化物纳米片的层间距,从而实现改善OH-层间扩散动力学,得到电极材料。根据实施例的记载,所述电极材料在150A/g的电流密度下仍具有≥173F/g的高比容量。且所述方法具有材料组分可控、易于规模化生产、成本低廉等优点。The invention provides a method for preparing an electrode material, comprising the following steps: mixing an intercalation solution and a layered double metal hydroxide, and performing an intercalation reaction to obtain an electrode material; the intercalation solution is a linear dicarboxylate Acid disodium salt solution or conjugated polycarboxylic acid sodium salt solution. In the present invention, the interlayer spacing of the double metal hydroxide nanosheet is increased by the straight-chain dicarboxylic acid disodium salt or the conjugated polycarboxylic acid sodium salt, thereby improving the OH - interlayer diffusion kinetics and obtaining the electrode material. According to the description of the examples, the electrode material still has a high specific capacity of ≥173 F/g at a current density of 150 A/g. And the method has the advantages of controllable material components, easy mass production, low cost and the like.
附图说明Description of drawings
图1为实施例1所述层状双金属氢氧化物的SEM图;Fig. 1 is the SEM image of the layered double metal hydroxide described in Example 1;
图2为实施例1制备得到的电极材料的SEM图;2 is a SEM image of the electrode material prepared in Example 1;
图3为实施例1~7制备得到的电极材料和对比例1制备得到的层状双金属氢氧化物的XRD图;3 is the XRD patterns of the electrode materials prepared in Examples 1 to 7 and the layered double metal hydroxide prepared in Comparative Example 1;
图4为实施例1~7制备得到的电极材料和对比例1制备得到的层状双金属氢氧化物的倍率性能图;4 is a graph showing the rate performance of the electrode materials prepared in Examples 1 to 7 and the layered double metal hydroxide prepared in Comparative Example 1;
图5为实施例6制备得到的电极材料与对比例2~9制备得到的层状双金属氢氧化物的倍率性能图。5 is a graph showing the rate performance of the electrode material prepared in Example 6 and the layered double metal hydroxide prepared in Comparative Examples 2-9.
具体实施方式Detailed ways
本发明提供了一种电极材料的制备方法,包括以下步骤:The invention provides a preparation method of an electrode material, comprising the following steps:
将插层溶液和层状双金属氢氧化物混合,进行插层反应,得到电极材料;Mixing the intercalation solution and the layered double metal hydroxide to carry out an intercalation reaction to obtain an electrode material;
所述插层溶液为直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液。The intercalation solution is a straight-chain dicarboxylic acid disodium salt solution or a conjugated polycarboxylic acid sodium salt solution.
在本发明中,若无特殊说明,所有原料组分均为本领域技术人员熟知的市售产品。In the present invention, unless otherwise specified, all raw material components are commercially available products well known to those skilled in the art.
本发明将插层溶液和层状双金属氢氧化物混合,进行插层反应,得到电极材料;所述插层溶液为直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液。In the present invention, the intercalation solution is mixed with the layered double metal hydroxide, and the intercalation reaction is carried out to obtain the electrode material; the intercalation solution is a straight-chain dicarboxylic acid disodium salt solution or a conjugated polycarboxylic acid sodium salt solution.
