CN110794652A - Photoetching machine system and photoetching method - Google Patents
Photoetching machine system and photoetching method Download PDFInfo
- Publication number
- CN110794652A CN110794652A CN201911117978.5A CN201911117978A CN110794652A CN 110794652 A CN110794652 A CN 110794652A CN 201911117978 A CN201911117978 A CN 201911117978A CN 110794652 A CN110794652 A CN 110794652A
- Authority
- CN
- China
- Prior art keywords
- light source
- lithography
- module
- control module
- lithography machine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000001259 photo etching Methods 0.000 title claims 13
- 238000001459 lithography Methods 0.000 claims abstract description 104
- 230000005540 biological transmission Effects 0.000 claims abstract description 32
- 238000001900 extreme ultraviolet lithography Methods 0.000 claims description 8
- 230000005469 synchrotron radiation Effects 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000000276 deep-ultraviolet lithography Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000003574 free electron Substances 0.000 claims description 3
- 238000000265 homogenisation Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 239000013307 optical fiber Substances 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims 1
- 238000012423 maintenance Methods 0.000 abstract description 3
- 230000008676 import Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 2
- VZPPHXVFMVZRTE-UHFFFAOYSA-N [Kr]F Chemical compound [Kr]F VZPPHXVFMVZRTE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- ISQINHMJILFLAQ-UHFFFAOYSA-N argon hydrofluoride Chemical compound F.[Ar] ISQINHMJILFLAQ-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 vacuum Substances 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70033—Production of exposure light, i.e. light sources by plasma extreme ultraviolet [EUV] sources
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70041—Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70075—Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本发明公开了一种光刻机系统及光刻方法,光刻机系统包括一中央光源模块,多个光刻机主机,光源传输模块及光源控制模块,中央光源模块通过光源传输模块连接光源控制模块,光源控制模块通过光源传输模块分别连接各光刻机主机,光源控制模块从中央光源模块所提供的光源中分离出目标光刻机主机所需波段的光源,并传输至目标光刻机主机,向各目标光刻机主机同时提供光刻工艺所需的曝光能量。本发明通过将一台中央光源模块所产生的光源通过光源传输模块和光源控制模块,同时传输给两台或多台光刻机主机,从而可提供每台光刻机主机光刻工艺所需的曝光能量,显著提高光刻机光源使用效率,降低光刻机系统导入成本和维护成本。
The invention discloses a lithography machine system and a lithography method. The lithography machine system includes a central light source module, a plurality of lithography machine hosts, a light source transmission module and a light source control module. The central light source module is connected to the light source control module through the light source transmission module. The light source control module is respectively connected to each lithography machine host through the light source transmission module. The light source control module separates the light source of the wavelength band required by the target lithography machine host from the light source provided by the central light source module, and transmits it to the target lithography machine host. , and simultaneously provide the exposure energy required by the lithography process to each target lithography machine host. The present invention transmits the light source generated by one central light source module to two or more lithography machine hosts at the same time through the light source transmission module and the light source control module, so that the required lithography process of each lithography machine host can be provided. Exposure energy, significantly improve the efficiency of the light source of the lithography machine, and reduce the import cost and maintenance cost of the lithography machine system.
Description
技术领域technical field
本发明涉及集成电路装备制造技术领域,特别是涉及一种光刻机系统及光刻方法。The invention relates to the technical field of integrated circuit equipment manufacturing, in particular to a lithography machine system and a lithography method.
背景技术Background technique
伴随着集成电路的设计和制造工艺变得越来越复杂,集成电路产业面临越来越多的挑战,其中光刻工艺面临的挑战之一是设备和工艺成本越来越高,以及下一代光刻平台极紫外光刻机(EUV)的光源功率无法达到大规模量产需求。As the design and manufacturing process of integrated circuits become more and more complex, the integrated circuit industry is facing more and more challenges. One of the challenges faced by the lithography process is the increasing The light source power of the etching platform extreme ultraviolet lithography machine (EUV) cannot meet the needs of mass production.
