CN110792554A - Deformation type wind driven generator blade - Google Patents
Deformation type wind driven generator blade Download PDFInfo
- Publication number
- CN110792554A CN110792554A CN201810878801.6A CN201810878801A CN110792554A CN 110792554 A CN110792554 A CN 110792554A CN 201810878801 A CN201810878801 A CN 201810878801A CN 110792554 A CN110792554 A CN 110792554A
- Authority
- CN
- China
- Prior art keywords
- blade
- trailing edge
- skeleton
- wind turbine
- guide groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 208000002197 Ehlers-Danlos syndrome Diseases 0.000 claims abstract description 11
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 9
- 230000002301 combined effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/065—Rotors characterised by their construction elements
- F03D1/0675—Rotors characterised by their construction elements of the blades
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Wind Motors (AREA)
Abstract
变形式风力发电机叶片,由叶片骨架(1)、连接横梁(2)、微型电动推杆(3)、活动横梁(4)、叶片内铺层(5)、叶片外弹性蒙皮(6)和独立尾缘(7)组成,叶片骨架(1)截面处通过连接横梁(2)径向固定,叶片骨架(1)截面内设有导槽(8),导槽(8)内、以及叶片骨架(1)尾缘处分别固定设置微型电动推杆(3),叶片活动横梁(4)两端伸进导槽(8)中,叶片骨架(1)外部设置叶片内铺层(5),叶片骨架(1)尾缘设置独立尾缘(7),叶片内铺层(5)外部设置有叶片外弹性蒙皮(6)。本发明有益效果:根据不同风速进行变形,调节叶片的气动性能,控制风力机功率输出,可取代传统风力机的变桨距控制系统。
The modified wind turbine blade is composed of a blade skeleton (1), a connecting beam (2), a miniature electric push rod (3), a movable beam (4), an inner layer of the blade (5), and an outer elastic skin of the blade (6) and the independent trailing edge (7), the section of the blade frame (1) is radially fixed by the connecting beam (2), the section of the blade frame (1) is provided with a guide groove (8), the guide groove (8), and the blade Miniature electric push rods (3) are respectively fixed at the trailing edge of the skeleton (1), both ends of the movable beam (4) of the blade extend into the guide groove (8), and an inner blade layer (5) is arranged outside the blade skeleton (1), The trailing edge of the blade skeleton (1) is provided with an independent trailing edge (7), and an outer blade outer elastic skin (6) is provided outside the inner blade layer (5). The invention has the beneficial effects that deformation is carried out according to different wind speeds, the aerodynamic performance of the blades is adjusted, the power output of the wind turbine is controlled, and the pitch control system of the traditional wind turbine can be replaced.
Description
技术领域technical field
本发明涉及可变形式风力发电机叶片,属于风力发电机技术领域。The invention relates to a variable-form wind power generator blade, and belongs to the technical field of wind power generators.
背景技术Background technique
由于风力机运行在阵风等风速变化的工况下,因此风力发电机在运行过程中需要有调节功能,以控制其捕获的风能。一方面保证获取最大的能量,同时减少风对风力机的冲击。为了实现上述功能,风力机采用了变桨距控制技术。该技术主要是基于调节叶片的桨距角,从而改变了气流对叶片的攻角,改变了叶片的气动性能,进而控制风轮所捕获的风能。Because wind turbines operate under conditions of varying wind speeds such as gusts, wind turbines need to have an adjustment function during operation to control the wind energy they capture. On the one hand, it ensures maximum energy acquisition, and at the same time reduces the impact of wind on wind turbines. In order to realize the above functions, the wind turbine adopts the pitch control technology. The technology is mainly based on adjusting the pitch angle of the blades, thereby changing the angle of attack of the airflow on the blades, changing the aerodynamic performance of the blades, and then controlling the wind energy captured by the wind rotor.