在本发明中,所述直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液的浓度优选为(0.08~0.12)mol/L,更优选为(0.09~0.11)mol/L,最优选为0.10mol/L;所述直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液的溶剂优选为超纯水;所述直链型二羧酸二钠盐溶液中的直链型二羧酸二钠盐优选为草酸二钠、丁二酸二钠、戊二酸二钠、己二酸二钠、庚二酸二钠、辛二酸二钠、壬二酸二钠、癸二酸二钠、正十一烷二羧酸二钠和正十二烷二羧酸二钠中的一种或几种;当所述直链型二羧酸二钠盐为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定,按任意配比进行混合。所述共轭型多羧酸钠盐溶液中的共轭型多羧酸钠盐优选为1,3,5-苯三甲酸三钠、1,2,4,5-苯四甲酸四钠、1,4-对苯二甲酸二钠、1,4-萘二甲酸二钠、2,6-萘二甲酸二钠、3,4,9,10-芘四甲酸四钠和4,4'-联苯二甲酸二钠中的一种或几种;当所述共轭型多羧酸钠盐为上述具体选择中的两种以上时,本发明对所述具体物质的配比没有任何特殊的限定,按任意配比进行混合即可。In the present invention, the concentration of the linear dicarboxylic acid disodium salt solution or the conjugated polycarboxylic acid sodium salt solution is preferably (0.08-0.12) mol/L, more preferably (0.09-0.11) mol/L L, most preferably 0.10mol/L; the solvent of the straight-chain dicarboxylic acid disodium salt solution or the conjugated polycarboxylic acid sodium salt solution is preferably ultrapure water; the straight-chain dicarboxylate disodium salt solution The straight-chain dicarboxylic acid disodium salt in the salt solution is preferably disodium oxalate, disodium succinate, disodium glutarate, disodium adipate, disodium pimelic acid, disodium suberate, One or more of disodium diacid, disodium sebacate, disodium n-undecanedicarboxylate and disodium n-dodecanedicarboxylate; when the straight-chain dicarboxylate disodium salt is When two or more of the above-mentioned specific substances are selected, the present invention does not have any special limitation on the proportion of the specific substances, and the mixture is carried out according to any proportion. The conjugated polycarboxylic acid sodium salt in the conjugated polycarboxylic acid sodium salt solution is preferably trisodium 1,3,5-benzenetricarboxylic acid, tetrasodium 1,2,4,5-benzenetetracarboxylic acid, 1 , Disodium 4-terephthalate, disodium 1,4-naphthalene dicarboxylate, disodium 2,6-naphthalene dicarboxylate, tetrasodium 3,4,9,10-pyrenetetracarboxylate and 4,4'- One or more of disodium phthalate; when the conjugated polycarboxylic acid sodium salt is two or more of the above-mentioned specific selections, the present invention does not have any special restrictions on the proportioning of the specific substances , can be mixed according to any ratio.
在本发明中,所述层状双金属氢氧化物由双金属氢氧化物纳米片相互交叉连接(如图1所示),所述层状双金属氢氧化物中双金属氢氧化物纳米片的层间距优选为0.8~0.85nm,更优选为0.81~0.84nm,最优选为0.82nm。所述层状双金属氢氧化物中的层间阴离子优选为硝酸根离子。In the present invention, the layered double metal hydroxide is cross-connected by double metal hydroxide nanosheets (as shown in FIG. 1 ), and the double metal hydroxide nanosheets in the layered double metal hydroxide The interlayer spacing is preferably 0.8 to 0.85 nm, more preferably 0.81 to 0.84 nm, and most preferably 0.82 nm. The interlayer anion in the layered double metal hydroxide is preferably nitrate ion.
在本发明中,所述层状双金属氢氧化物优选通过下述制备方法制备得到,所述制备方法包括以下步骤:In the present invention, the layered double metal hydroxide is preferably prepared by the following preparation method, and the preparation method includes the following steps:
将金属硝酸盐溶液、含有草酸盐和六亚甲基四胺的水溶液混合,发生沉淀反应,得到层状双金属氢氧化物;Mixing the metal nitrate solution, the aqueous solution containing oxalate and hexamethylenetetramine, a precipitation reaction occurs to obtain a layered double metal hydroxide;
所述金属硝酸盐溶液为二价金属硝酸盐和三价金属硝酸盐的混合溶液或二价金属硝酸盐溶液。The metal nitrate solution is a mixed solution of divalent metal nitrate and trivalent metal nitrate or a divalent metal nitrate solution.
在本发明中,所述金属硝酸盐溶液的溶剂优选为超纯水;当所述金属硝酸盐溶液为二价金属硝酸盐和三价金属硝酸盐的混合溶液时:所述二价金属硝酸盐中的二价金属优选为Ni2+、Co2+、Mn2+或Zn2+;所述三价金属硝酸盐中的三价金属优选为Al3+、Cr3+或Fe3+;所述二价金属硝酸盐和所述三价金属硝酸盐的摩尔比优选为(0.14~7):1,更优选为(2~7):1,最优选为3:1;所述二价金属硝酸盐在金属硝酸盐溶液中的浓度优选为0.03~0.22mol/L,更优选为0.1~0.17mol/L,最优选为0.15mol/L。In the present invention, the solvent of the metal nitrate solution is preferably ultrapure water; when the metal nitrate solution is a mixed solution of divalent metal nitrate and trivalent metal nitrate: the divalent metal nitrate The divalent metal in is preferably Ni 2+ , Co 2+ , Mn 2+ or Zn 2+ ; the trivalent metal in the trivalent metal nitrate is preferably Al 3+ , Cr 3+ or Fe 3+ ; The molar ratio of the divalent metal nitrate to the trivalent metal nitrate is preferably (0.14-7):1, more preferably (2-7):1, most preferably 3:1; the divalent metal The concentration of nitrate in the metal nitrate solution is preferably 0.03-0.22 mol/L, more preferably 0.1-0.17 mol/L, and most preferably 0.15 mol/L.