目前的光刻机系统的架构是每台光刻机主机对应单独的光源系统。对于光学平台光刻机,业界普遍采用的曝光光源有193nm氟化氩准分子激光器、248nm氟化氪准分子激光器、365nm的汞灯光源等。对于更为先进的极紫外光刻机,其光源为激光等离子源产生的约13.5nm波长的极紫外射线,然后再光学聚焦形成光束,光束经由反射掩膜版反射到硅片表面完成极紫外曝光。The architecture of the current lithography machine system is that each lithography machine host corresponds to a separate light source system. For optical table lithography machines, exposure light sources commonly used in the industry include 193nm argon fluoride excimer lasers, 248nm krypton fluoride excimer lasers, and 365nm mercury light sources. For a more advanced EUV lithography machine, the light source is EUV rays with a wavelength of about 13.5nm generated by a laser plasma source, and then optically focused to form a beam, which is reflected to the surface of the silicon wafer through a reflective mask to complete EUV exposure. .
请参考图1,图1是现有的一种每台光刻机配套独立的光源系统方式的结构示意图。如图1所示,单独配置的光源系统21通过光源传输模块22,和每台光刻机主机23连接起来,单独配置的光源系统21提供曝光光源,供应给光刻机主机23进行光刻工艺。其中,图中的A,B,C,D,E等代表了不同的光刻机主机。Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of an existing method of supporting an independent light source system for each lithography machine. As shown in FIG. 1 , the individually configured
半导体产业界一直致力于降低光刻机的使用和维护成本,提升光刻机的生产效率。而现有的每台光刻机主机对应独立的光源系统的光刻机系统架构,对于产业界降低成本、提升效率的目标造成掣肘。The semiconductor industry has been committed to reducing the use and maintenance costs of lithography machines and improving the production efficiency of lithography machines. However, the existing lithography machine system architecture in which each lithography machine host corresponds to an independent light source system poses a constraint to the goal of reducing costs and improving efficiency in the industry.
如何突破现有平台架构,持续降低光刻设备和工艺成本,并实现极紫外光刻光源功率和生产效率的显著突破,是半导体产业界所着力研究的问题。How to break through the existing platform architecture, continuously reduce the cost of lithography equipment and processes, and achieve significant breakthroughs in the power and production efficiency of EUV lithography light sources are the issues that the semiconductor industry is focusing on.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术存在的上述缺陷,提供一种光刻机系统及光刻方法。The purpose of the present invention is to overcome the above-mentioned defects in the prior art, and to provide a lithography machine system and a lithography method.
为实现上述目的,本发明的技术方案如下:For achieving the above object, technical scheme of the present invention is as follows:
一种光刻机系统,包括:一中央光源模块,多个光刻机主机,光源传输模块,以及光源控制模块;其中,所述中央光源模块通过所述光源传输模块连接所述光源控制模块,所述光源控制模块通过所述光源传输模块分别连接各所述光刻机主机,所述光源控制模块从所述中央光源模块所提供的光源中分离出目标所述光刻机主机所需波段的光源,所述光源控制模块将光束从单束分离为多束,并分别传输至目标所述光刻机主机,向各目标所述光刻机主机同时提供光刻工艺所需的曝光能量。A lithography machine system includes: a central light source module, a plurality of lithography machine hosts, a light source transmission module, and a light source control module; wherein the central light source module is connected to the light source control module through the light source transmission module, The light source control module is respectively connected to each of the lithography machine hosts through the light source transmission module, and the light source control module separates the wavelength band required by the target lithography machine host from the light source provided by the central light source module. The light source control module separates the light beam from a single beam into multiple beams, and transmits them to the target lithography machine host respectively, and simultaneously provides the exposure energy required by the lithography process to each target lithography machine host.
进一步地,所述光刻机主机包括I线光刻机、深紫外光刻机或极紫外光刻机。Further, the lithography machine host includes an I-line lithography machine, a deep ultraviolet lithography machine or an extreme ultraviolet lithography machine.
进一步地,所述中央光源模块所提供的光源包括单波段光源、连续波段光源或部分波段光源。Further, the light source provided by the central light source module includes a single-wavelength light source, a continuous-wavelength light source or a partial-wavelength light source.
进一步地,所述光源控制模块包含有光束分离装置,用于分离出目标所述光刻机主机所需波段的光源,所述光束分离装置还用于将光束从单束分离成多束;所述光源控制模块还用于对光束分离后的能量和功率的强弱和高低进行独立控制。Further, the light source control module includes a beam splitting device for separating the light source of the wavelength band required by the target lithography machine host, and the beam splitting device is also used for splitting the light beam from a single beam into multiple beams; The light source control module is also used to independently control the intensity and level of the energy and power after the beam is separated.