风力机的气动性能主要由叶片翼型的气动性能决定,而影响翼型性能的因素主要有两方面的原因:一是来流的运动状态;二是翼型的几何形状,如翼型的弯度、厚度等。大量实验研究证明,增大翼型弯度和厚度能够显著提高翼型的升阻比,改善其气动性能。因此,当来流风速较低时,增大叶片的厚度以及弯度,能够改善叶片的气动性能,提高风力机的输出功率;当风速过高时,可以减小叶片的厚度以及弯度,降低叶片的气动性能,减少风力机的输出功率。The aerodynamic performance of a wind turbine is mainly determined by the aerodynamic performance of the blade airfoil, and the factors affecting the airfoil performance are mainly due to two reasons: one is the motion state of the incoming flow; the other is the geometry of the airfoil, such as the camber of the airfoil. , thickness, etc. A large number of experimental studies have proved that increasing the camber and thickness of the airfoil can significantly increase the lift-drag ratio of the airfoil and improve its aerodynamic performance. Therefore, when the incoming wind speed is low, increasing the thickness and curvature of the blade can improve the aerodynamic performance of the blade and increase the output power of the wind turbine; when the wind speed is too high, the thickness and curvature of the blade can be reduced, reducing the blade's Aerodynamic performance, reducing the output power of the wind turbine.
由于翼型能够直接影响风力机叶片的气动性能,而不同厚度、不同弯度的翼型的气动性能具有显著的差异。本发明基于翼型厚度和弯度对翼型气动性能的影响,提出了一种通过改变叶片截面翼型厚度及弯度的手段,来实现控制风力机功率的目的。Because airfoils can directly affect the aerodynamic performance of wind turbine blades, the aerodynamic performances of airfoils with different thicknesses and cambers are significantly different. Based on the influence of the airfoil thickness and camber on the aerodynamic performance of the airfoil, the invention proposes a method of changing the airfoil thickness and camber of the blade section to achieve the purpose of controlling the power of the wind turbine.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的是通过改变叶片形状来调节叶片气动性能,控制风力机的输出功率,主要原理是利用电子信号控制的微型电动推杆推动活动横梁上下运动,改变叶片的最大厚度以及叶片尾缘的角度,进而改变叶片的气动外形,调节风力机的气动性能,实现控制风力机输出功率的目的。The main purpose of the invention is to adjust the aerodynamic performance of the blade and control the output power of the wind turbine by changing the shape of the blade. Angle, and then change the aerodynamic shape of the blade, adjust the aerodynamic performance of the wind turbine, and achieve the purpose of controlling the output power of the wind turbine.
本发明变形式风力发电机叶片,由叶片骨架1、连接横梁2、微型电动推杆3、活动横梁4、叶片内铺层5、叶片外弹性蒙皮6和独立尾缘7组成,所述的叶片骨架1截面处通过连接横梁2径向固定,叶片骨架1截面内设有导槽8,在导槽8内、以及叶片骨架1尾缘处分别固定设置微型电动推杆3,叶片活动横梁4的两端伸进导槽8中,叶片骨架1外部设置有叶片内铺层5,且将活动横梁4包裹其中,在叶片骨架1尾缘设置有与叶片骨架1尾缘相互配合工作的独立尾缘7,所述的叶片内铺层5外部设置有可将整个结构包裹起来的叶片外弹性蒙皮6,构成叶片的外壳。The modified wind turbine blade of the present invention is composed of a
所述的导槽8的数量为4-6个。The number of the
本发明的有益效果:Beneficial effects of the present invention:
1)风力机在运行过程中,测风仪监测风速并将信号传递给叶片变形控制器,控制固定在各叶片骨架1上的微型电动推杆3进行工作,随即推动活动横梁4上下运动,反映在叶片内铺层5和叶片外弹性蒙皮6上是叶片外形发生不同程度的膨胀和缩小变化,同时控制叶片骨架1尾缘处的两个微型电动推杆3进行方向相反的工作,从而使得叶片独立尾缘7产生一定角度的偏转,改变风力机叶片的气动外形,控制风力机功率输出;1) During the operation of the wind turbine, the wind meter monitors the wind speed and transmits the signal to the blade deformation controller to control the miniature
2)本发明的可变形叶片根据不同风速进行变形,调节叶片的气动性能,控制风力机功率输出,可取代传统风力机的变桨距控制系统。2) The deformable blade of the present invention deforms according to different wind speeds, adjusts the aerodynamic performance of the blade, controls the power output of the wind turbine, and can replace the pitch control system of the traditional wind turbine.
附图说明Description of drawings
图1.变形叶片截面示意图Figure 1. Schematic diagram of the deformed blade section
图2.变形叶片截面装配图Figure 2. Sectional assembly diagram of deformed blade
图3.叶片骨架示意图Figure 3. Schematic diagram of the blade skeleton
图4.连接横梁示意图Figure 4. Schematic diagram of connecting beams
图5.活动横梁示意图Figure 5. Schematic diagram of the movable beam
图6.微型电动推杆示意图Figure 6. Schematic diagram of miniature electric actuator
图7.低风速下叶片变形示意图Figure 7. Schematic diagram of blade deformation at low wind speed
图8.高风速下叶片变形示意图Figure 8. Schematic diagram of blade deformation at high wind speed
图9.三种工况下叶片外形示意图Figure 9. Schematic diagram of blade shape under three working conditions
图中:叶片骨架1、连接横梁2、微型电动推杆3、活动横梁4、叶片内铺层5、叶片外弹性蒙皮6、独立尾缘7、导槽8。In the figure:
具体实施方式Detailed ways
以下将结合附图1-9对本发明作进一步说明。The present invention will be further described below with reference to the accompanying drawings 1-9.
本发明由叶片骨架1、连接横梁2、微型电动推杆3、活动横梁4、叶片内铺层5、叶片外弹性蒙皮6和独立尾缘7组成,所述的叶片骨架1截面处通过连接横梁2径向固定,叶片骨架1截面内设有导槽8,在导槽8内、以及叶片骨架1尾缘处分别固定设置微型电动推杆3,叶片活动横梁4的两端伸进导槽8中,叶片骨架1外部设置有叶片内铺层5,且将活动横梁4包裹其中,在叶片骨架1尾缘设置有与叶片骨架1尾缘相互配合工作的独立尾缘7,所述的叶片内铺层5外部设置有可将整个结构包裹起来的叶片外弹性蒙皮6,构成叶片的外壳。所述的导槽8的数量为4-6个。所述的设置于导槽8内微型电动推杆3的数量为两个,所述的设置于叶片骨架1尾缘处的微型电动推杆3的数量为两个,在初始位置(不变形时刻),微型电动推杆3在导槽8中间位置,其上、下由伸出相同长度的微型电动推杆3顶住,固定在导槽8中间位置。所述的活动横梁4由玻璃钢复合材料制作而成,埋在叶片内铺层5中,通过微型电动推杆3沿叶片厚度方向上下运动,实现叶片变形的作用;连接横梁2可将不同位置的叶片骨架1沿展向连接起来,构成整个风力机叶片结构。The present invention is composed of a
该叶片具体变化:当风速较小时,叶片骨架1上的位于外侧、即靠近叶片外弹性蒙皮6一侧的微型电动推杆3往回收缩,位于内侧的微型电动推杆3往外伸出,推动活动横梁4向上运动,叶片截面翼型的厚度增大。叶片骨架1尾缘处的位于上方的微型电动推杆3向外推动,位于下方的微型电动推杆3向内收缩,综合作用使得叶片独立尾缘7向下偏转,叶片截面翼型的弯度增大。叶片的气动性能提高,风力机输出功率增大;当风速过大时,叶片骨架1上的位于外侧的微型电动推杆3往外推出,内侧的微型电动推杆3往回收缩,推动活动横梁4向下运动,叶片截面翼型的厚度变小。叶片骨架1尾缘处的位于上方的微型电动推杆3向内收缩,位于下方的微型电动推杆3向外推动,综合作用使得叶片独立尾缘7向上偏转,叶片截面翼型的弯度减小。叶片的气动性能降低,控制风力机输出功率恒定,保证机组在大型风速下安全运行;附图9中A表示在高风速、B额定风速、C低风速时三种工况下叶片外形的变化情况。The specific changes of the blade: when the wind speed is small, the miniature
本发明的可变形叶片根据不同风速进行变形,调节叶片的气动性能,控制风力机功率输出,可取代传统风力机的变桨距控制系统。The deformable blade of the invention deforms according to different wind speeds, adjusts the aerodynamic performance of the blade, controls the power output of the wind turbine, and can replace the pitch control system of the traditional wind turbine.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810878801.6A CN110792554B (en) | 2018-08-03 | 2018-08-03 | Modified wind turbine blades |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810878801.6A CN110792554B (en) | 2018-08-03 | 2018-08-03 | Modified wind turbine blades |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110792554A true CN110792554A (en) | 2020-02-14 |
CN110792554B CN110792554B (en) | 2020-12-11 |
Family
ID=69425813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810878801.6A Expired - Fee Related CN110792554B (en) | 2018-08-03 | 2018-08-03 | Modified wind turbine blades |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110792554B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114837880A (en) * | 2022-04-11 | 2022-08-02 | 上海交通大学 | Intelligent load reduction blade of wind turbine and working method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101338727A (en) * | 2007-06-22 | 2009-01-07 | 歌美飒创新技术公司 | Wind turbine blade with deflection flap |
CN101688515A (en) * | 2007-04-30 | 2010-03-31 | 维斯塔斯风力系统有限公司 | A wind turbine blade |
CN101865076A (en) * | 2009-03-26 | 2010-10-20 | 维斯塔斯风力系统有限公司 | Wind turbine blade including trailing edge flaps and piezoelectric actuators |
US7997875B2 (en) * | 2010-11-16 | 2011-08-16 | General Electric Company | Winglet for wind turbine rotor blade |
CN103032261A (en) * | 2011-10-06 | 2013-04-10 | 通用电气公司 | Wind turbine rotor blade with passively modified trailing edge component |
EP3009669A1 (en) * | 2014-10-17 | 2016-04-20 | Mitsubishi Heavy Industries, Ltd. | Trailing edge side panel |
EP2865887B1 (en) * | 2013-10-24 | 2016-06-01 | Alstom Renovables España, S.L. | Wind turbine blade |
CN107810140A (en) * | 2015-01-24 | 2018-03-16 | 迪特尔·勒姆 | Versatile flaps used as recirculation flaps |
-
2018
- 2018-08-03 CN CN201810878801.6A patent/CN110792554B/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101688515A (en) * | 2007-04-30 | 2010-03-31 | 维斯塔斯风力系统有限公司 | A wind turbine blade |
CN101338727A (en) * | 2007-06-22 | 2009-01-07 | 歌美飒创新技术公司 | Wind turbine blade with deflection flap |
CN101865076A (en) * | 2009-03-26 | 2010-10-20 | 维斯塔斯风力系统有限公司 | Wind turbine blade including trailing edge flaps and piezoelectric actuators |
US7997875B2 (en) * | 2010-11-16 | 2011-08-16 | General Electric Company | Winglet for wind turbine rotor blade |
CN103032261A (en) * | 2011-10-06 | 2013-04-10 | 通用电气公司 | Wind turbine rotor blade with passively modified trailing edge component |
EP2865887B1 (en) * | 2013-10-24 | 2016-06-01 | Alstom Renovables España, S.L. | Wind turbine blade |
EP3009669A1 (en) * | 2014-10-17 | 2016-04-20 | Mitsubishi Heavy Industries, Ltd. | Trailing edge side panel |
CN107810140A (en) * | 2015-01-24 | 2018-03-16 | 迪特尔·勒姆 | Versatile flaps used as recirculation flaps |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114837880A (en) * | 2022-04-11 | 2022-08-02 | 上海交通大学 | Intelligent load reduction blade of wind turbine and working method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN110792554B (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103032261B (en) | There is the wind turbine rotor blade of the trailing edge parts of passive amendment | |
EP2019203B2 (en) | Wind turbine blade with cambering flaps | |
EP2085609B1 (en) | Wind turbine blade with cambering flaps controlled by surface pressure changes | |
CN101600879B (en) | Pitch of blades on a wind power plant | |
US20090140527A1 (en) | Wind turbine blade stiffeners | |
US9534580B2 (en) | Fluid turbine blade with torsionally compliant skin and method of providing the same | |
US9140233B2 (en) | Wind power generation system | |
US20110142676A1 (en) | Rotor blade assembly having an auxiliary blade | |
EP2764238B1 (en) | Wind turbine having flow-aligned blades | |
US20120280509A1 (en) | Wind turbine blade and wind turbine generator including the same | |
EP2342453B1 (en) | Wind turbine with low induction tips | |
Ponta et al. | The adaptive-blade concept in wind-power applications | |
US20130209255A1 (en) | Rotor blade assembly for wind turbine | |
JP5731048B1 (en) | Wind turbine blades and struts for vertical axis wind power generators | |
DK178653B1 (en) | Moving surface features for wind turbine rotor blades | |
CA2710524A1 (en) | Wind turbine blade and assembly | |
CN110792554B (en) | Modified wind turbine blades | |
GB2486876A (en) | Wind turbine blade flap | |
WO2016037261A1 (en) | Optimized multiple airfoil wind turbine blade assembly | |
CN114320733A (en) | Rotor blades for wind energy installations, wind energy installations and method of designing rotor blades | |
CN101418775A (en) | Horizontal axle windmill and method for making wind-powered unit vane | |
EP4305297A1 (en) | Operating a wind turbine for wake control | |
RU2292484C1 (en) | Wind motor | |
EP4438888A1 (en) | Wind turbine blade vortex reduction | |
Wang et al. | Comparison of six horizontal axis wind turbines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201211 |