当所述金属硝酸盐溶液为二价金属硝酸盐溶液时:所述二价金属硝酸盐中的二价金属优选为Ni2+、Co2+、Mn2+和Zn2+中的两种。在本发明中,两种所述二价金属硝酸盐的摩尔比优选为(0.1~19):1,更优选为(5~9):1,最优选为7:1;所述二价金属硝酸盐溶液中二价金属硝酸盐的总浓度优选为0.05~0.4mol/L,更优选为0.1~0.3mol/L,最优选为0.25mol/L。When the metal nitrate solution is a divalent metal nitrate solution: the divalent metal in the divalent metal nitrate is preferably two of Ni 2+ , Co 2+ , Mn 2+ and Zn 2+ . In the present invention, the molar ratio of the two divalent metal nitrates is preferably (0.1-19):1, more preferably (5-9):1, most preferably 7:1; the divalent metal The total concentration of the divalent metal nitrate in the nitrate solution is preferably 0.05-0.4 mol/L, more preferably 0.1-0.3 mol/L, and most preferably 0.25 mol/L.
在本发明中,所述含有草酸盐和六亚甲基四胺的水溶液中六亚甲基四胺的浓度优选为(0.8~1.2)mol/L,更优选为1.0mol/L;所述草酸盐和六亚甲基四胺水溶液中草酸钠的浓度优选为(4.5~5.5)g/L,更优选为5.0g/L。In the present invention, the concentration of hexamethylenetetramine in the aqueous solution containing oxalate and hexamethylenetetramine is preferably (0.8-1.2) mol/L, more preferably 1.0 mol/L; the The concentration of sodium oxalate in the aqueous solution of oxalate and hexamethylenetetramine is preferably (4.5 to 5.5) g/L, and more preferably 5.0 g/L.
在本发明中,所述金属硝酸盐溶液、含有草酸盐和六亚甲基四胺的水溶液的用量比优选为(75~85)mL:(15~25)mL,更优选为80mL:20mL。In the present invention, the dosage ratio of the metal nitrate solution and the aqueous solution containing oxalate and hexamethylenetetramine is preferably (75-85) mL: (15-25) mL, more preferably 80 mL: 20 mL .
在本发明中,所述金属硝酸盐溶液、含有草酸盐和六亚甲基四胺的水溶液的混合的具体过程优选为:将所述金属硝酸盐溶液脱气、充氧后,在搅拌的条件下,将溶液加热至40~60℃,快速加入脱气后的溶有草酸钠和六亚甲基四胺水溶液。In the present invention, the specific process of mixing the metal nitrate solution and the aqueous solution containing oxalate and hexamethylenetetramine is preferably: after degassing and oxygenating the metal nitrate solution, in a stirring Under certain conditions, the solution is heated to 40-60° C., and the degassed aqueous solution containing sodium oxalate and hexamethylenetetramine is rapidly added.
在本发明中,所述草酸盐优选为可溶性草酸盐,更优选为草酸钠或草酸钾;在本发明中,所述草酸盐的作用是提供草酸根,草酸根与金属离子生成不溶于水的草酸盐;所述草酸盐可以作为沉淀反应时LDH纳米片自组装的形核中心,最终生长形成具有花球状形貌的LDHs(产物1)。如果不加草酸,生成的纳米片通常杂乱分布,难以得到花球状形貌。所述六亚甲基四胺在水中缓慢水解产生氢氧根离子,与金属离子反应生成层状双金属氢氧化物。In the present invention, the oxalate is preferably soluble oxalate, more preferably sodium oxalate or potassium oxalate; in the present invention, the function of the oxalate is to provide oxalate, which forms insoluble with metal ions Oxalate in water; the oxalate can be used as a nucleation center for the self-assembly of LDH nanosheets in the precipitation reaction, and finally grow to form LDHs with a curd-shaped morphology (product 1). Without the addition of oxalic acid, the resulting nanosheets are usually chaotically distributed, making it difficult to obtain curd-like morphologies. The hexamethylenetetramine is slowly hydrolyzed in water to generate hydroxide ions, which react with metal ions to generate layered double metal hydroxides.
