CN110772356B - Implanted auricular cartilage composite support - Google Patents
Implanted auricular cartilage composite support Download PDFInfo
- Publication number
- CN110772356B CN110772356B CN201911116229.0A CN201911116229A CN110772356B CN 110772356 B CN110772356 B CN 110772356B CN 201911116229 A CN201911116229 A CN 201911116229A CN 110772356 B CN110772356 B CN 110772356B
- Authority
- CN
- China
- Prior art keywords
- cartilage
- support
- bracket
- ear
- thread
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004728 ear cartilage Anatomy 0.000 title claims abstract description 79
- 239000002131 composite material Substances 0.000 title claims abstract description 30
- 210000000845 cartilage Anatomy 0.000 claims abstract description 49
- 239000000835 fiber Substances 0.000 claims abstract description 22
- 239000000843 powder Substances 0.000 claims description 25
- 239000000243 solution Substances 0.000 claims description 25
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 claims description 23
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 claims description 23
- 210000002744 extracellular matrix Anatomy 0.000 claims description 23
- 238000007710 freezing Methods 0.000 claims description 23
- 230000008014 freezing Effects 0.000 claims description 23
- 210000004027 cell Anatomy 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 20
- 239000007853 buffer solution Substances 0.000 claims description 16
- 238000004132 cross linking Methods 0.000 claims description 16
- 239000003431 cross linking reagent Substances 0.000 claims description 16
- 238000005406 washing Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 13
- 238000001556 precipitation Methods 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 claims description 10
- 239000000137 peptide hydrolase inhibitor Substances 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000007983 Tris buffer Substances 0.000 claims description 9
- 238000004108 freeze drying Methods 0.000 claims description 9
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 9
- 238000000227 grinding Methods 0.000 claims description 7
- 239000008055 phosphate buffer solution Substances 0.000 claims description 7
- 230000035755 proliferation Effects 0.000 claims description 7
- 239000013543 active substance Substances 0.000 claims description 6
- 230000009286 beneficial effect Effects 0.000 claims description 6
- 239000002202 Polyethylene glycol Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- ZPIRTVJRHUMMOI-UHFFFAOYSA-N octoxybenzene Chemical compound CCCCCCCCOC1=CC=CC=C1 ZPIRTVJRHUMMOI-UHFFFAOYSA-N 0.000 claims description 5
- 229920001223 polyethylene glycol Polymers 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000012216 screening Methods 0.000 claims description 5
- 239000006228 supernatant Substances 0.000 claims description 5
- 210000001612 chondrocyte Anatomy 0.000 claims description 4
- 230000007480 spreading Effects 0.000 claims description 4
- 238000003892 spreading Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 230000001154 acute effect Effects 0.000 claims description 3
- 239000012670 alkaline solution Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- BUCIWTBCUUHRHZ-UHFFFAOYSA-K potassium;disodium;dihydrogen phosphate;hydrogen phosphate Chemical compound [Na+].[Na+].[K+].OP(O)([O-])=O.OP([O-])([O-])=O BUCIWTBCUUHRHZ-UHFFFAOYSA-K 0.000 claims description 3
- 238000007711 solidification Methods 0.000 claims description 3
- 230000008023 solidification Effects 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 3
- 238000009777 vacuum freeze-drying Methods 0.000 claims description 3
- 210000000988 bone and bone Anatomy 0.000 abstract description 30
- 210000001331 nose Anatomy 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 102000008186 Collagen Human genes 0.000 description 6
- 108010035532 Collagen Proteins 0.000 description 6
- 229920001436 collagen Polymers 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 230000035876 healing Effects 0.000 description 5
- NQTADLQHYWFPDB-UHFFFAOYSA-N N-Hydroxysuccinimide Chemical compound ON1C(=O)CCC1=O NQTADLQHYWFPDB-UHFFFAOYSA-N 0.000 description 4
- 150000001718 carbodiimides Chemical group 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- BYMMIQCVDHHYGG-UHFFFAOYSA-N Cl.OP(O)(O)=O Chemical compound Cl.OP(O)(O)=O BYMMIQCVDHHYGG-UHFFFAOYSA-N 0.000 description 2
- 201000009859 Osteochondrosis Diseases 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010382 chemical cross-linking Methods 0.000 description 2
- 238000002316 cosmetic surgery Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 239000002274 desiccant Substances 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 102000038379 digestive enzymes Human genes 0.000 description 2
- 108091007734 digestive enzymes Proteins 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000004409 osteocyte Anatomy 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000000492 nasalseptum Anatomy 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/18—Internal ear or nose parts, e.g. ear-drums
- A61F2/186—Nose parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30756—Cartilage endoprostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30108—Shapes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30756—Cartilage endoprostheses
- A61F2002/30764—Cartilage harvest sites
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Materials For Medical Uses (AREA)
- Prostheses (AREA)
Abstract
The invention discloses an implanted auricular cartilage composite bracket; comprises a first bracket and a second bracket; one ends of the first support and the second support are both connected with a connecting frame, and the first support and the second support form a 'human' structure through the connecting frames; the first bracket, the second bracket and the connecting bracket respectively comprise wire carving line fiber cores and ear cartilage bracket layers, and the ear cartilage bracket layers are wrapped outside the wire carving line fiber cores; according to the invention, the soft ear bone tissue is used as a support, and the thread carving fiber core is implanted in the center between the soft ear bone tissue and the soft ear bone tissue, so that the supporting force of the soft ear bone support is increased, the strength and hardness of the soft ear bone support are increased, and the stability of the soft ear bone support is further improved; through the ' human ' type structure that sets up, ride and stride in the septum of nose, increase its mechanical properties, further increase cartilage support's stability.