进一步地,所述光刻机主机工艺需求的波段包括13.5nm极紫外波长、193nm深紫外波长、248nm深紫外波长或365nm波长。Further, the wavelength band required by the host process of the lithography machine includes 13.5 nm extreme ultraviolet wavelength, 193 nm deep ultraviolet wavelength, 248 nm deep ultraviolet wavelength or 365 nm wavelength.
进一步地,所述光束分离装置设有滤光器和分束镜。Further, the beam splitting device is provided with a filter and a beam splitter.
进一步地,所述中央光源模块包括固体激光器、气体激光器、液体激光器、半导体激光器、自由电子激光器或同步辐射光源。Further, the central light source module includes a solid-state laser, a gas laser, a liquid laser, a semiconductor laser, a free electron laser or a synchrotron radiation light source.
进一步地,所述中央光源模块满足两台或两台以上所述光刻机主机光刻工艺所需的曝光能量需求。Further, the central light source module meets the exposure energy requirement required by the lithography process of two or more lithography machine hosts.
进一步地,所述光源传输模块采用气体、真空或光导纤维作为光源传输媒介。Further, the light source transmission module adopts gas, vacuum or optical fiber as the light source transmission medium.
一种光刻方法,使用上述的光刻机系统,包括以下步骤:A lithography method, using the above-mentioned lithography machine system, includes the following steps:
使用中央光源模块激发、产生并输出光源;Use the central light source module to excite, generate and output light sources;
使所述中央光源模块产生的光源通过光源传输模块进入光源控制模块;making the light source generated by the central light source module enter the light source control module through the light source transmission module;
根据目标光刻机主机进行光刻工艺所需的光源波长和曝光能量需求,对进入所述光源控制模块的光源进行滤光、光束分离和光束匀化,并通过所述光源控制模块对分离后的光束的能量和功率的强弱和高低进行控制;Filtering, beam separation and beam homogenization are performed on the light source entering the light source control module according to the light source wavelength and exposure energy requirements required by the target lithography machine host for the lithography process, and the separated light source is filtered by the light source control module. Control the intensity and level of the energy and power of the beam;
将经过分离和控制后的多路光源,通过所述光源传输模块传输至各自对应的目标所述光刻机主机;The separated and controlled multi-channel light sources are transmitted to the respective corresponding targets of the lithography machine host through the light source transmission module;
使用传输到目标所述光刻机主机的光源,完成对所述光刻机主机中放置的硅片的曝光工艺。Using the light source transmitted to the target lithography machine host, the exposure process of the silicon wafer placed in the lithography machine host is completed.
从上述技术方案可以看出,本发明通过将一台中央光源模块所产生的光源通过光源传输模块和光源控制模块,同时传输给两台或多台光刻机主机,从而可提供每台光刻机主机光刻工艺所需的曝光能量;相对于现有的每台光刻机配套独立的激光器光源系统的方式,本发明可显著提高光刻机光源使用效率,降低光刻机系统导入成本和维护成本;同时,可利用同步辐射光源等装置作为中央光源系统,提供给多台极紫外光刻机满足光刻工艺需求的曝光能量,有效解决了极紫外光刻机曝光能量不足和产率低下的问题。It can be seen from the above technical solutions that the present invention transmits the light source generated by one central light source module to two or more lithography machine hosts at the same time through the light source transmission module and the light source control module, thereby providing each lithography machine. Compared with the existing way that each lithography machine is equipped with an independent laser light source system, the invention can significantly improve the use efficiency of the light source of the lithography machine, and reduce the cost and cost of introducing the lithography machine system. Maintenance cost; at the same time, the synchrotron radiation light source and other devices can be used as the central light source system to provide exposure energy for multiple EUV lithography machines to meet the needs of the lithography process, effectively solving the problem of insufficient exposure energy and low productivity of EUV lithography machines. The problem.
附图说明Description of drawings
图1是现有的一种每台光刻机配套独立的光源系统方式的结构示意图。FIG. 1 is a schematic structural diagram of an existing way of supporting an independent light source system for each lithography machine.
图2是本发明一较佳实施例的一种光刻机系统结构示意图。FIG. 2 is a schematic structural diagram of a lithography machine system according to a preferred embodiment of the present invention.
图3是光源控制模块中的分光镜结构原理示意图。FIG. 3 is a schematic diagram of the structure principle of the beam splitter in the light source control module.
图中21、单独配置的光源系统;22、光源传输模块;23、光刻机主机;31、分光镜;32、入射光源;33、分束后的反射光;34、分束后的穿透光;41、中央光源系统;42、光源控制模块;43、光源传输模块;44、光刻机主机。21. Separately configured light source system; 22. Light source transmission module; 23. Mainframe of lithography machine; 31. Beam splitter; 32. Incident light source; 33. Reflected light after beam splitting; 34. Penetration after beam splitting light; 41, central light source system; 42, light source control module; 43, light source transmission module; 44, lithography machine host.
具体实施方式Detailed ways
下面结合附图,对本发明的具体实施方式作进一步的详细说明。The specific embodiments of the present invention will be further described in detail below with reference to the accompanying drawings.
需要说明的是,在下述的具体实施方式中,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。It should be noted that, in the following specific embodiments, when describing the embodiments of the present invention in detail, in order to clearly represent the structure of the present invention and facilitate the description, the structures in the accompanying drawings are not drawn according to the general scale, and the Partial enlargement, deformation and simplification of processing are shown, therefore, it should be avoided to interpret this as a limitation of the present invention.
在以下本发明的具体实施方式中,请参考图2,图2是本发明一较佳实施例的一种光刻机系统结构示意图。如图2所示,本发明的一种光刻机系统,包括:一个中央光源模块,多台光刻机主机44,光源传输模块43,以及光源控制模块42。其中,中央光源模块可以采用中央光源系统41,光源控制模块42可以采用光源控制装置42。In the following specific embodiments of the present invention, please refer to FIG. 2 , which is a schematic structural diagram of a lithography machine system according to a preferred embodiment of the present invention. As shown in FIG. 2 , a lithography machine system of the present invention includes: a central light source module, multiple
请参考图2。中央光源系统41通过光源传输模块43连接光源控制模块42,光源控制模块42通过光源传输模块43分别连接各光刻机主机44。光源控制模块42从中央光源系统41所提供的光源中分离出目标光刻机主机44所需波段的光源,并传输至目标光刻机主机(例如A、B和C)44,向各目标光刻机主机44同时提供光刻工艺所需的曝光能量。Please refer to Figure 2. The central light source system 41 is connected to the light
光刻机主机44可以采用I线光刻机、深紫外光刻机或极紫外光刻机。光刻机主机44也可以是其他类型的光刻机。光刻机主机44可采用例如图1所示的现有光刻机主机23。The
中央光源系统41,根据其所提供的光源波长不同,可以为单波段的光源系统,也可以是连续波段的光源系统,或是部分波段的光源系统。The central light source system 41 can be a single-wavelength light source system, a continuous-wavelength light source system, or a partial-wavelength light source system according to the wavelengths of the light sources provided by the central light source system 41 .
光源控制模块42可采用光束分离装置42。其中,连续波段的中央光源系统41和部分波段的中央光源系统41,可以通过光束分离装置和技术,从此中央光源系统41所提供的光源中分离出目标光刻机主机44工艺需求波段的光源,同时可将光束从单束分离未多束,再分别传输至目标光刻机主机44。The light
光束分离装置和技术可包括滤光器及分束镜(分光器)等光学组件。Beam splitting devices and techniques may include optical components such as filters and beam splitters (beamsplitters).
请参考图3。入射光源32经过分光镜31后,一部分光被反射,成为分束后的反射光33,一部分光透射过去,成为分束后的穿透光34。Please refer to Figure 3. After the incident
光源控制模块42的作用至少包括对中央光源系统41输出的光源的光束分离功能。此外,光源控制模块42的作用还可包括对光束分离后的能量和功率的独立控制等功能。The function of the light
目标光刻机主机44工艺需求的波段可包括13.5nm极紫外波长、193nm深紫外波长、248nm深紫外波长或365nm波长等。The wavelength band required by the process of the target
中央光源系统41根据其工作物质物态的不同,可以包括固体激光器、气体激光器、液体激光器、半导体激光器、自由电子激光器或同步辐射光源等其他光源系统。The central light source system 41 may include other light source systems such as solid-state lasers, gas lasers, liquid lasers, semiconductor lasers, free electron lasers, or synchrotron radiation light sources, depending on the state of its working material.
其中,单台中央光源系统41的输出功率大于现有光刻机单独配套的激光器,单套中央光源系统41可以满足数量大于或等于两台的光刻机44曝光能量需求。Among them, the output power of a single central light source system 41 is greater than that of the lasers separately matched with the existing lithography machines, and a single set of central light source systems 41 can meet the exposure energy requirements of two or
光源传输模块43的光源传输介质可以是气体、真空或光导纤维等媒介。光源传输模块43可采用例如图1所示的现有光源传输模块22。The light source transmission medium of the light
中央光源系统41可以就近部署于光刻机主机44附近,也可以部署于距离光刻机主机44较远的位置,并通过光源传输模块43传输至各个目标光刻机主机44。The central light source system 41 can be deployed near the
EUV光源通常可以采用3种技术方案实现:同步辐射源、放电等离子体(DischargeProduced Plasma,DPP)EUV光源、激光激发等离子体(Laser Produced Plasma,LPP)EUV光源。The EUV light source can usually be realized by three technical solutions: a synchrotron radiation source, a Discharge Produced Plasma (DPP) EUV light source, and a Laser Produced Plasma (LPP) EUV light source.
目前正在研发和基本投入量产的是独立式光源,即激光激发等离子体(LaserProduced Plasma,LPP)EUV光源,其功率最高只能达到250W。由于EUV光的高吸收特性(除了真空外,所有物质在反射EUV波段的光源时都会吸收部分入射的EUV能量),所以250W的光源功率不足以支撑150片每小时甚至200片每小时以上的生产率要求。What is currently being developed and basically put into mass production is an independent light source, that is, a LaserProduced Plasma (LPP) EUV light source, whose power can only reach a maximum of 250W. Due to the high absorption characteristics of EUV light (except for vacuum, all substances will absorb part of the incident EUV energy when reflecting the light source in the EUV band), so the light source power of 250W is not enough to support the productivity of 150 sheets per hour or even more than 200 sheets per hour. Require.
而同步辐射光源具有诸多优点,如高准直、高偏振、高纯净度、高亮度、窄脉冲以及可精确预知等,其最大优点为高功率。大型的同步辐射光源装置能产生超过10kW的EUV光,即其为单台LPP EUV光源功率的40倍(不同的同步辐射装置的功率也有不同),所以可以供多台EUV曝光设备使用,且同时能提高单台EUV曝光设备的生产率。The synchrotron radiation light source has many advantages, such as high collimation, high polarization, high purity, high brightness, narrow pulse and accurate prediction, etc. The biggest advantage is high power. The large-scale synchrotron radiation source device can generate more than 10kW of EUV light, that is, it is 40 times the power of a single LPP EUV light source (the power of different synchrotron radiation devices is also different), so it can be used for multiple EUV exposure equipment, and at the same time. It can improve the productivity of a single EUV exposure equipment.
本发明还提供一种采用中央光源系统集中供应多台光刻机曝光能量的光刻机架构,使用上述光刻机系统的一种光刻方法,可包括以下步骤:The present invention also provides a lithography machine architecture that uses a central light source system to centrally supply exposure energy to multiple lithography machines. A lithography method using the above lithography machine system may include the following steps:
使用中央光源系统41激发、产生并输出高光强、高能量光源。The central light source system 41 is used to excite, generate and output high intensity, high energy light sources.
使中央光源系统41产生的光源通过光源传输模块43进入光源控制模块42。The light source generated by the central light source system 41 is made to enter the light
根据目标光刻机主机44进行光刻工艺所需的光源波长和曝光能量需求,对进入光源控制模块42的光源进行滤光、光束分离和光束匀化等处理,并通过光源控制模块42对分离后的光束的能量和功率的强弱和高低等关键指标进行控制。According to the light source wavelength and exposure energy requirements required by the target
将经过分离和控制后的多路光源,通过光源传输模块43传输至各自对应的目标光刻机主机44。The separated and controlled multiple light sources are transmitted to the corresponding target
传输到光刻机主机44的光源经过相应控制和处理后,完成对光刻机主机44中放置的硅片的曝光工艺。After the light source transmitted to the
最终完成本发明的采用中央光源系统集中供应多台光刻机曝光能量的光刻工艺的实施。Finally, the implementation of the lithography process of the present invention using the central light source system to supply the exposure energy of multiple lithography machines in a centralized manner is completed.
以上的仅为本发明的优选实施例,实施例并非用以限制本发明的保护范围,因此凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above are only the preferred embodiments of the present invention, and the embodiments are not intended to limit the protection scope of the present invention. Therefore, any equivalent structural changes made by using the contents of the description and drawings of the present invention shall be included in the protection of the present invention. within the range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911117978.5A CN110794652A (en) | 2019-11-15 | 2019-11-15 | Photoetching machine system and photoetching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911117978.5A CN110794652A (en) | 2019-11-15 | 2019-11-15 | Photoetching machine system and photoetching method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110794652A true CN110794652A (en) | 2020-02-14 |
Family
ID=69444806
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911117978.5A Pending CN110794652A (en) | 2019-11-15 | 2019-11-15 | Photoetching machine system and photoetching method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110794652A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114563348A (en) * | 2022-01-26 | 2022-05-31 | 中国科学院微电子研究所 | Mask defect detection device, mask defect detection system, and lithography machine system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987659A (en) * | 2005-12-20 | 2007-06-27 | Asml荷兰有限公司 | Lithographic apparatus and device manufacturing method using multiple exposure types |
CN101324760A (en) * | 2007-06-12 | 2008-12-17 | 大日本网目版制造株式会社 | Depicting system, depicting apparatus and depicting method |
CN105359038A (en) * | 2013-06-18 | 2016-02-24 | Asml荷兰有限公司 | Lithographic method and system |
-
2019
- 2019-11-15 CN CN201911117978.5A patent/CN110794652A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1987659A (en) * | 2005-12-20 | 2007-06-27 | Asml荷兰有限公司 | Lithographic apparatus and device manufacturing method using multiple exposure types |
CN101324760A (en) * | 2007-06-12 | 2008-12-17 | 大日本网目版制造株式会社 | Depicting system, depicting apparatus and depicting method |
CN105359038A (en) * | 2013-06-18 | 2016-02-24 | Asml荷兰有限公司 | Lithographic method and system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114563348A (en) * | 2022-01-26 | 2022-05-31 | 中国科学院微电子研究所 | Mask defect detection device, mask defect detection system, and lithography machine system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8198611B2 (en) | Laser beam formatting module and method for fabricating semiconductor dies using same | |
CN103984211B (en) | High-resolution imaging photoetching method based on dual-beam polymerization initiation and inhibition | |
US20140084183A1 (en) | Extreme ultraviolet light generation system | |
KR20120045025A (en) | Euv radiation system and lithographic apparatus | |
KR20150018843A (en) | System and method for separating a main pulse and a pre-pulse beam from a laser light source | |
JP5341992B2 (en) | Radiation source module for EUV lithographic apparatus, lithographic apparatus, and device manufacturing method | |
JP5179522B2 (en) | Laser device, radiation source, and lithographic projection apparatus | |
JP2012501073A (en) | Spectral purity filter and lithographic apparatus | |
TWI565369B (en) | Power supply for a discharge produced plasma euv source | |
JP2021517662A (en) | Spatial modulation of light beam | |
TW201109854A (en) | Lithographic apparatus and device manufacturing method | |
JP6305426B2 (en) | Beam transport device for EUV lithography equipment | |
TWI586222B (en) | Radiation source, laser system, lithographic apparatus, and method of generating a laser beam | |
JP5492891B2 (en) | Mirror, lithographic apparatus, and device manufacturing method | |
CN110794652A (en) | Photoetching machine system and photoetching method | |
TW202009550A (en) | Apparatus of providing radiation to lithographic system | |
TWI398900B (en) | Method and source for generating a radiation, device manufacturing method and lithographic system | |
KR20140060560A (en) | Radiation source and lithographic apparatus | |
CN114585973A (en) | Optical components and fixtures used in lithography equipment | |
US20080259298A1 (en) | Lithographic apparatus and device manufacturing method | |
JPH04167419A (en) | Laser aligner | |
CN205507356U (en) | Ultraviolet laser light scribing device | |
US20040021843A1 (en) | Method for producing an optical element from a quartz substrate | |
JP5141648B2 (en) | Proximity exposure apparatus and exposure method using this proximity exposure apparatus | |
US20160195819A1 (en) | Radiation source and lithographic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200214 |