在本发明中,所述沉淀反应优选在搅拌的条件下进行,本发明对所述搅拌没有任何特殊的限定;所述沉淀反应的温度优选为95~100℃,更优选为96~98℃;所述沉淀反应的时间优选为4~12h,更优选为6~8h。In the present invention, the precipitation reaction is preferably carried out under stirring conditions, and the present invention does not have any special limitation on the stirring; the temperature of the precipitation reaction is preferably 95-100°C, more preferably 96-98°C; The time of the precipitation reaction is preferably 4-12 h, more preferably 6-8 h.
沉淀反应完成后,本发明优选对沉淀反应得到的产物进行后处理,所述后处理优选为过滤、洗涤和干燥;本发明对所述过滤没有任何特殊的限定,采用本领域技术人员技术人员熟知的过滤过程进行即可;在本发明中,所述洗涤优选为依次用超纯水和无水乙醇进行充分洗涤;本发明对所述干燥没有任何特殊的限定,采用本领域技术人员熟知的干燥过程进行即可。After the precipitation reaction is completed, the present invention preferably performs post-treatment on the product obtained by the precipitation reaction, and the post-treatment is preferably filtration, washing and drying; the present invention does not have any special limitation on the filtration, and adopts the method well known to those skilled in the art. The filtration process can be carried out; in the present invention, the washing is preferably fully washed with ultrapure water and absolute ethanol in turn; the present invention does not have any special limitation on the drying, and adopts the drying method well known to those skilled in the art. The process can proceed.
在本发明中,所述插层溶液和层状双金属氢氧化物的混合优选为将所述层状双金属氢氧化物加入到所述插层溶液中。In the present invention, the mixing of the intercalation solution and the layered double metal hydroxide is preferably by adding the layered double metal hydroxide to the intercalation solution.
在本发明中,所述直链型二羧酸二钠盐溶液或共轭型多羧酸钠盐溶液中的溶质与层状双金属氢氧化物的质量比优选为(5~40):1,更优选为(10~30):1,最优选为(15~25):1。In the present invention, the mass ratio of the solute in the straight-chain dicarboxylic acid disodium salt solution or the conjugated polycarboxylic acid sodium salt solution to the layered double metal hydroxide is preferably (5-40):1 , more preferably (10-30):1, and most preferably (15-25):1.
在本发明中,所述插层反应的温度优选为60~100℃,更优选为70~80℃;所述插层反应的时间优选为12~72h,更优选为20~60h,最优选为30~50h。In the present invention, the temperature of the intercalation reaction is preferably 60-100°C, more preferably 70-80°C; the time of the intercalation reaction is preferably 12-72h, more preferably 20-60h, and most preferably 30~50h.
插层反应完成后,本发明优选对反应完成后得到的产物体系进行后处理;所述后处理优选包括依次进行的冷却、过滤、洗涤和真空干燥;本发明对所述冷却和过滤的方式没有任何特殊的限定,采用本领域技术人员熟知的冷却和过滤过程进行即可;在本发明中,所述洗涤优选为依次采用超纯水和无水乙醇进行充分洗涤;在本发明中,所述真空干燥的温度优选为75~85℃,更优选为80℃,所述真空干燥的时间优选为10~15h,更优选为12h。After the intercalation reaction is completed, the present invention preferably performs post-treatment on the product system obtained after the reaction is completed; the post-treatment preferably includes sequentially cooling, filtering, washing and vacuum drying; the present invention has no method for the cooling and filtering. Any special limitation can be carried out by using the cooling and filtration process well-known to those skilled in the art; in the present invention, the washing is preferably carried out with ultrapure water and absolute ethanol in sequence; in the present invention, the The temperature of vacuum drying is preferably 75-85°C, more preferably 80°C, and the time of vacuum drying is preferably 10-15h, more preferably 12h.