Description
Technical Field
The invention belongs to the technical field of medical biomaterials, and particularly relates to an implantable soft-ear bone composite scaffold.
Background
The clinical application of the cartilage support is commonly used in plastic surgery and orthopaedics, but with the increase of the application, a plurality of defects also exist, for example, in plastic surgery, the auricular cartilage cushion nose tip is used for taking out the cartilage of an auricle and is cushioned at the position of the nose tip so as to achieve the purpose of shaping the nose tip. The ear cartilage cushion pen point mainly comprises two methods, one is that a nose tip support is built, then the nose tip edge is lifted and upwarps, and the other is that the ear cartilage is made into a shield shape and is cushioned below the skin of the nose tip, so that the purpose of shaping the nose tip is achieved.
The soft ear bone support is adopted for supporting at the present stage, the support supporting force of the soft ear bone alone is insufficient, the nasal tip prosthesis cannot be supported for a long time, the traditional cartilage support is poor in stability and irregular in appearance, the physical microstructure is not neat and uniform enough, adhesion, growth and appreciation of cells are not facilitated, and postoperative healing is not facilitated.
The prior chinese patent application 201780016117.0 discloses a multi-phase osteochondral scaffold for osteochondral defect repair, the scaffold comprising a bone phase and a cartilage phase, wherein the bone phase comprises a support matrix, the cartilage phase comprises a polymer matrix, and the scaffold comprises a non-porous layer between the bone phase and the cartilage phase. The present invention also describes a multi-phase osteochondral scaffold for osteochondral defect repair, the scaffold comprising a bone phase and a cartilage phase, wherein the bone phase comprises a support matrix, the cartilage phase comprising a polymer matrix, and wherein the support matrix is tapered such that the support matrix is smaller in size at a lower end of the support matrix than at an upper end of the support matrix.
The existing Chinese patent application 201510789943.1 discloses a collagen-based cartilage scaffold, and the preparation method comprises the following steps: (a) freezing and molding the laid collagen solution, soaking and dehydrating the collagen solution by a hypertonic buffer solution, and extruding the collagen solution to form a film; (b) spreading a layer of collagen solution on the surface of the membrane, and freeze-drying; (c) and (3) integrally crosslinking by using a crosslinking agent, washing with water, and freeze-drying to obtain the collagen-based cartilage scaffold.
However, in the above technical solutions of the prior art, the cartilage tissue is simply used as the scaffold, which is prone to cause insufficient supporting force, resulting in the technical problems of low strength, poor hardness and poor stability of the cartilage scaffold.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide an implanted soft-ear bone composite support, wherein soft-ear bone tissues are used as supports, and a thread carving fiber core is implanted in the center between the soft-ear bone tissues, so that the supporting force of a soft-ear bone support is increased, the strength and hardness of the soft-ear bone support are increased, and the stability of the soft-ear bone support is further improved; through the ' human ' type structure that sets up, ride and stride in the septum of nose, increase its mechanical properties, further increase cartilage support's stability.
The invention provides the following technical scheme:
an implantable auricular cartilage composite scaffold; comprises a first bracket and a second bracket; one ends of the first support and the second support are both connected with a connecting frame, and the first support and the second support form a 'human' structure through the connecting frames; first support, second support and link all include line carving line fibre core and ear cartilage support layer, the parcel of line carving line fibre core outside has ear cartilage support layer.
Preferably; the thread carving thread fiber core is of a spiral structure.
Preferably, the acute included angle of the human-shaped structure of the first bracket and the second bracket ranges from 35 degrees to 50 degrees.
Preferably, the preparation method of the implanted auricular cartilage composite scaffold comprises the following steps:
s1: adding the wire carving line into an N, N-dimethylformamide solvent, stirring, carrying out ultrasonic treatment, standing for a period of time, adding an alkaline solution for solidification, stretching while solidifying, washing, and drying to obtain a wire carving line fiber core;
s2: taking transparent ear cartilage tissue, cutting into pieces, adding active agent and protease inhibitor for centrifugal treatment, removing supernatant, and retaining precipitation solution;
s3: adding buffer solution of an active agent and a protease inhibitor into the precipitation solution obtained in S2, shaking and uniformly mixing, centrifuging, and repeatedly washing the precipitation part to obtain cartilage particles for later use;
s4: uniformly spreading the cartilage particles obtained in the step S3 in a culture dish, and then carrying out vacuum freeze-drying in a freeze dryer to obtain cartilage extracellular matrix powder;
s5: freezing the cartilage extracellular matrix powder in the S4 in liquid nitrogen, then thoroughly grinding the powder by a high-speed machine, and screening the powder by a screen to obtain more fine cartilage extracellular matrix powder;
s6: crosslinking with crosslinking agent, washing with water, and freeze drying to obtain ear cartilage scaffold; and implanting the thread carving thread fiber core into the soft ear bone bracket to obtain the soft ear bone composite bracket.
Preferably, the PH value of the buffer solution in step S3 is 7-8, and the buffer solution is tris buffer solution, disodium hydrogen phosphate-potassium dihydrogen phosphate buffer solution, or polyethylene glycol octyl phenyl ether buffer solution.
Preferably, in step S4, the cartilage particles are uniformly spread in a culture dish to a thickness of 2-6 mm.
Preferably, in step S4, the vacuum freezing time is 20-25 h.
Preferably, the crosslinking agent is carbodiimide and N-hydroxysuccinimide.
Preferably, the freezing time T1 in step S6 is 25-46.5h, and the crosslinking time T2 is 45-50 h. In order to improve the strength of the composite scaffold, the freezing time T1 and the crosslinking time T2 satisfy T1. T2 is 1135 is 2350.
Preferably, in order to further increase the stability of the ear cartilage scaffold, the specific surface area A of the ear cartilage cell particles is 850-1920cm2Per gram; the pH value is 7-8 to increase the adhesiveness of the ear cartilage cells and increase the contact area with the cross-linking agent, thereby being beneficial to the proliferation and growth of the ear cartilage cells. The specific surface area A and the pH value of the ear osteocyte particles meet the following requirements: a & PH is 5950 or more and 15360 or less.
Preferably, the cell content M of the ear cartilage extracellular matrix, the specific surface area A of the ear cartilage cells and the pH value satisfy the following relation:
A=μ·(PH)3/M1/2;
in the above formula, mu is a specific surface area coefficient, and the value range is 3.24-6.65; only numerical operations are performed here.
Preferably, in order to improve the bioactivity and strength of the composite scaffold, the PH value, the freezing time T1 and the crosslinking time T2 of the auricular chondrocytes satisfy the following relationship:
T2/T1=λ·PH1/2;
wherein, the lambda is a relation coefficient and the value range is 0.35 to 0.74.
In addition, in the process of preparing the ear cartilage scaffold, the taken ear cartilage tissue is cut up, washed three times by phosphate buffer solution at 4 ℃, then placed in 10mM Tris buffer solution containing protease inhibitor, repeatedly centrifuged for 3 times by a centrifuge at 3000rpm, placed in 10mM Tris buffer solution containing protease inhibitor, fully mixed, centrifuged at 7000rpm, the supernatant is removed, and the precipitation solution is reserved; adding 1% of polyethylene glycol octyl phenyl ether buffer solution and tris buffer solution into the precipitate, shaking for 8h on a constant temperature bed at 4 ℃, centrifuging, and washing for three times by using phosphate buffer solution; and (3) keeping the washed cartilage particles in a digestive enzyme mixed solution at 37 ℃ for digestion for 12h, continuously shaking, centrifuging and repeatedly washing.
The cartilage particles which are thoroughly cleaned are placed in a culture dish and evenly paved, and are frozen in a low-temperature refrigerator at the temperature of 80 ℃ below zero for 1h, and then are frozen in a freeze drying agent under vacuum for 24h to obtain the cartilage extracellular matrix powder.
Prefreezing cartilage extracellular matrix powder in liquid nitrogen for 20s, and grinding at 60Hz frequency for 1min in a high-speed grinder; repeatedly grinding for multiple times to ensure that the cartilage extracellular matrix is fully ground, removing the ground powder, and repeatedly screening by using a 100-micrometer screen to obtain more fine cartilage extracellular matrix powder;
preparing the finally obtained fine cartilage extracellular matrix powder into suspension in the process of crosslinking the ear cartilage scaffold, and preparing the ear cartilage scaffold by a freezing method; firstly, freezing the suspension at-20 ℃ for 1h, freezing at-80 ℃ for 1h, and then putting the suspension into a refrigerator for freezing for 48 h; then putting carbodiimide and N-hydroxysuccinimide for crosslinking for 48h at 4 ℃, washing excessive crosslinking agent by using a phosphate-hydrochloric acid buffer solution, and then putting the ear cartilage scaffold at-80 ℃ for freeze-drying and dehydrating again to obtain the ear cartilage scaffold.
Compared with the prior art, the invention has the following beneficial effects:
(1) according to the implanted type auricular cartilage composite stent, the auricular cartilage tissues are used as the stent, and the thread carving thread fiber core is implanted in the center between the auricular cartilage tissues, so that the supporting force of the cartilage stent is increased, the strength and hardness of the auricular cartilage stent are increased, and the stability of the auricular cartilage stent is further improved.
(2) The invention relates to an implanted type ear cartilage composite bracket; through the ' human ' type structure that sets up, ride and stride in the septum of nose, increase its mechanical properties, further increase cartilage support's stability.
(3) The implanted type ear cartilage composite scaffold improves the ear cartilage scaffold prepared in the prior art, has regular shape and more regular and uniform physical microstructure, is favorable for adhesion, growth and proliferation of cells and growth and healing.
(4) According to the implanted auricular cartilage composite scaffold, the particle size of the finely ground auricular cartilage extracellular matrix is smaller, the area of the contacted chemical cross-linking agent is larger, the degradation rate of the auricular cartilage composite scaffold is delayed, the contact probability of internal cytokines and seed cells is increased, and the stability is further improved.
(5) The implanted type auricular cartilage composite scaffold further increases the stability of the auricular cartilage scaffold and the adhesiveness of auricular cartilage cells by limiting M, A and PH, increases the contact area with a cross-linking agent, is beneficial to the proliferation and growth of auricular cartilage cells, and is beneficial to growth and healing.
(6) The strength of the composite scaffold is improved by setting the freezing time T1 and the cross-linking time T2.
(7) The pH value of the auricular chondrocytes, the freezing time T1 and the cross-linking time T2 are set to meet the requirements, so that the biological activity and the strength of the composite scaffold are improved.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings that are required to be used in the embodiments will be briefly described below, it should be understood that the following drawings only illustrate some embodiments of the present invention and therefore should not be considered as limiting the scope, and for those skilled in the art, other related drawings can be obtained according to the drawings without inventive efforts.
Fig. 1 is a front view of the present invention.
Fig. 2 is a top view of the present invention.
Fig. 3 is a right side view of the present invention.
Fig. 4 is a schematic view of the internal structure of the stent of the present invention.
In the figure: 1. a first bracket; 2. a second bracket; 3. a connecting frame; 4. thread carving thread fiber core; 5. ear cartilage framework layer.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention more apparent, the technical solutions of the embodiments of the present invention will be described in detail and completely with reference to the accompanying drawings. It is to be understood that the described embodiments are only a few embodiments of the present invention, and not all embodiments. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, are within the scope of the present invention.
Thus, the following detailed description of the embodiments of the present invention, presented in the figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of selected embodiments of the invention. All other embodiments, which can be obtained by a person skilled in the art without any inventive step based on the embodiments of the present invention, are within the scope of the present invention.
The first embodiment is as follows:
as shown in fig. 1-4, an implantable auricular cartilage composite scaffold; comprises a first bracket 1 and a second bracket 2; one ends of the first support 1 and the second support 2 are both connected with a connecting frame 3, and the first support 1 and the second support 2 form a 'human' shaped structure through the connecting frame 3; first support 1, second support 2 and link 3 all include line carving line fibre core 4 and ear cartilage support layer 5, 4 outside parcels of line carving line fibre core have ear cartilage support layer 5.
The thread carving thread fiber core 4 is of a spiral structure. The value range of the acute included angle of the human-shaped structures of the first bracket 1 and the second bracket 2 is 35-50 degrees.
In addition, in the process of preparing the ear cartilage scaffold, the taken ear cartilage tissue is cut up, washed three times by phosphate buffer solution at 4 ℃, then placed in 10mM Tris buffer solution containing protease inhibitor, repeatedly centrifuged for 3 times by a centrifuge at 3000rpm, placed in 10mM Tris buffer solution containing protease inhibitor, fully mixed, centrifuged at 7000rpm, the supernatant is removed, and the precipitation solution is reserved; adding 1% of polyethylene glycol octyl phenyl ether buffer solution and tris buffer solution into the precipitate, shaking for 8h on a constant temperature bed at 4 ℃, centrifuging, and washing for three times by using phosphate buffer solution; and (3) keeping the washed cartilage particles in a digestive enzyme mixed solution at 37 ℃ for digestion for 12h, continuously shaking, centrifuging and repeatedly washing.
The cartilage particles which are thoroughly cleaned are placed in a culture dish and evenly paved, and are frozen in a low-temperature refrigerator at the temperature of 80 ℃ below zero for 1h, and then are frozen in a freeze drying agent under vacuum for 24h to obtain the cartilage extracellular matrix powder.
Prefreezing cartilage extracellular matrix powder in liquid nitrogen for 20s, and grinding at 60Hz frequency for 1min in a high-speed grinder; repeatedly grinding for multiple times to ensure that the cartilage extracellular matrix is fully ground, removing the ground powder, and repeatedly screening by using a 100-micrometer screen to obtain more fine cartilage extracellular matrix powder;
preparing the finally obtained fine cartilage extracellular matrix powder into suspension in the process of crosslinking the ear cartilage scaffold, and preparing the ear cartilage scaffold by a freezing method; firstly, freezing the suspension at-20 ℃ for 1h, freezing at-80 ℃ for 1h, and then putting the suspension into a refrigerator for freezing for 48 h; then putting carbodiimide and N-hydroxysuccinimide for crosslinking for 48h at 4 ℃, washing excessive crosslinking agent by using a phosphate-hydrochloric acid buffer solution, and then putting the ear cartilage scaffold at-80 ℃ for freeze-drying and dehydrating again to obtain the ear cartilage scaffold.
Example two:
the preparation method of the implanted auricular cartilage composite scaffold comprises the following steps:
s1: adding the thread carving thread into an N, N-dimethylformamide solvent, stirring, carrying out ultrasonic treatment, standing for a period of time, adding an alkaline solution for solidification, stretching while solidifying, washing, and drying to obtain a thread carving thread fiber core 4;
s2: taking transparent ear cartilage tissue, cutting into pieces, adding active agent and protease inhibitor for centrifugal treatment, removing supernatant, and retaining precipitation solution;
s3: adding buffer solution of an active agent and a protease inhibitor into the precipitation solution obtained in S2, shaking and uniformly mixing, centrifuging, and repeatedly washing the precipitation part to obtain cartilage particles for later use;
s4: uniformly spreading the cartilage particles obtained in the step S3 in a culture dish, and then carrying out vacuum freeze-drying in a freeze dryer to obtain cartilage extracellular matrix powder;
s5: freezing the cartilage extracellular matrix powder in the S4 in liquid nitrogen, then thoroughly grinding the powder by a high-speed machine, and screening the powder by a screen to obtain more fine cartilage extracellular matrix powder;
s6: crosslinking with crosslinking agent, washing with water, and freeze drying to obtain ear cartilage scaffold; and implanting the wire carving wire fiber core 4 into the soft ear bone bracket to obtain the soft ear bone composite bracket.
In the step S3, the pH value of the buffer solution is 7-8, and the buffer solution is a tris buffer solution, a disodium hydrogen phosphate-potassium dihydrogen phosphate buffer solution or a polyethylene glycol octyl phenyl ether buffer solution.
In step S4, the cartilage particles are uniformly spread in a culture dish to a thickness of 2-6 mm.
In step S4, the vacuum freezing time is 20-25 h.
The cross-linking agent is carbodiimide and N-hydroxysuccinimide.
In step S6, the freezing time T1 is 25-46.5h, and the crosslinking time T2 is 45-50 h. In order to improve the strength of the composite scaffold, the freezing time T1 and the crosslinking time T2 satisfy T1. T2 is 1135 is 2350.
EXAMPLE III
The difference between the first and second embodiments is that in order to further increase the stability of the ear cartilage scaffold, the specific surface area A of the ear cartilage cell particles is 850-1920cm2Per gram; the pH value is 7-8 to increase the adhesiveness of the ear cartilage cells and increase the contact area with the cross-linking agent, thereby being beneficial to the proliferation and growth of the ear cartilage cells. The specific surface area A and the pH value of the ear osteocyte particles meet the following requirements: a & PH is 5950 or more and 15360 or less.
The cell content M of the ear cartilage extracellular matrix, the specific surface area A of the ear cartilage cells and the pH value satisfy the following relation:
A=μ·(PH)3/M1/2;
in the above formula, mu is a specific surface area coefficient, and the value range is 3.24-6.65; only numerical operations are performed here.
In order to improve the bioactivity and strength of the composite scaffold, the pH value, the freezing time T1 and the crosslinking time T2 of the auricular chondrocytes satisfy the following relationship:
T2/T1=λ·PH1/2;
wherein, the lambda is a relation coefficient and the value range is 0.35 to 0.74.
The technical scheme realizes an implanted soft-ear bone composite bracket, the soft-ear bone tissue is used as the bracket, and the wire carving fiber core 4 is implanted in the center between the soft-ear bone tissue and the bracket, so that the supporting force of the soft-ear bone bracket is increased, the strength and the hardness of the soft-ear bone bracket are increased, and the stability of the soft-ear bone bracket is further improved; the human-shaped structure is arranged to straddle the nasal septum, so that the mechanical property of the human-shaped structure is improved, the stability of the cartilage support is further improved, and the ear cartilage support prepared in the prior art is improved, so that the shape of the ear cartilage support is regular, the physical microstructure is more uniform, the adhesion, growth and proliferation of cells are facilitated, and the postoperative healing is facilitated; the particle size of the finely ground ear cartilage extracellular matrix is smaller, the contact area of the chemical cross-linking agent is larger, the degradation rate of the ear cartilage scaffold is delayed, the contact probability of internal cell factors and seed cells is increased, and the stability is further improved; the M, A and PH are limited, so that the stability of the auricular cartilage scaffold is further increased, the adhesiveness of the auricular cartilage cells is increased, and meanwhile, the contact area with the cross-linking agent is increased, so that the proliferation and growth of the auricular cartilage cells are facilitated, and the healing is facilitated.
The above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention; any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (7)
1. The preparation method of the implanted auricular cartilage composite stent is characterized in that the implanted auricular cartilage composite stent comprises a first stent (1) and a second stent (2); one ends of the first support (1) and the second support (2) are connected with a connecting frame (3), and the first support (1) and the second support (2) form a human-shaped structure through the connecting frame (3); the first bracket (1), the second bracket (2) and the connecting bracket (3) respectively comprise a wire carving wire fiber core (4) and an ear cartilage bracket layer (5), and the ear cartilage bracket layer (5) is wrapped on the outer side of the wire carving wire fiber core (4);
the specific surface area A of the auricular chondrocyte particles is 850-1920cm2Per gram; the PH value is 7-8 to increase the adhesiveness of the ear cartilage cells and increase the contact area with the cross-linking agent, thereby being beneficial to the proliferation and growth of the ear cartilage cells;
the preparation method comprises the following steps:
s1: adding the thread carving thread into an N, N-dimethylformamide solvent, stirring, carrying out ultrasonic treatment, standing for a period of time, adding an alkaline solution for solidification, stretching while solidifying, washing, and drying to obtain a thread carving thread fiber core (4);
s2: taking transparent ear cartilage tissue, cutting into pieces, adding active agent and protease inhibitor for centrifugal treatment, removing supernatant, and retaining precipitation solution;
s3: adding buffer solution of an active agent and a protease inhibitor into the precipitation solution obtained in S2, shaking and uniformly mixing, centrifuging, and repeatedly washing the precipitation part to obtain cartilage particles for later use;
s4: uniformly spreading the cartilage particles obtained in the step S3 in a culture dish, and then carrying out vacuum freeze-drying in a freeze dryer to obtain cartilage extracellular matrix powder;
s5: freezing the cartilage extracellular matrix powder in the S4 in liquid nitrogen, then thoroughly grinding the powder by a high-speed machine, and screening the powder by a screen to obtain more fine cartilage extracellular matrix powder;
s6: crosslinking with crosslinking agent, washing with water, and freeze drying to obtain ear cartilage scaffold; and implanting the thread carving thread fiber core (4) into the ear cartilage support to obtain the ear cartilage composite support.
2. The method for preparing an implantable auricular cartilage composite scaffold according to claim 1, wherein; the thread carving thread fiber core (4) is of a spiral structure.
3. The method for preparing an implantable soft-ear-bone composite scaffold according to claim 1, wherein the acute included angle of the "human" shaped structure of the first scaffold (1) and the second scaffold (2) ranges from 35 ° to 50 °.
4. The method of claim 1, wherein the buffer solution in step S3 has a pH value ranging from 7 to 8, and is selected from the group consisting of Tris buffer solution, disodium hydrogen phosphate-potassium dihydrogen phosphate buffer solution, and polyethylene glycol octylphenyl ether buffer solution.
5. The method of claim 1, wherein in step S4, the cartilage particles are uniformly spread in a culture dish to a thickness of 2-6 mm.
6. The method of claim 1, wherein the vacuum freezing is performed for 20-25 hours in step S4.
7. The method for preparing an implantable auricular cartilage composite scaffold according to claim 1, wherein the cross-linking agent is carbodiimide-N-hydroxysuccinimide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911116229.0A CN110772356B (en) | 2019-11-15 | 2019-11-15 | Implanted auricular cartilage composite support |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911116229.0A CN110772356B (en) | 2019-11-15 | 2019-11-15 | Implanted auricular cartilage composite support |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110772356A CN110772356A (en) | 2020-02-11 |
CN110772356B true CN110772356B (en) | 2021-10-12 |
Family
ID=69391372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911116229.0A Active CN110772356B (en) | 2019-11-15 | 2019-11-15 | Implanted auricular cartilage composite support |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110772356B (en) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100011A2 (en) * | 2002-05-23 | 2003-12-04 | Advanced Cell Technology, Inc. | Generation of histocompatible tissues using nuclear transplantation |
CN101428155A (en) * | 2008-11-26 | 2009-05-13 | 无锡市第四人民医院 | Composite artificial minute vessel stent and preparation method thereof |
CN101496913A (en) * | 2008-01-31 | 2009-08-05 | 中国人民解放军总医院 | Cartilage cell epimatrix three-dimensional porous sponge stent for tissue engineering and preparation method thereof |
CN102860884A (en) * | 2012-09-17 | 2013-01-09 | 清华大学 | Tissue engineered osteochondral composite stent and preparation method thereof |
CN102988122A (en) * | 2012-11-13 | 2013-03-27 | 浦易(上海)生物技术有限公司 | Prosthetic system for treating nasosinusitis or allergic rhinitis |
CN103071187A (en) * | 2013-01-14 | 2013-05-01 | 西安交通大学 | Ligament-bone composite scaffold with biomimetic connecting interface and forming method thereof |
CN103285429A (en) * | 2013-05-28 | 2013-09-11 | 上海交通大学医学院附属第九人民医院 | Biphysic tissue engineering joint scaffold as well as preparation method and application thereof |
CN104771787A (en) * | 2015-03-16 | 2015-07-15 | 绍兴振德医用敷料有限公司 | Composite support containing PGA strengthening net, preparation method and applications thereof |
CN104800896A (en) * | 2015-04-20 | 2015-07-29 | 东华大学 | Human body-absorbable and enhancement-type bone fixation structure material 3D printed with FDM (fused deposition modeling) technology and preparation method thereof |
CN104874027A (en) * | 2015-05-12 | 2015-09-02 | 上海大学 | Preparation method of multi-medicine controllable load gradient regeneration bone scaffold |
CN204734767U (en) * | 2015-03-08 | 2015-11-04 | 中南大学湘雅三医院 | Cavity support of induced cartilage / bone tissue regeneration shaping |
CN106031800A (en) * | 2015-03-08 | 2016-10-19 | 中南大学湘雅三医院 | A hollow scaffold for inducing cartilage/bone tissue regeneration |
CN207136935U (en) * | 2017-03-01 | 2018-03-27 | 谭拯 | Nose support |
CN107899080A (en) * | 2017-11-30 | 2018-04-13 | 振德医疗用品股份有限公司 | A kind of dermis restoration stent preparation method |
CN208426266U (en) * | 2017-12-12 | 2019-01-25 | 上海交通大学医学院附属上海儿童医学中心 | The embeddable bilayer PLLA tissue engineering trachea bracket of the incomplete annulus trachealis of 3D printing |
CN110124107A (en) * | 2019-04-23 | 2019-08-16 | 哈尔滨医科大学 | A kind of PLGA cytoskeleton and its preparation method and application for articular cartilage reparation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207004611U (en) * | 2017-06-26 | 2018-02-13 | 安徽江淮汽车集团股份有限公司 | A kind of urea tank bracket assembly |
CN108158701A (en) * | 2018-02-09 | 2018-06-15 | 天津市胸科医院 | For treating the biological absorbable membrane part overlay film frame of bifurcated lesions coronary artery perforation |
-
2019
- 2019-11-15 CN CN201911116229.0A patent/CN110772356B/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003100011A2 (en) * | 2002-05-23 | 2003-12-04 | Advanced Cell Technology, Inc. | Generation of histocompatible tissues using nuclear transplantation |
CN101496913A (en) * | 2008-01-31 | 2009-08-05 | 中国人民解放军总医院 | Cartilage cell epimatrix three-dimensional porous sponge stent for tissue engineering and preparation method thereof |
CN101428155A (en) * | 2008-11-26 | 2009-05-13 | 无锡市第四人民医院 | Composite artificial minute vessel stent and preparation method thereof |
CN102860884A (en) * | 2012-09-17 | 2013-01-09 | 清华大学 | Tissue engineered osteochondral composite stent and preparation method thereof |
CN102988122A (en) * | 2012-11-13 | 2013-03-27 | 浦易(上海)生物技术有限公司 | Prosthetic system for treating nasosinusitis or allergic rhinitis |
CN103071187A (en) * | 2013-01-14 | 2013-05-01 | 西安交通大学 | Ligament-bone composite scaffold with biomimetic connecting interface and forming method thereof |
CN103285429A (en) * | 2013-05-28 | 2013-09-11 | 上海交通大学医学院附属第九人民医院 | Biphysic tissue engineering joint scaffold as well as preparation method and application thereof |
CN204734767U (en) * | 2015-03-08 | 2015-11-04 | 中南大学湘雅三医院 | Cavity support of induced cartilage / bone tissue regeneration shaping |
CN106031800A (en) * | 2015-03-08 | 2016-10-19 | 中南大学湘雅三医院 | A hollow scaffold for inducing cartilage/bone tissue regeneration |
CN104771787A (en) * | 2015-03-16 | 2015-07-15 | 绍兴振德医用敷料有限公司 | Composite support containing PGA strengthening net, preparation method and applications thereof |
CN104800896A (en) * | 2015-04-20 | 2015-07-29 | 东华大学 | Human body-absorbable and enhancement-type bone fixation structure material 3D printed with FDM (fused deposition modeling) technology and preparation method thereof |
CN104874027A (en) * | 2015-05-12 | 2015-09-02 | 上海大学 | Preparation method of multi-medicine controllable load gradient regeneration bone scaffold |
CN207136935U (en) * | 2017-03-01 | 2018-03-27 | 谭拯 | Nose support |
CN107899080A (en) * | 2017-11-30 | 2018-04-13 | 振德医疗用品股份有限公司 | A kind of dermis restoration stent preparation method |
CN208426266U (en) * | 2017-12-12 | 2019-01-25 | 上海交通大学医学院附属上海儿童医学中心 | The embeddable bilayer PLLA tissue engineering trachea bracket of the incomplete annulus trachealis of 3D printing |
CN110124107A (en) * | 2019-04-23 | 2019-08-16 | 哈尔滨医科大学 | A kind of PLGA cytoskeleton and its preparation method and application for articular cartilage reparation |
Also Published As
Publication number | Publication date |
---|---|
CN110772356A (en) | 2020-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101027630B1 (en) | Method for preparing porous hyaluronic acid-collagen natural polymer support for cartilage regeneration | |
CN102188748B (en) | Novel chondrocyte epimatrix membrane and preparation method thereof | |
CN101020082B (en) | Bone repairing material and its prepn process and use | |
CN101890184B (en) | Cartilage-derived collagen sponge scaffold and preparation method thereof | |
CN101184450B (en) | Cell-free graft composed of substrate and serum | |
EP1723974A1 (en) | Collagen gel and process for producing the same | |
EP3369439B1 (en) | Method for preparing cell growth scaffold having structural memory properties | |
CN102380129B (en) | Sodium hyaluronate and KGM porous bracket material and method for preparing same | |
CN109675114A (en) | A kind of preparation method of people's umbilical cord China Tong Shi glue tissue engineering bracket | |
CN105903079A (en) | Three-dimensional porous sponge scaffold with meniscus matrix source and preparation method and application | |
Tang et al. | Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits | |
CN104189009B (en) | Vascularization promoting small intestine submucosa temperature-sensitive material and preparation method thereof | |
CN102989040A (en) | Human residual ear cartilage stem cells, and method for constructing tissue engineering cartilages | |
CN110772356B (en) | Implanted auricular cartilage composite support | |
CN108853581B (en) | High-molecular polymer hydrogel composite Medpor prosthetic eye holder and preparation method thereof | |
CN114432492B (en) | A tissue engineering scaffold suitable for cartilage and its preparation method | |
CN114191609A (en) | Collagen microfiber sponge and preparation method thereof | |
CN113018517A (en) | 3D printing skin stent and preparation method and application thereof | |
CN106913908B (en) | Cell growth support with structure memory characteristic | |
CN117339013A (en) | Hydrogel composite bracket capable of improving cartilage repair capability | |
CN116103776A (en) | Long-acting collagen fiber and preparation method thereof | |
CN114457018A (en) | Three-dimensional breast cancer organoid model and culture method and application thereof | |
CN109513044A (en) | For the regenerating tissues matrix particles implant of micro-shaping, preparation method and application | |
CN116271209B (en) | Cartilage repair product, preparation method and application thereof | |
CN115894709B (en) | Recombinant human elastin with skin damage repairing effect and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |