CN110784120A - Rotary nano generator - Google Patents
Rotary nano generator Download PDFInfo
- Publication number
- CN110784120A CN110784120A CN201810857915.2A CN201810857915A CN110784120A CN 110784120 A CN110784120 A CN 110784120A CN 201810857915 A CN201810857915 A CN 201810857915A CN 110784120 A CN110784120 A CN 110784120A
- Authority
- CN
- China
- Prior art keywords
- friction
- electrodes
- electrode
- rotary
- nanogenerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/04—Friction generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N1/00—Electrostatic generators or motors using a solid moving electrostatic charge carrier
- H02N1/06—Influence generators
Landscapes
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
本发明实施例提供了一种旋转式纳米发电机,涉及发电技术领域,主要解决纳米发电机转动阻力大、发电效率低的技术问题;本发明的旋转式纳米发电机转包括子及套设在所述转子的外周的定子;所述定子包括周向均匀设置的多个第一摩擦电极;所述转子包括第二摩擦电极;其中,所述第二摩擦电极为柔性电极并与所述第一摩擦电极弹性接触。本发明实施例的旋转式纳米发电机阻力系数低,因此可以采集到微弱的旋转能量并高效的转化为电能,同时,当旋转能量较高时还能进一步提高摩擦时的能量转换效率以及对于高转速时的适应性。
The embodiment of the present invention provides a rotary nano-generator, which relates to the technical field of power generation, and mainly solves the technical problems of large rotational resistance and low power generation efficiency of the nano-generator; The stator on the outer circumference of the rotor; the stator includes a plurality of first friction electrodes uniformly arranged in the circumferential direction; the rotor includes a second friction electrode; wherein, the second friction electrode is a flexible electrode and is connected with the first friction electrode The friction electrodes are in elastic contact. The rotary nanogenerator of the embodiment of the present invention has a low resistance coefficient, so that weak rotational energy can be collected and converted into electric energy efficiently. Adaptability at RPM.
Description
技术领域technical field
本发明涉及发电技术领域,尤其涉及一种旋转式纳米发电机。The invention relates to the technical field of power generation, in particular to a rotary nanogenerator.
背景技术Background technique
随着微电子和微机电系统(MEMS)技术的飞速发展,越来越多的微型传感器、执行器和MEMS器件被广泛地应用在无线传感网络、物联网、可穿戴电子设备等领域;这类器件虽然消耗能量较少,但是对功能元件的体积、成本及寿命等都提出了较高的要求。With the rapid development of microelectronics and microelectromechanical systems (MEMS) technology, more and more miniature sensors, actuators and MEMS devices are widely used in wireless sensor networks, Internet of Things, wearable electronic devices and other fields; this Although similar devices consume less energy, they have higher requirements on the volume, cost and life of functional components.
传统的供电元件(电池和有线电源)已经无法满足上述需求,因此必须寻找一种新的供电方式。机械能(如振动能、旋转能)普遍存在与各种自然环境中,所以,能够采集自然环境中的机械能并转换为电能的能量采集装置正逐步受到学术界和产业界的广泛关注。Traditional power supply components (battery and wired power supply) have been unable to meet the above requirements, so a new power supply method must be found. Mechanical energy (such as vibration energy and rotational energy) is ubiquitous in various natural environments. Therefore, energy harvesting devices that can collect mechanical energy in the natural environment and convert it into electrical energy are gradually attracting extensive attention from academia and industry.
现有技术中,采用摩擦起电和静电感应的方式将机械能转化为电能的纳米发电机技术已得到迅速的发展,由于其具有制作简单、质量轻、输出电压高、能量转换效率高等优势,已经成为一种重要的机械能量采集及发电的方式。In the prior art, the nanogenerator technology that converts mechanical energy into electrical energy by means of triboelectric electrification and electrostatic induction has been rapidly developed. Due to its advantages of simple production, light weight, high output voltage, and high energy conversion efficiency, it has become a An important way of mechanical energy harvesting and power generation.
目前,利用旋转能的摩擦纳米发电装置,一般包括两个刚性的摩擦层,两个刚性的摩擦层采用刚性接触并相对滑动的方式来产生电能,这种刚性接触一方面会不断加大材料的磨损程度,导致器件(发电装置)的能量转换效率越来越低;另一方面,这种刚性接触使得两个摩擦层之间存在很大的摩擦力,因此,无法采集环境中微弱的旋转能量,从而大大降低了该发电装置的适用范围及实用性。At present, the triboelectric nano-power generation device using rotational energy generally includes two rigid friction layers. The two rigid friction layers use rigid contact and relative sliding to generate electricity. On the one hand, this rigid contact will continuously increase the material's The degree of wear and tear leads to lower and lower energy conversion efficiency of the device (power generation device); on the other hand, this rigid contact causes a large friction force between the two friction layers, so the weak rotational energy in the environment cannot be collected. , thereby greatly reducing the scope of application and practicability of the power generation device.
发明内容SUMMARY OF THE INVENTION
本发明提供了一种阻力系数低、适用范围广的旋转式纳米发电机。The invention provides a rotary nano-generator with low resistance coefficient and wide application range.
一种旋转式纳米发电机,包括转子及套设在所述转子的外周的定子;A rotary nano-generator, comprising a rotor and a stator sleeved on the outer periphery of the rotor;
所述定子包括周向均匀设置的多个第一摩擦电极;The stator includes a plurality of first friction electrodes uniformly arranged in the circumferential direction;
所述转子包括第二摩擦电极;the rotor includes a second friction electrode;
其中,所述第二摩擦电极为柔性电极并与所述第一摩擦电极弹性接触。Wherein, the second friction electrode is a flexible electrode and is in elastic contact with the first friction electrode.
作为示例,所述定子包括偶数个所述第一摩擦电极;As an example, the stator includes an even number of the first friction electrodes;
其中,间隔设置的多个所述第一摩擦电极串联。Wherein, a plurality of the first friction electrodes arranged at intervals are connected in series.
作为示例,所述第一摩擦电极构造为片状结构,所述第一摩擦电极的材质为铝或铜。As an example, the first friction electrode is configured as a sheet-like structure, and the material of the first friction electrode is aluminum or copper.
作为示例,所述转子包括多个所述第二摩擦电极;As an example, the rotor includes a plurality of the second friction electrodes;
其中,所述第二摩擦电极的数量为所述第一摩擦电极数量的一半。Wherein, the number of the second friction electrodes is half of the number of the first friction electrodes.
作为示例,所述第二摩擦电极构造为片状结构,所述第二摩擦电极的材质为高分子聚合物。As an example, the second friction electrode is configured as a sheet-like structure, and the material of the second friction electrode is a high molecular polymer.
作为示例,所述定子还包括周向均匀设置的多个永磁体;As an example, the stator further includes a plurality of permanent magnets uniformly arranged in the circumferential direction;
所述转子还包括周向均匀设置的多个磁感应电极;The rotor further includes a plurality of magnetic induction electrodes uniformly arranged in the circumferential direction;
其中,永磁体与所述感应电极产生磁电感应以使所述磁感应电极产生电压。Wherein, the permanent magnet and the induction electrode generate magnetoelectric induction so that the magnetic induction electrode generates a voltage.
作为示例,所述定子包括偶数个所述永磁体;As an example, the stator includes an even number of the permanent magnets;
其中,多个所述永磁体的磁极朝向所述定子的中心设置,且相邻两个所述永磁体朝向所述定子的中心的极性相反。Wherein, the magnetic poles of a plurality of the permanent magnets are arranged toward the center of the stator, and the polarities of two adjacent permanent magnets toward the center of the stator are opposite.
作为示例,所述转子包括偶数个所述磁感应电极;As an example, the rotor includes an even number of the magnetic induction electrodes;
其中,所述磁感应电极的数量与所述永磁体的数量相同。Wherein, the number of the magnetic induction electrodes is the same as the number of the permanent magnets.
作为示例,所述磁感应电极构造为磁感应线圈。As an example, the magnetic induction electrodes are configured as magnetic induction coils.
作为示例,所述定子还包括壳体,所述壳体构造为圆筒状,多个所述第一摩擦电极及多个所述永磁体均设置在所述壳体的内壁上;As an example, the stator further includes a casing, the casing is configured in a cylindrical shape, and a plurality of the first friction electrodes and a plurality of the permanent magnets are arranged on the inner wall of the casing;
所述转子还包括中心轴及套设在所述中心轴上的支架,所述第二摩擦电极及多个所述磁感应电极均设置在所述支架上。The rotor further includes a central shaft and a bracket sleeved on the central shaft, and the second friction electrode and a plurality of the magnetic induction electrodes are all arranged on the bracket.
本发明实施例的有益效果在于:The beneficial effects of the embodiments of the present invention are:
本发明实施例的旋转式纳米发电机阻力系数低,因此可以采集到微弱的旋转能量并高效的转化为电能,同时,当旋转能量较高时还能进一步提高摩擦时的能量转换效率以及对于高转速时的适应性。The rotary nanogenerator of the embodiment of the present invention has a low resistance coefficient, so that weak rotational energy can be collected and converted into electrical energy efficiently. Adaptability at RPM.
附图说明Description of drawings
图1为本发明实施例的旋转式纳米发电机的立体结构示意图;1 is a schematic three-dimensional structure diagram of a rotary nanogenerator according to an embodiment of the present invention;
图2为本发明实施例的旋转式纳米发电机的显示其内部结构的示意图;2 is a schematic diagram showing the internal structure of a rotary nanogenerator according to an embodiment of the present invention;
图3为本发明实施例的旋转式纳米发电机的定子的立体结构示意图;3 is a schematic three-dimensional structure diagram of a stator of a rotary nanogenerator according to an embodiment of the present invention;
图4为本发明实施例的旋转式纳米发电机的转子的立体结构示意图;4 is a schematic three-dimensional structure diagram of a rotor of a rotary nanogenerator according to an embodiment of the present invention;
图5为本发明实施例的旋转式纳米发电机的支架的立体结构示意图;5 is a schematic three-dimensional structure diagram of a support of a rotary nanogenerator according to an embodiment of the present invention;
图6为本发明实施例的旋转式纳米发电机的转速与电能输出关系的一个测试数据图;6 is a test data diagram of the relationship between the rotational speed of the rotary nanogenerator and the electric energy output according to the embodiment of the present invention;
图7为本发明实施例的旋转式纳米发电机的转速与电能输出关系的另一个测试数据图。FIG. 7 is another test data diagram of the relationship between the rotational speed and the electrical energy output of the rotary nanogenerator according to the embodiment of the present invention.
附图标记:Reference number:
1-转子;11-第二摩擦电极;12-磁感应电极;13-中心轴;14-支架;141-支撑板;142-辐条;2-定子;21-第一摩擦电极;22-永磁体;23-壳体;3-端盖;4-轴承。1-rotor; 11-second friction electrode; 12-magnetic induction electrode; 13-central shaft; 14-support; 141-support plate; 142-spoke; 2-stator; 21-first friction electrode; 22-permanent magnet; 23-shell; 3-end cover; 4-bearing.
具体实施方式Detailed ways
为了使本领域技术人员更好的理解本发明的技术方案,下面结合说明书附图对本发明实施例进行详细的描述。In order to make those skilled in the art better understand the technical solutions of the present invention, the following describes the embodiments of the present invention in detail with reference to the accompanying drawings.
如图1至图5所示,本发明实施例提供的一种旋转式纳米发电机,包括转子1及套设在转子1的外周的定子2;定子2包括周向均匀设置的多个第一摩擦电极21;转子1包括第二摩擦电极14;其中,第二摩擦电极14为柔性电极并与第一摩擦电极21弹性接触。As shown in FIG. 1 to FIG. 5 , a rotary nanogenerator provided by an embodiment of the present invention includes a rotor 1 and a
具体的,旋转式纳米发电机的发电原理是基于第一摩擦电极21和第二摩擦电极14的摩擦起电效应和静电诱导效应的耦合效应来实现的;在外力作用下转子1与定子2相对旋转,第一摩擦电极21和第二摩擦电极14相互摩擦,相邻的两个第一摩擦电极21之间产生电势差。本发明实施例中由于采用柔性的第二摩擦电极14,并且第二摩擦电极14与第一摩擦电极21柔性接触,因此,当较小的外力驱使转子1低速旋转时,第一摩擦电极21与第二摩擦电极14之间的摩擦阻力较小,以使旋转式纳米发电机能够采集较小的外力(机械能),并将其转化为电能。当外力较大时,转子1的转速增大,在离心力的作用下,第二摩擦电极14会发生弹性形变并趋于与第一摩擦电极21紧密接触,以使第二摩擦电极14与第一摩擦电极21之间的接触面积相应增加,从而增加了能量的转换效率。因此,本发明实施例的旋转式纳米发电机阻力系数低,能同时兼顾对微弱能量和高能量的采集及转化,具有更为广泛的适用性。Specifically, the power generation principle of the rotary nanogenerator is realized based on the coupling effect of the triboelectric effect and the electrostatic induction effect of the
进一步的,如图3及图4所示,在本发明提供的实施例中,定子2包括偶数个第一摩擦电极21;其中,间隔设置的多个第一摩擦电极21串联。转子1包括多个第二摩擦电极14;其中,第二摩擦电极14的数量为第一摩擦电极21数量的一半。Further, as shown in FIG. 3 and FIG. 4 , in the embodiment provided by the present invention, the
具体的,本实施例中所示出的旋转式纳米发电机具有八个片状的第一摩擦电极21,四个片状的第二摩擦电极14。其中,第一摩擦电极21和第二摩擦电极14均为矩形的片状结构;第二摩擦电极14与第一摩擦电极21弹性接触,并产生一定的弹性形变,以形成具有一定弧度的矩形片状结构。进一步的,在实际应用时,第一摩擦电极21可以设置成长度为4cm,宽度为1.5cm的矩形片体;第二摩擦电极14可以设置成长度为4.5cm,宽度为4cm,厚度为25.4μm的矩形薄片。当然本发明对第一摩擦电极21和第二摩擦电极14的具体尺寸及形状不作具体限定,本领域技术人员可根据实际需求对第一摩擦电极21、第二摩擦电极14的具体形状及尺寸作适应性调整。Specifically, the rotary nanogenerator shown in this embodiment has eight sheet-shaped
进一步的,第一摩擦电极21的材质可以为铝或铜,第二摩擦电极14的材质为高分子聚合物;具体的,第二摩擦电极14的材质(该高分子聚合物)可以为氟化乙烯丙烯共聚物(FEP)、聚四氟乙烯(PTFE)。当然本发明对第一摩擦电极21和第二摩擦电极14的具体材质不作具体限定,本领域技术人员可根据实际需求对第一摩擦电极21和第二摩擦电极14的具体材质作适应性选择。Further, the material of the
进一步的,如图3及图4所示,为了进一步提升旋转式纳米发电机的发电效率,本发明提供的实施例中,定子2还包括周向均匀设置的多个永磁体22;转子1还包括周向均匀设置的多个磁感应电极12;其中,永磁体22与感应电极产生磁电感应以使磁感应电极12产生电压(电流)。Further, as shown in FIGS. 3 and 4 , in order to further improve the power generation efficiency of the rotary nanogenerator, in the embodiment provided by the present invention, the
具体的,当转子1相对定子2旋转时,磁感应电极12切割永磁体22的磁感线,以使磁感应电极12中产生(电压)电流;考虑到电磁发电机更适合在高转速时产生电能,因此在具有第一摩擦电极21和第二摩擦电极14的基础上增加永磁体22和磁感应电极12能进一步提升该旋转式纳米发电机的适用范围,及在宽域内的发电效率。Specifically, when the rotor 1 rotates relative to the
进一步的,定子2包括偶数个永磁体22;其中,多个永磁体22的磁极朝向定子2的中心设置,且相邻两个永磁体22朝向定子2的中心的极性相反。转子1包括偶数个磁感应电极12;其中,磁感应电极12的数量与永磁体22的数量相同。Further, the
具体的,如图3和图4所示,本实施例中所示出的旋转式纳米发电机具有四个瓦片状的永磁体22和四个磁感应电极12。其中,磁感应电极12由线圈绕制而成。进一步的,在实际应用时,永磁体22的尺寸可以设置成高度为4cm,壁厚为5mm,对轴心的张角大约为80°,其中,两个相对的永磁体22的N极指向轴心,而另外两个相对的永磁体22的S极指向轴心;线圈采用直径为0.15mm的漆包线绕制成单匝面积为7.5cm2、匝数为100的磁感应电极12。当然,本发明对永磁体22的具体尺寸及形状不作具体限定,本领域技术人员可根据实际需求对永磁体22的尺寸及形状作适应性调整。Specifically, as shown in FIGS. 3 and 4 , the rotary nanogenerator shown in this embodiment has four tile-shaped
进一步的,永磁体22的材质可以为铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料和复合永磁材料等,在本实施例中,永磁体22采用钕铁硼制成;磁感应电极12的线圈采用铜漆包线。当然本发明对永磁体22和磁感应电极12的线圈的具体材质不作具体限定,本领域技术人员可根据实际需求对永磁体22和磁感应电极12的具体材质作适应性选择。Further, the material of the
具体来说,在本发明提供实施例中,旋转式纳米发电机包括定子2、转子1和端盖3。Specifically, in the embodiments provided by the present invention, the rotary nanogenerator includes a
定子2包括壳体23、四个永磁体22和八个第一摩擦电极21。壳体23构造为圆筒状结构,四个永磁体22均匀设置在壳体23的内壁上;其中,壳体23的材质可以采用不锈钢,四个永磁体22分别采用强力胶(如氰基丙烯酸酯)粘接在壳体23的内壁上。八个第一摩擦电极21周向均匀设置,其中,每两个第一摩擦电极21固定在一个永磁体22上;其中,第一摩擦电极21可以采用背面带有黏胶层的铜箔制成,并粘接在永磁体22上。在实际应用中,壳体的高度可以为6cm,内直径为6.5cmm,壁厚为3mm。当然,本发明对壳体的具体尺寸并不作具体限定。The
转子1包括中心轴13、支架14、四个第二摩擦电极14和四个磁感应电极12。如图5所示,支架14包括两个平行设置的支撑板141和辐条142,两个支撑板141的结构相同,且均为十字形的板状结构,两个支撑板141均套设在中心轴13上,并与中心轴13同步转动,进一步的,两个支撑板141之间通过四个辐条142连接。具体的,在实际应用中,支撑板141可由边长为4.7cm的正方形板切割而成,成型后的支撑板141的四个伸出段的长度为1.5cm,宽度为1.7cm,其整体厚度可以为2mm。其中,为了保证良好的切割精度,可以采用激光切割工艺。进一步的,辐条142为长条状的矩形板,在实际应用中,辐条142的长度可以为4.4cm,宽度为5mm,厚度为2mm。其中,为了保证良好的切割精度,可以采用激光切割工艺。进一步的,在本实施例中支撑板141和辐条142均采用亚克力材料制成。当然本发明对支架14的具体尺寸及形状不作具体限定,本领域技术人员可根据实际需求对支架14(支撑板141和辐条142)的具体形状及尺寸作适应性调整。The rotor 1 includes a
进一步的,四个第二摩擦电极14分别固定在四个辐条142上,其中,第二摩擦电极14和辐条142之间的连接方式可以采用粘接,也可以采用其他连接件进行连接;四个磁感应电极12的线圈绕设在支架14的四个伸出段上。Further, the four
进一步的,旋转式纳米发电机还包括封盖在定子2两端的两个端盖3,以对定子2和转子1实现定位。端盖3呈圆盘状结构,其中心处具有通孔,中心轴13的两端分别由两个端盖3的通孔伸出。进一步的,为了降低转子1与端盖3之间的转动摩擦,本实施例中,端盖3的通孔内套设有滚动轴承4,其中,轴承4的外圈套设在通孔的内壁上,轴承4的内圈套设在转轴上。Further, the rotary nanogenerator also includes two end caps 3 covering both ends of the
进一步的,如图6和图7所示,为本实施例的旋转式纳米发电机在不同转速下所产生的电压和电流的测试数据图。如图6所示,图中横坐标表示转速,左侧纵坐标表示开路电压,右侧纵坐标表示短路电流,方形点表示在不同转速下所对应的开路电压,圆形点表示载不同转速下所对应的短路电流。从图6中可以看出,当转速从200rpm增加到1000rpm时,第一摩擦电极21和第二摩擦电极14所产生的开路电压从33.4V增加到64.3V,短路电流从1.27μA增加到8.24μA。如图7所示,图中横坐标表示转速,左侧纵坐标表示开路电压,右侧纵坐标表示短路电流,方形点表示在不同转速下所对应的开路电压,三角形点表示载不同转速下所对应的短路电流。从图7中可以看出,当转速从200rpm增加到1000rpm时,永磁体22和磁感应电极12所产生的开路电压从33.4V增加到64.3V,短路电流从1.27μA增加到8.24μA。Further, as shown in FIG. 6 and FIG. 7 , the test data graphs of the voltage and current generated by the rotary nanogenerator of the present embodiment at different rotational speeds. As shown in Figure 6, the abscissa in the figure represents the rotational speed, the left ordinate represents the open-circuit voltage, the right ordinate represents the short-circuit current, the square points represent the open-circuit voltage corresponding to different rotational speeds, and the circular dots represent the load at different rotational speeds. the corresponding short-circuit current. It can be seen from FIG. 6 that when the rotational speed increases from 200rpm to 1000rpm, the open circuit voltage generated by the
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit and scope of the invention. Thus, provided that these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810857915.2A CN110784120A (en) | 2018-07-31 | 2018-07-31 | Rotary nano generator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810857915.2A CN110784120A (en) | 2018-07-31 | 2018-07-31 | Rotary nano generator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110784120A true CN110784120A (en) | 2020-02-11 |
Family
ID=69383125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810857915.2A Pending CN110784120A (en) | 2018-07-31 | 2018-07-31 | Rotary nano generator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110784120A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111600438A (en) * | 2020-06-11 | 2020-08-28 | 重庆邮电大学 | A rotary pendulum electromagnetic-friction composite generator |
CN111697872A (en) * | 2020-06-20 | 2020-09-22 | 湖南工程学院 | Self-adaptive wide-speed-range friction electrostatic wind energy collection and wind speed measurement device |
CN112583298A (en) * | 2020-12-21 | 2021-03-30 | 深圳大学 | Rotary energy collecting device and generator |
CN112946312A (en) * | 2021-02-01 | 2021-06-11 | 河北工业大学 | Non-contact rotating speed sensor of flexible polymer and rotating speed and swing monitoring method |
CN114374336A (en) * | 2022-01-14 | 2022-04-19 | 上海大学 | An umbrella-type four-electrode wave energy harvesting triboelectric nanogenerator |
CN114944780A (en) * | 2022-04-02 | 2022-08-26 | 北京纳米能源与系统研究所 | Hierarchical self-regulating triboelectric nanogenerator |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6833644B1 (en) * | 2004-03-15 | 2004-12-21 | Chi Hua Fitness Co., Ltd. | External rotor brush DC motor for a treadmill |
CN103731063A (en) * | 2014-01-10 | 2014-04-16 | 国家纳米科学中心 | Hybrid generator |
CN105680716A (en) * | 2014-11-21 | 2016-06-15 | 北京纳米能源与系统研究所 | Rotary-type compound nanometer power generator |
US20170191466A1 (en) * | 2016-01-06 | 2017-07-06 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Electrostatic converter |
CN107222125A (en) * | 2017-06-14 | 2017-09-29 | 华南理工大学 | The double rotary nano generators of annulus of hollow out and electricity-generating method |
CN108768202A (en) * | 2018-07-02 | 2018-11-06 | 西南交通大学 | Nano generator and nano generator system |
-
2018
- 2018-07-31 CN CN201810857915.2A patent/CN110784120A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6833644B1 (en) * | 2004-03-15 | 2004-12-21 | Chi Hua Fitness Co., Ltd. | External rotor brush DC motor for a treadmill |
CN103731063A (en) * | 2014-01-10 | 2014-04-16 | 国家纳米科学中心 | Hybrid generator |
CN105680716A (en) * | 2014-11-21 | 2016-06-15 | 北京纳米能源与系统研究所 | Rotary-type compound nanometer power generator |
US20170191466A1 (en) * | 2016-01-06 | 2017-07-06 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Electrostatic converter |
CN107222125A (en) * | 2017-06-14 | 2017-09-29 | 华南理工大学 | The double rotary nano generators of annulus of hollow out and electricity-generating method |
CN108768202A (en) * | 2018-07-02 | 2018-11-06 | 西南交通大学 | Nano generator and nano generator system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111600438A (en) * | 2020-06-11 | 2020-08-28 | 重庆邮电大学 | A rotary pendulum electromagnetic-friction composite generator |
CN111697872A (en) * | 2020-06-20 | 2020-09-22 | 湖南工程学院 | Self-adaptive wide-speed-range friction electrostatic wind energy collection and wind speed measurement device |
CN111697872B (en) * | 2020-06-20 | 2022-06-07 | 湖南工程学院 | Adaptive wide speed range tribostatic wind energy collection and wind speed measurement device |
CN112583298A (en) * | 2020-12-21 | 2021-03-30 | 深圳大学 | Rotary energy collecting device and generator |
CN112946312A (en) * | 2021-02-01 | 2021-06-11 | 河北工业大学 | Non-contact rotating speed sensor of flexible polymer and rotating speed and swing monitoring method |
CN114374336A (en) * | 2022-01-14 | 2022-04-19 | 上海大学 | An umbrella-type four-electrode wave energy harvesting triboelectric nanogenerator |
CN114374336B (en) * | 2022-01-14 | 2024-04-19 | 上海大学 | Umbrella-shaped four-electrode wave energy collecting friction nano generator |
CN114944780A (en) * | 2022-04-02 | 2022-08-26 | 北京纳米能源与系统研究所 | Hierarchical self-regulating triboelectric nanogenerator |
CN114944780B (en) * | 2022-04-02 | 2024-04-26 | 北京纳米能源与系统研究所 | Hierarchical self-adjusting friction nano generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110784120A (en) | Rotary nano generator | |
CN109921678B (en) | Rotary electromagnetic-friction composite nano generator | |
Zhang et al. | An ultra-durable windmill-like hybrid nanogenerator for steady and efficient harvesting of low-speed wind energy | |
CN110932591B (en) | Pendulum-type friction nano generator, energy supply device and sensor | |
CN105680716A (en) | Rotary-type compound nanometer power generator | |
CN103546058B (en) | A kind of combined generator based on electromagnetism Yu tribology principle | |
CN104214056B (en) | Wind power generation device and wind power generation system | |
CN103780136B (en) | A kind of revolving frictional generator exporting constant current | |
CN105048860A (en) | Generation device for generating DC triboelectricity | |
CN109149993B (en) | Generator | |
CN111600438A (en) | A rotary pendulum electromagnetic-friction composite generator | |
CN105162353B (en) | A kind of based on electret electrostatic charming appearance and behaviour MEMS electromotor and electricity-generating method thereof | |
CN108768202B (en) | Nanogenerators and Nanogenerator Systems | |
CN106602920B (en) | A kind of friction nanometer power generator and electricity generation system | |
CN110649763B (en) | Electromagnetic type energy harvester | |
CN104426419A (en) | Friction power generating and electromagnetic power generating hybrid power generating system | |
CN107742992B (en) | A Micro Generator Using Rotary Electret | |
CN112737398A (en) | Nano friction power generation module and combined wind power generation device and method | |
CN111525830A (en) | Friction generator | |
CN108768203B (en) | Three-dimensional annular friction power generation device | |
WO2019090820A1 (en) | Composite rotation energy collector | |
CN103731063A (en) | Hybrid generator | |
CN103066782A (en) | Magnetoelectricity type micro generator | |
CN207459955U (en) | Combined type rotating energy collector | |
JP2005218263A (en) | Small-sized generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: No.8, yangyandong 1st Road, Yanqi Economic Development Zone, Huairou District, Beijing Applicant after: Beijing Institute of Nanoenergy and Nanosystems Address before: 100083 Beijing City, Haidian District Xueyuan Road No. 30, large industrial building C Applicant before: Beijing Institute of Nanoenergy and Nanosystems |
|
CB02 | Change of applicant information | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200211 |
|
RJ01 | Rejection of invention patent application after publication |