在本发明中,所述直链型二羧酸二钠盐或共轭型多羧酸钠盐可以实现双金属氢氧化物纳米片的导电性和层间距的调控,利用羧酸根离子取代层状双金属氢氧化物材料层间的NO3-离子,从而达到调控层间距的目的。由于不同羧酸根离子的尺寸有差异,最终电极材料的层间距也不同。In the present invention, the straight-chain dicarboxylic acid disodium salt or the conjugated polycarboxylic acid sodium salt can realize the regulation of the conductivity and interlayer spacing of the double metal hydroxide nanosheets, and use carboxylate ions to replace the layered NO 3- ions between the double metal hydroxide material layers, so as to achieve the purpose of regulating the interlayer spacing. Due to the difference in size of the different carboxylate ions, the interlayer spacing of the final electrode material is also different.
在本发明中,所述电极材料由双金属氢氧化物纳米片相互交叉连接;In the present invention, the electrode material is cross-connected by double metal hydroxide nanosheets;
所述电极材料中双金属氢氧化物纳米片的层间距优选为0.7~1.3nm。The interlayer spacing of the double metal hydroxide nanosheets in the electrode material is preferably 0.7-1.3 nm.
本发明还提供了上述技术方案所述的制备方法制备得到的电极材料作为电极材料的应用。The present invention also provides the application of the electrode material prepared by the preparation method described in the above technical solution as an electrode material.
下面结合实施例对本发明提供的电极材料的制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。The preparation method and application of the electrode material provided by the present invention will be described in detail below with reference to the examples, but they should not be construed as limiting the protection scope of the present invention.
实施例1Example 1
提供Ni(NO3)2·6H2O和Co(NO3)2·6H2O的混合溶液(Ni(NO3)2·6H2O为17.5mmol,Co(NO3)2·6H2O为2.5mmol,超纯水为80mL)、草酸钠与六亚甲基四胺的水溶液(草酸钠为0.1g,六亚甲基四胺为20mmol,水为20mL)和丁二酸二钠溶液(丁二酸二钠为10mmol,超纯水100mL);A mixed solution of Ni(NO 3 ) 2 .6H 2 O and Co(NO 3 ) 2 .6H 2 O was provided (Ni(NO 3 ) 2 .6H 2 O was 17.5 mmol, Co(NO 3 ) 2 .6H 2 O is 2.5mmol, ultrapure water is 80mL), the aqueous solution of sodium oxalate and hexamethylenetetramine (sodium oxalate is 0.1g, hexamethylenetetramine is 20mmol, water is 20mL) and disodium succinate solution ( Disodium succinate is 10mmol, ultrapure water 100mL);
将Ni(NO3)2·6H2O和Co(NO3)2·6H2O的混合溶液脱气并充氧,在搅拌的条件下加热至40℃,快速加入脱气后的草酸钠与六亚甲基四胺的水溶液,在搅拌的条件下进行沉淀反应(95℃,6h)后,冷却、过滤、用超纯水和无水乙醇充分洗涤、干燥,得到层状双金属氢氧化物;The mixed solution of Ni(NO 3 ) 2 ·6H 2 O and Co(NO 3 ) 2 ·6H 2 O was degassed and oxygenated, heated to 40°C under stirring, and the degassed sodium oxalate and The aqueous solution of hexamethylenetetramine is subjected to precipitation reaction (95℃, 6h) under stirring conditions, then cooled, filtered, fully washed with ultrapure water and absolute ethanol, and dried to obtain layered double metal hydroxide ;
将所述层状双金属氢氧化物进行SEM测试,测试结果如图1所示,由图1可知,所述双金属氢氧化物的层间距为0.82nm;The layered double metal hydroxide is subjected to SEM test, and the test result is shown in Figure 1. It can be seen from Figure 1 that the layer spacing of the double metal hydroxide is 0.82 nm;
将100mg所述层状双金属氢氧化物与丁二酸二钠溶液混合后,脱气并充氧气,进行插层反应(90℃,24h)后,冷却、过滤、用超纯水和无水乙醇充分洗涤和真空干燥(80℃,12h),得到电极材料;After mixing 100 mg of the layered double metal hydroxide with disodium succinate solution, degassing and oxygenating, performing intercalation reaction (90°C, 24h), cooling, filtering, using ultrapure water and anhydrous Fully washed with ethanol and vacuum dried (80°C, 12h) to obtain electrode material;
将所述电极材料进行SEM测试,测试结果如图2所示,由图2可知,所述双金属氢氧化物的层间距为0.88nm。The electrode material is tested by SEM, and the test result is shown in FIG. 2 . It can be seen from FIG. 2 that the interlayer spacing of the double metal hydroxide is 0.88 nm.
实施例2Example 2
制备方法参考实施例1,区别在于用己二酸二钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为0.95nm。The preparation method refers to Example 1, except that disodium adipate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 0.95 nm.
实施例3Example 3
制备方法参考实施例1,区别在于用癸二酸二钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为1.02~1.29nm。The preparation method refers to Example 1, except that disodium sebacate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 1.02-1.29 nm.
实施例4Example 4
制备方法参考实施例1,区别在于用1,3,5-苯三甲酸三钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为0.82nm。The preparation method refers to Example 1, with the difference that trisodium 1,3,5-benzenetricarboxylate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 0.82 nm.
实施例5Example 5
制备方法参考实施例1,区别在于用2,6-萘二甲酸二钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为0.84nm。The preparation method refers to Example 1, with the difference that disodium 2,6-naphthalenedicarboxylate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 0.84 nm.
实施例6Example 6
制备方法参考实施例1,区别在于用1,4-对苯二甲酸二钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为0.91nm。The preparation method refers to Example 1, with the difference that disodium 1,4-terephthalate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 0.91 nm.
实施例7Example 7
制备方法参考实施例1,区别在于用3,4,9,10-芘四甲酸四钠代替实施例1中的丁二酸二钠;所述电极材料中双金属氢氧化物的层间距为0.94nm。The preparation method refers to Example 1, the difference is that tetrasodium 3,4,9,10-pyrenetetracarboxylate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the electrode material is 0.94 nm.
对比例1Comparative Example 1
制备方法参考实施例1,区别在于用碳酸钠代替实施例1中的丁二酸二钠;所述层状双金属氢氧化物中双金属氢氧化物的层间距为0.765nm。The preparation method refers to Example 1, except that sodium carbonate is used instead of disodium succinate in Example 1; the interlayer spacing of the double metal hydroxide in the layered double metal hydroxide is 0.765 nm.
对比例2~9Comparative Examples 2 to 9
对比例2为中空Ni-Al LDH微球:制备方法参考Chem.Mater.,2012,24,1192-1197;Comparative example 2 is hollow Ni-Al LDH microspheres: the preparation method refers to Chem.Mater., 2012, 24, 1192-1197;
对比例3为Ni-Co-Al LDH:制备方法参考Electrochim.Acta,2017,225,263-271;Comparative example 3 is Ni-Co-Al LDH: the preparation method refers to Electrochim. Acta, 2017, 225, 263-271;
对比例4为Co-Al LDH/graphene:制备方法参考Adv.Funct.Mater.,2015,25,1648-1655;Comparative example 4 is Co-Al LDH/graphene: the preparation method refers to Adv.Funct.Mater., 2015, 25, 1648-1655;
对比例5为Co-Ni LDH/PEDOT:PSS:制备方法参考Adv.Funct.Mater.,2015,25,2745-2753;Comparative example 5 is Co-Ni LDH/PEDOT:PSS: for the preparation method, refer to Adv.Funct.Mater., 2015, 25, 2745-2753;
对比例6为Ni-Fe LDH:制备方法参考J.Power Sources,2016,325,675-681;Comparative example 6 is Ni-Fe LDH: the preparation method refers to J.Power Sources, 2016, 325, 675-681;
对比例7为Ni-Co-Al LDH NPs/Ni-Co CH NWs:制备方法参考Adv.EnergyMater.,2014,4,1400761;Comparative Example 7 is Ni-Co-Al LDH NPs/Ni-Co CH NWs: for the preparation method, refer to Adv. EnergyMater., 2014, 4, 1400761;
对比例8为C/Ni-Co LDH/Co9S8:制备方法参考Adv.Mater.,2017,29,1606814;Comparative example 8 is C/Ni-Co LDH/Co 9 S 8 : the preparation method refers to Adv.Mater., 2017, 29, 1606814;
对比例9为Ni-Co-Al LDH:制备方法参考Adv.Energy Mater.,2014,4,1301240。Comparative Example 9 is Ni-Co-Al LDH: for the preparation method, refer to Adv. Energy Mater., 2014, 4, 1301240.
测试例test case
将实施例1~7制备得到的电极材料和对比例1制备得到的层状双金属氢氧化物进行XRD测试,测试结果如图3所示,由图3可知所述电极材料中双金属氢氧化物的层间距为0.7~1.3nm。The electrode materials prepared in Examples 1 to 7 and the layered double metal hydroxide prepared in Comparative Example 1 were subjected to XRD test. The test results are shown in Figure 3. It can be seen from Figure 3 that the double metal hydroxide in the electrode material is The interlayer spacing of the material is 0.7 to 1.3 nm.
将实施例1~7制备得到的电极材料和对比例1~9制备得到的层状双金属氢氧化物在6M KOH电解液测试其储能性能,进行倍率性能测试,测试结果如图4和图5所示(图4为实施例1~7和对比例1得到的产物的倍率性能曲线;图5为实施例6和对比例2~9得到的产物的倍率性能曲线),根据图4,将实施例1~7和对比例1得到的产物在不同电流密度下的比容量总结如表1所示:The electrode materials prepared in Examples 1-7 and the layered double metal hydroxides prepared in Comparative Examples 1-9 were tested for their energy storage performance in 6M KOH electrolyte, and the rate performance was tested. The test results are shown in Figure 4 and Figure 4 5 (Figure 4 is the rate performance curve of the products obtained from Examples 1 to 7 and Comparative Example 1; Figure 5 is the rate performance curve of the products obtained from Example 6 and Comparative Examples 2 to 9), according to Figure 4, the The specific capacities of the products obtained in Examples 1 to 7 and Comparative Example 1 at different current densities are summarized in Table 1:
表1实施例1~7和对比例1得到的产物在不同电流密度下的比容量Table 1 Specific capacities of the products obtained from Examples 1 to 7 and Comparative Example 1 at different current densities
由图5可知,本发明所述制备方法制备得到的产物较现有技术具有高倍率储能性能。It can be seen from FIG. 5 that the product prepared by the preparation method of the present invention has a high rate energy storage performance compared with the prior art.
由以上实施例可知,本发明提供的所述电极材料在150A/g的电流密度下仍具有≥173F/g的高比容量。It can be seen from the above examples that the electrode material provided by the present invention still has a high specific capacity of ≥173 F/g at a current density of 150 A/g.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911086139.1A CN110797208B (en) | 2019-11-08 | 2019-11-08 | A kind of preparation method and application of electrode material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911086139.1A CN110797208B (en) | 2019-11-08 | 2019-11-08 | A kind of preparation method and application of electrode material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110797208A true CN110797208A (en) | 2020-02-14 |
CN110797208B CN110797208B (en) | 2020-12-22 |
Family
ID=69443313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911086139.1A Active CN110797208B (en) | 2019-11-08 | 2019-11-08 | A kind of preparation method and application of electrode material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110797208B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117777600A (en) * | 2023-12-29 | 2024-03-29 | 北京博奇电力科技有限公司 | Modified material of lithium ion battery diaphragm and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1056827A (en) * | 1990-05-25 | 1991-12-11 | 密歇根州州立大学托管委员会 | The multiple hydroxide of the stratiform that the polyacid root embeds |
US5728366A (en) * | 1994-04-29 | 1998-03-17 | Aluminum Company Of America | Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalent organic anions |
CN102796280A (en) * | 2012-08-29 | 2012-11-28 | 北京化工大学 | Supramolecular intercalated structure polymer antioxidant |
CN104779059A (en) * | 2015-04-16 | 2015-07-15 | 电子科技大学 | Supercapacitor using nickel aluminum hydrotalcite nanometer material as anode material |
CN108428904A (en) * | 2018-04-04 | 2018-08-21 | 北京航空航天大学 | One kind hydrotalcite oxygen reduction catalyst of silver-based containing cerium and the preparation method and application thereof |
-
2019
- 2019-11-08 CN CN201911086139.1A patent/CN110797208B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1056827A (en) * | 1990-05-25 | 1991-12-11 | 密歇根州州立大学托管委员会 | The multiple hydroxide of the stratiform that the polyacid root embeds |
US5728366A (en) * | 1994-04-29 | 1998-03-17 | Aluminum Company Of America | Two powder synthesis of hydrotalcite and hydrotalcite-like compounds with monovalent organic anions |
CN102796280A (en) * | 2012-08-29 | 2012-11-28 | 北京化工大学 | Supramolecular intercalated structure polymer antioxidant |
CN104779059A (en) * | 2015-04-16 | 2015-07-15 | 电子科技大学 | Supercapacitor using nickel aluminum hydrotalcite nanometer material as anode material |
CN108428904A (en) * | 2018-04-04 | 2018-08-21 | 北京航空航天大学 | One kind hydrotalcite oxygen reduction catalyst of silver-based containing cerium and the preparation method and application thereof |
Non-Patent Citations (5)
Title |
---|
宋延超: "水滑石及其复合物的合成与电容性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
李贺军 等: "《先进复合材料学》", 31 December 2016, 西北工业大学出版社 * |
杜宝中 等: "有机酸阴离子_LDH复合材料的插层组装条件及热稳定性研究", 《材料导报》 * |
路璐 等: "芳香羧酸阴离子插层水滑石的合成和紫外性能研究", 《四川理工学院学报(自然科学版)》 * |
郑德 等: "《稳定剂》", 30 June 2011, 国防工业出版社 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117777600A (en) * | 2023-12-29 | 2024-03-29 | 北京博奇电力科技有限公司 | Modified material of lithium ion battery diaphragm and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110797208B (en) | 2020-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110176360B (en) | Hollow core-shell structure supercapacitor material Fe-Co-S/NF as well as preparation method and application thereof | |
CN107954483B (en) | Alpha-phase nickel hydroxide ultrathin nanosheet and preparation method thereof | |
CN104310389B (en) | A kind of compression-resistant graphene hydrogel and preparation method thereof | |
CN109081384B (en) | Composite complexing agent and method for preparing positive electrode precursor material for lithium ion power battery | |
CN101962211B (en) | Preparation method of nano nickel bicarbonate | |
CN105016399B (en) | Nano thin sheet assembled nickel-iron hydroxide multistage microspheres and preparation method thereof | |
CN108666145A (en) | A layered double metal hydroxide@diatomite composite structure material and its preparation method and application | |
CN104192810B (en) | A kind of preparation method of layered double-hydroxide of large interlamellar spacing | |
CN106848315A (en) | Zinc-nickel battery anode material and preparation method thereof and the battery using the negative material | |
CN107311243A (en) | A kind of preparation method of the nickel vanadium dual metal hydroxide of sheet | |
CN109560283A (en) | A kind of preparation method of the nickel cobalt aluminium ternary precursor of continuous concentration gradient | |
CN114084940B (en) | Active material, adsorption electrode, capacitive deionization device, preparation method and application | |
CN110706945A (en) | A kind of bimetallic sulfide/graphene composite film with loose layered structure and preparation method thereof | |
CN105036204B (en) | Multistage microballoon of nickel aluminium hydroxide assembled by nano flake and preparation method thereof | |
CN108609599A (en) | The preparation method of nickel hydroxide nano piece self assembly nickel phosphates cobalt club shaped structure composite material | |
CN104037399B (en) | Negative active material for zinc-nickel secondary battery and preparation method thereof | |
CN113363628B (en) | A kind of electrolyte for aluminum-air battery and preparation method thereof | |
CN111559760A (en) | Magnetic hydrotalcite and preparation method and application thereof | |
CN110797208B (en) | A kind of preparation method and application of electrode material | |
CN110164710A (en) | A kind of supercapacitor binary metal compound composite material and preparation method thereof | |
CN110336010A (en) | Preparation method of anion-cation co-doped nanoscale sodium-ion battery positive electrode material with strong interaction | |
CN106960730A (en) | A kind of high stability nickel cobalt double-hydroxide electrode material and preparation method thereof | |
CN103193276B (en) | Method for synthesizing iron-containing hydrotalcite-like compound by utilizing prussian blue as raw material | |
CN108428904B (en) | A kind of cerium-containing silver-based hydrotalcite oxygen reduction catalyst and preparation method and application thereof | |
CN112723425B (en) | A kind of ultrathin nano flower structure hydrotalcite supercapacitor electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |