CN110760872A - α -Fe modified by metal boride2O3Preparation method of base photo-anode - Google Patents
α -Fe modified by metal boride2O3Preparation method of base photo-anode Download PDFInfo
- Publication number
- CN110760872A CN110760872A CN201910520876.1A CN201910520876A CN110760872A CN 110760872 A CN110760872 A CN 110760872A CN 201910520876 A CN201910520876 A CN 201910520876A CN 110760872 A CN110760872 A CN 110760872A
- Authority
- CN
- China
- Prior art keywords
- photoanode
- metal boride
- modified
- metal
- boride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 23
- 239000002184 metal Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 15
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 35
- 238000002360 preparation method Methods 0.000 claims abstract description 10
- 229910003153 β-FeOOH Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims abstract description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims abstract 4
- 239000011521 glass Substances 0.000 claims abstract 2
- 238000000151 deposition Methods 0.000 claims description 10
- 230000008021 deposition Effects 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 8
- 229910021607 Silver chloride Inorganic materials 0.000 claims description 6
- 238000004070 electrodeposition Methods 0.000 claims description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 claims description 6
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 6
- 239000003792 electrolyte Substances 0.000 claims description 4
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 3
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 3
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 3
- 235000010344 sodium nitrate Nutrition 0.000 claims description 3
- 239000004317 sodium nitrate Substances 0.000 claims description 3
- 229910021645 metal ion Inorganic materials 0.000 claims description 2
- 239000002073 nanorod Substances 0.000 claims description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 1
- WRSVIZQEENMKOC-UHFFFAOYSA-N [B].[Co].[Co].[Co] Chemical compound [B].[Co].[Co].[Co] WRSVIZQEENMKOC-UHFFFAOYSA-N 0.000 claims 1
- QDWJUBJKEHXSMT-UHFFFAOYSA-N boranylidynenickel Chemical compound [Ni]#B QDWJUBJKEHXSMT-UHFFFAOYSA-N 0.000 claims 1
- 229910001429 cobalt ion Inorganic materials 0.000 claims 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- 229910001437 manganese ion Inorganic materials 0.000 claims 1
- 239000002105 nanoparticle Substances 0.000 claims 1
- 239000002135 nanosheet Substances 0.000 claims 1
- 239000002077 nanosphere Substances 0.000 claims 1
- 239000002070 nanowire Substances 0.000 claims 1
- 229910001453 nickel ion Inorganic materials 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract description 6
- 239000011258 core-shell material Substances 0.000 abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- YXVCLPJQTZXJLH-UHFFFAOYSA-N thiamine(1+) diphosphate chloride Chemical compound [Cl-].CC1=C(CCOP(O)(=O)OP(O)(O)=O)SC=[N+]1CC1=CN=C(C)N=C1N YXVCLPJQTZXJLH-UHFFFAOYSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910021538 borax Inorganic materials 0.000 description 5
- 235000010339 sodium tetraborate Nutrition 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000004328 sodium tetraborate Substances 0.000 description 4
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 3
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- -1 nickel-boron modified iron oxide Chemical class 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
- C25B1/55—Photoelectrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Hybrid Cells (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
本发明涉及一种金属硼化物修饰α‑Fe2O3基光阳极的制备方法,属于新能源材料技术领域,首先在二氧化锡导电玻璃(FTO)基底上生成β‑FeOOH,然后经过热处理生成α‑Fe2O3光阳极,最后在α‑Fe2O3光阳极表面沉积一层金属硼化物,得到具有核壳结构的金属硼化物修饰α‑Fe2O3基光阳极。本发明的优点:金属硼化物作为析氧助催化剂加快了析氧动力学过程,因此与基础α‑Fe2O3光阳极相比,此法制得的金属硼化物修饰的α‑Fe2O3基光阳极光电流密度提升了85%。The invention relates to a preparation method of a metal boride modified α-Fe 2 O 3 -based photoanode, belonging to the technical field of new energy materials. First, β-FeOOH is generated on a tin dioxide conductive glass (FTO) substrate, and then heat treatment is performed to generate β-FeOOH. α-Fe 2 O 3 photoanode, and finally a layer of metal boride is deposited on the surface of the α-Fe 2 O 3 photoanode to obtain a metal boride modified α-Fe 2 O 3 -based photoanode with a core-shell structure. The advantages of the present invention: the metal boride as the oxygen evolution promoter accelerates the oxygen evolution kinetic process, so compared with the basic α-Fe 2 O 3 photoanode, the metal boride modified α-Fe 2 O 3 prepared by this method The photocurrent density of the base photoanode has been increased by 85%.
Description
技术领域technical field
本发明属于新能源材料技术领域,特别涉及金属硼化物修饰α-Fe2O3基光阳极的制备方法。The invention belongs to the technical field of new energy materials, and particularly relates to a preparation method of a metal boride modified α-Fe 2 O 3 -based photoanode.
背景技术Background technique
随着全球经济的不断发展,能源短缺和环境污染仍是亟待解决的两大难题,开发新能源成为人们当前的热点话题。太阳能作为一种取之不尽、用之不竭、能量巨大的自然资源备受关注。太阳能光电化学转化是利用半导体材料的光催化作用将太阳能转化成化学能,如氢气、有机物等。其中,氢气燃烧效率高,产物无污染,是一种清洁、高效的新能源。因此利用太阳能光电化学分解水制氢极具发展前景。With the continuous development of the global economy, energy shortage and environmental pollution are still two major problems to be solved urgently, and the development of new energy has become a hot topic. As an inexhaustible, inexhaustible natural resource with huge energy, solar energy has attracted much attention. Photoelectrochemical conversion of solar energy is the use of photocatalysis of semiconductor materials to convert solar energy into chemical energy, such as hydrogen and organic matter. Among them, hydrogen has high combustion efficiency and non-polluting products. It is a clean and efficient new energy source. Therefore, the use of solar energy for photoelectrochemical water splitting to produce hydrogen is very promising.
α-Fe2O3是一种n型半导体材料,具有对环境友好、价格低廉、耐腐烛、无毒、转换效率高等显著的优点。然而单一的半导体材料受自身因素的限制,很难成为理想的半导体来满足未来对光解水产氢的应用要求。氧化铁基光阳极其较短的载流子寿命,以及较短的空穴扩散距离限制了其光电转换效率。通常利用如下办法来提高氧化铁基光阳极水氧化效率:(1)通过掺杂改变化学成分,(2)改变氧化铁纳米结构,(3)用析氧催化剂进行表面改性,(4)用无机材料进行表面钝化。因此,需要寻找一种有效的改性方法来提高α-Fe2O3的光电性能。α-Fe 2 O 3 is an n-type semiconductor material, which has the remarkable advantages of being environmentally friendly, inexpensive, corrosion-resistant, non-toxic, and high in conversion efficiency. However, a single semiconductor material is limited by its own factors, and it is difficult to become an ideal semiconductor to meet the application requirements of photo-splitting water for hydrogen production in the future. The short carrier lifetime and short hole diffusion distance of iron oxide-based photoanode limit its photoelectric conversion efficiency. The following methods are usually used to improve the water oxidation efficiency of iron oxide-based photoanodes: (1) changing the chemical composition by doping, (2) changing the iron oxide nanostructure, (3) surface modification with an oxygen evolution catalyst, (4) using Inorganic materials for surface passivation. Therefore, it is necessary to find an effective modification method to improve the optoelectronic properties of α - Fe2O3 .
发明内容SUMMARY OF THE INVENTION
本发明目的是,本发明属于新能源材料技术领域,特别涉及金属硼化物修饰α-Fe2O3基光阳极的制备方法。利用金属硼化物作为析氧助催化剂来加快析氧反应动力学过程。The purpose of the present invention is that the present invention belongs to the technical field of new energy materials, and particularly relates to a preparation method of a metal boride modified α-Fe 2 O 3 -based photoanode. The kinetic process of oxygen evolution reaction is accelerated by using metal borides as oxygen evolution co-catalysts.
本发明的技术方案是,一种金属硼化物修饰α-Fe2O3基光阳极的制备方法,其特征是包括如下步骤:The technical scheme of the present invention is, a preparation method of a metal boride modified α-Fe 2 O 3 -based photoanode, which is characterized by comprising the following steps:
1)首先在FTO基底上生成β-FeOOH;1) First generate β-FeOOH on the FTO substrate;
2)将步骤1中制得的β-FeOOH进行热处理后,得到α-氧化铁光阳极(α-Fe2O3);2) After heat-treating the β-FeOOH prepared in step 1, an α-iron oxide photoanode (α-Fe 2 O 3 ) is obtained;
3)通过光辅助电沉积法在步骤2所制得的α-Fe2O3表面沉积金属硼化物(M-Bi),最终得到金属硼化物修饰α-Fe2O3基光阳极(M-Bi/Fe2O3)。3) Metal boride (M-Bi) is deposited on the surface of the α-Fe 2 O 3 prepared in step 2 by photo-assisted electrodeposition, and finally a metal boride modified α-Fe 2 O 3 -based photoanode (M-Bi) is obtained. Bi/Fe 2 O 3 ).
进一步,步骤1中水热反应的反应液为0.15mol/L氯化铁和1mol/L硝酸钠的混合水溶液,反应条件为95℃反应5小时,自然冷却至室温。Further, the reaction solution of the hydrothermal reaction in step 1 is a mixed aqueous solution of 0.15 mol/L ferric chloride and 1 mol/L sodium nitrate, and the reaction conditions are 95° C. for 5 hours and naturally cooled to room temperature.
进一步,步骤2中的热处理工艺为两步退火法,首先升温至550℃保温2小时,再直接升温至750℃保温10min,升温速率为10℃/10min,自然冷却至室温。Further, the heat treatment process in step 2 is a two-step annealing method, which is firstly heated to 550°C for 2 hours, then directly heated to 750°C for 10min, the heating rate is 10°C/10min, and naturally cooled to room temperature.
进一步,步骤3中光辅助电沉积条件具体如下:1) 电解液为1.0mmol/L金属离子溶液与0.2mol/L硼酸钠的混合水溶液;2)沉积电压为0.4V(vs Ag/AgCl);3)沉积时间为50s~400s;4)光强为100mWcm -2。Further, the light-assisted electrodeposition conditions in step 3 are as follows: 1) the electrolyte is a mixed aqueous solution of 1.0 mmol/L metal ion solution and 0.2 mol/L sodium borate; 2) the deposition voltage is 0.4V (vs Ag/AgCl); 3) The deposition time is 50s~400s; 4) The light intensity is 100mWcm -2 .
本发明的有益效果:采用本方法制备的金属硼化物修饰的α-Fe2O3基光阳极,其性能相较于基础α-Fe2O3光阳极有明显提升,在模拟太阳光下光阳极的正面光电流分别达到0.335mA/cm2。实现了太阳能向化学能的转换。Beneficial effects of the present invention: Compared with the basic α-Fe 2 O 3 photoanode, the performance of the metal boride-modified α-Fe 2 O 3 -based photoanode prepared by the method is obviously improved. The positive photocurrents of the anodes reached 0.335 mA/cm 2 , respectively. The conversion of solar energy to chemical energy is realized.
附图说明Description of drawings
图1是Ni-Bi/Fe2O3光阳极的透射电镜照片Figure 1 is a TEM photo of Ni-Bi/Fe 2 O 3 photoanode
图2是α-Fe2O3、Ni-Bi/Fe2O3及Co-Bi/Fe2O3光阳极在可见光下的光电流密度。Fig. 2 is the photocurrent density of α-Fe 2 O 3 , Ni-Bi/Fe 2 O 3 and Co-Bi/Fe 2 O 3 photoanode under visible light.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步说明。The present invention will be further described below with reference to the embodiments and accompanying drawings.
具体实施例1:Specific embodiment 1:
α-Fe2O3光阳极的制备方法包括如下步骤:The preparation method of α-Fe 2 O 3 photoanode comprises the following steps:
1)将FTO依次使用异丙醇、丙酮、乙醇和水进行超声清洗。FTO清洗吹干后,以背对背且垂直内衬底面的(FTO的SnO2面正对内衬壁)方式放置于聚四氟乙烯内衬里。在50mL水溶液里加入10mL的0.15mol/L氯化铁和1mol/L硝酸钠的混合水溶液,搅拌10min。将搅拌后的溶液加入聚四氟乙烯内衬中,然后将聚四氟乙烯内衬置于高压釜密封,在马弗炉中95℃下加热5小时。水热之后,FTO上生长了一层淡黄色半透明的β-FeOOH薄膜,将β-FeOOH薄膜用去离子水清洗后风干。1) ultrasonically clean the FTO with isopropanol, acetone, ethanol and water in sequence. After the FTO was cleaned and dried, it was placed on the PTFE liner in a back-to-back and vertical liner surface (the SnO 2 side of the FTO faced the liner wall). 10 mL of a mixed aqueous solution of 0.15 mol/L ferric chloride and 1 mol/L sodium nitrate was added to the 50 mL aqueous solution, and stirred for 10 min. The stirred solution was added to a Teflon liner, which was then placed in an autoclave sealed and heated in a muffle furnace at 95°C for 5 hours. After hydrothermal treatment, a pale yellow translucent β-FeOOH film was grown on the FTO, which was washed with deionized water and air-dried.
2)将β-FeOOH放在马弗炉中进行热处理,热处理工艺为两步退火法,首先升温至550℃保温2小时,再直接升温至750℃保温10min,升温速率为10℃/10min,自然冷却至室温,得到α-Fe2O3光阳极。2) Put β-FeOOH in a muffle furnace for heat treatment. The heat treatment process is a two-step annealing method. First, the temperature is raised to 550°C for 2 hours, and then directly heated to 750°C for 10 minutes. The heating rate is 10°C/10min. Cool to room temperature to obtain α-Fe 2 O 3 photoanode.
具体实施例2:Specific embodiment 2:
Ni-Bi/Fe2O3光阳极的制备方法包括如下步骤:The preparation method of Ni-Bi/Fe 2 O 3 photoanode comprises the following steps:
1)称量0.006g NiCl2•4H2O并溶于25mL去离子水中,配置成1mmol/L的氯化镍水溶液,在氯化镍水溶液中加入1.907g Na2B4O7•10H2O,四硼酸钠浓度为0.2mol/L;1) Weigh 0.006g NiCl 2 •4H 2 O and dissolve it in 25mL of deionized water to prepare a 1mmol/L nickel chloride aqueous solution, add 1.907g Na 2 B 4 O 7 •10H 2 O to the nickel chloride aqueous solution , the concentration of sodium tetraborate is 0.2mol/L;
2)将具体实施例1中制得的α-Fe2O3光阳极作为工作电极,铂片电极作为对电极,Ag/AgCl电极作为参比电极组成三电极体系。使用步骤1中配置的氯化镍和四硼酸钠的混合溶液作为电解液,在100mWcm -2光强下进行光辅助电沉积,沉积电压为0.4V(vs Ag/AgCl);3)沉积时间为40s~500s,得到镍硼修饰的氧化铁光电极(Ni-Bi/Fe2O3),结果表明沉积时间为400s时性能最优。2) The α-Fe 2 O 3 photoanode prepared in Example 1 was used as the working electrode, the platinum sheet electrode was used as the counter electrode, and the Ag/AgCl electrode was used as the reference electrode to form a three-electrode system. Using the mixed solution of nickel chloride and sodium tetraborate configured in step 1 as the electrolyte, photo-assisted electrodeposition was carried out under the light intensity of 100mWcm -2 , and the deposition voltage was 0.4V (vs Ag/AgCl); 3) The deposition time was From 40s to 500s, a nickel-boron modified iron oxide photoelectrode (Ni-Bi/Fe 2 O 3 ) was obtained. The results showed that the best performance was obtained when the deposition time was 400s.
具体实施例3:Specific embodiment 3:
Co-Bi/Fe2O3光阳极的制备方法包括如下步骤:The preparation method of Co-Bi/Fe 2 O 3 photoanode comprises the following steps:
1)称量0.006g CoCl2•6H2O并溶于25mL去离子水中,配置成1mmol/L的氯化钴水溶液,在氯化钴水溶液中加入1.907g Na2B4O7•10H2O,四硼酸钠浓度为0.2mol/L;1) Weigh 0.006g CoCl 2 •6H 2 O and dissolve it in 25mL deionized water to prepare a 1mmol/L cobalt chloride aqueous solution, add 1.907g Na 2 B 4 O 7 •10H 2 O to the cobalt chloride aqueous solution , the concentration of sodium tetraborate is 0.2mol/L;
2)将具体实施例1中制得的α-Fe2O3光阳极作为工作电极,铂片电极作为对电极,Ag/AgCl电极作为参比电极组成三电极体系。使用步骤1中配置的氯化钴和四硼酸钠的混合溶液作为电解液,在100mWcm -2光强下进行光辅助电沉积,沉积电压为0.4V(vs Ag/AgCl);3)沉积时间为40s~500s,得到钴硼修饰的氧化铁光电极(Co-Bi/Fe2O3),结果表明沉积时间为400s时性能最优。2) The α-Fe 2 O 3 photoanode prepared in Example 1 was used as the working electrode, the platinum sheet electrode was used as the counter electrode, and the Ag/AgCl electrode was used as the reference electrode to form a three-electrode system. Using the mixed solution of cobalt chloride and sodium tetraborate configured in step 1 as the electrolyte, photo-assisted electrodeposition was carried out under the light intensity of 100mWcm -2 , and the deposition voltage was 0.4V (vs Ag/AgCl); 3) The deposition time was From 40s to 500s, a cobalt-boron modified iron oxide photoelectrode (Co-Bi/Fe 2 O 3 ) was obtained. The results showed that the best performance was obtained when the deposition time was 400s.
图1给出了Ni-Bi/Fe2O3光阳极的透射电镜照片,从图中可以看出所制得的Ni-Bi/Fe2O3光阳极是具有核壳结构的纳米棒状,这层核壳结构就是生成的Ni-Bi析氧助催化剂。Figure 1 shows the TEM photo of the Ni-Bi/Fe 2 O 3 photoanode. It can be seen from the figure that the prepared Ni-Bi/Fe 2 O 3 photoanode is a nanorod with a core-shell structure. The core-shell structure is the resulting Ni-Bi oxygen evolution cocatalyst.
图2给出了α-Fe2O3、Ni-Bi/Fe2O3及Co-Bi/Fe2O3光阳极在可见光下的光电流密度,从图中可见,α-Fe2O3、Ni-Bi/Fe2O3及Co-Bi/Fe2O3的正面光电流分别为0.181、0.335、0.368mA/cm 2。与基础氧化铁相比,Ni-Bi/Fe2O3的正面光电流分别提升85%;Co-Bi/Fe2O3的正面光电流分别提升103%。且修饰Ni-Bi和Co-Bi后,α-Fe2O3光阳极的起始电势得到提升,其中Ni-Bi修饰提升的更多。Figure 2 shows the photocurrent densities of α-Fe 2 O 3 , Ni-Bi/Fe 2 O 3 and Co-Bi/Fe 2 O 3 photoanodes under visible light. It can be seen from the figure that α-Fe 2 O 3 The front photocurrents of Ni-Bi/Fe 2 O 3 and Co-Bi/Fe 2 O 3 are 0.181, 0.335, and 0.368 mA/cm 2 , respectively. Compared with the basic iron oxide, the frontal photocurrent of Ni-Bi/Fe 2 O 3 is increased by 85%, and the front photocurrent of Co-Bi/Fe 2 O 3 is increased by 103%, respectively. And after the modification of Ni-Bi and Co-Bi, the onset potential of α-Fe 2 O 3 photoanode is improved, and the improvement of Ni-Bi modification is more.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910520876.1A CN110760872A (en) | 2019-06-17 | 2019-06-17 | α -Fe modified by metal boride2O3Preparation method of base photo-anode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910520876.1A CN110760872A (en) | 2019-06-17 | 2019-06-17 | α -Fe modified by metal boride2O3Preparation method of base photo-anode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110760872A true CN110760872A (en) | 2020-02-07 |
Family
ID=69329040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910520876.1A Pending CN110760872A (en) | 2019-06-17 | 2019-06-17 | α -Fe modified by metal boride2O3Preparation method of base photo-anode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110760872A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114044559A (en) * | 2021-11-09 | 2022-02-15 | 东莞理工学院 | A kind of anode material for photoelectric degradation of tetracycline and preparation method thereof |
CN114438515A (en) * | 2021-12-09 | 2022-05-06 | 常州大学 | Co(OH)2-modified NiAl-LDH/α-Fe2O3 composite photoanode and preparation method thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101249445A (en) * | 2008-04-15 | 2008-08-27 | 福州大学 | Non-Au supported catalyst for catalytic oxidation of carbon monoxide at room temperature and preparation method thereof |
EP3010079A1 (en) * | 2014-10-14 | 2016-04-20 | CIC Energigune | Sodium battery with ceramic electrolyte |
CN107190275A (en) * | 2011-04-05 | 2017-09-22 | 辉光能源公司 | Electrochemical hydrogen-catalyst power system based on water |
CN107195935A (en) * | 2012-05-21 | 2017-09-22 | 辉光能源公司 | CIHT dynamical systems |
CN107313064A (en) * | 2017-06-12 | 2017-11-03 | 太原理工大学 | Metal boron or the α Fe of phosphide modification2O3The preparation method and application of light anode material |
CN107321373A (en) * | 2017-06-15 | 2017-11-07 | 燕山大学 | Doped carbon carrying transition metal boride multifunctional nano catalyst and preparation method |
CN108704649A (en) * | 2018-06-21 | 2018-10-26 | 厦门大学 | A kind of base metal base electrolysis water oxygen evolution reaction elctro-catalyst and preparation method thereof |
CN108866563A (en) * | 2018-07-24 | 2018-11-23 | 天津大学 | A kind of pucherite film photo cathode, preparation method and the purposes of the modification of boronation cobalt |
KR20190013102A (en) * | 2017-07-31 | 2019-02-11 | 삼성전자주식회사 | Heat element structure, method of preparing the same, and heating device including the same |
CN109504981A (en) * | 2018-12-17 | 2019-03-22 | 常州大学 | A kind of preparation method of cobalt oxide oxygen hydrogen modification phosphorus doping iron oxide light anode |
WO2019173581A1 (en) * | 2018-03-07 | 2019-09-12 | Nanotek Instruments, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries and methods of producing |
-
2019
- 2019-06-17 CN CN201910520876.1A patent/CN110760872A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101249445A (en) * | 2008-04-15 | 2008-08-27 | 福州大学 | Non-Au supported catalyst for catalytic oxidation of carbon monoxide at room temperature and preparation method thereof |
CN107190275A (en) * | 2011-04-05 | 2017-09-22 | 辉光能源公司 | Electrochemical hydrogen-catalyst power system based on water |
CN107195935A (en) * | 2012-05-21 | 2017-09-22 | 辉光能源公司 | CIHT dynamical systems |
EP3010079A1 (en) * | 2014-10-14 | 2016-04-20 | CIC Energigune | Sodium battery with ceramic electrolyte |
JP2017534162A (en) * | 2014-10-14 | 2017-11-16 | フンダシオン セントロ デ インベスティガシオン コオペラティバ デ エネルヒアス アルテルナティバス セイセ エネルヒグネ フンダツィオアFundacion Centro De Investigacion Cooperativa De Energias Alternativas Cic Energigune Fundazioa | Sodium ceramic electrolyte battery |
CN107313064A (en) * | 2017-06-12 | 2017-11-03 | 太原理工大学 | Metal boron or the α Fe of phosphide modification2O3The preparation method and application of light anode material |
CN107321373A (en) * | 2017-06-15 | 2017-11-07 | 燕山大学 | Doped carbon carrying transition metal boride multifunctional nano catalyst and preparation method |
KR20190013102A (en) * | 2017-07-31 | 2019-02-11 | 삼성전자주식회사 | Heat element structure, method of preparing the same, and heating device including the same |
WO2019173581A1 (en) * | 2018-03-07 | 2019-09-12 | Nanotek Instruments, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries and methods of producing |
CN108704649A (en) * | 2018-06-21 | 2018-10-26 | 厦门大学 | A kind of base metal base electrolysis water oxygen evolution reaction elctro-catalyst and preparation method thereof |
CN108866563A (en) * | 2018-07-24 | 2018-11-23 | 天津大学 | A kind of pucherite film photo cathode, preparation method and the purposes of the modification of boronation cobalt |
CN109504981A (en) * | 2018-12-17 | 2019-03-22 | 常州大学 | A kind of preparation method of cobalt oxide oxygen hydrogen modification phosphorus doping iron oxide light anode |
Non-Patent Citations (4)
Title |
---|
LIANG, PENGHUA 等: ""Effects of cathodic electrodeposition conditions on morphology and photoelectrochemical response of alpha-Fe2O3 photoanode"", 《THIN SOLID FILMS》 * |
ZHAO, HUI 等: ""Electrocatalytic oxygen and hydrogen evolution reactions at Ni3B/Fe2O3 nanotube arrays under visible light radiation"", 《CATALYSIS SCIENCE & TECHNOLOGY》 * |
张超: ""α-Fe2O3基复合光电极的制备及其光电化学性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
王开放 等: ""ɑ-Fe2O3多孔纳米棒结构及其光电催化性能"", 《中国化学会第30届学术年会摘要集-第二十七分会:光化学》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114044559A (en) * | 2021-11-09 | 2022-02-15 | 东莞理工学院 | A kind of anode material for photoelectric degradation of tetracycline and preparation method thereof |
WO2023082384A1 (en) * | 2021-11-09 | 2023-05-19 | 东莞理工学院 | Anode material for photoelectric degradation of tetracycline, and preparation method therefor |
CN114438515A (en) * | 2021-12-09 | 2022-05-06 | 常州大学 | Co(OH)2-modified NiAl-LDH/α-Fe2O3 composite photoanode and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109402656B (en) | A kind of preparation method of cobalt phosphide modified molybdenum-doped bismuth vanadate photoelectrode | |
CN109504981A (en) | A kind of preparation method of cobalt oxide oxygen hydrogen modification phosphorus doping iron oxide light anode | |
CN107790131B (en) | A Zr-Fe2O3/FeOOH composite photoelectrode and preparation method thereof | |
CN110042407B (en) | Preparation method and application of cobalt phosphate-polydopamine-bismuth vanadate ternary composite photoelectrode | |
CN107805822A (en) | A kind of Ti Fe2O3/ Co Pi complex light electrodes and preparation method thereof | |
CN105039938A (en) | Method for preparing photoelectrode of alpha-iron oxide film by single-source precursor | |
CN107313064B (en) | Preparation method and application of metal boron or phosphide modified α-Fe2O3 photoanode material | |
CN111146004A (en) | A kind of metal oxyhydroxide composite B-BiVO4 photoanode and preparation method thereof | |
CN107829108A (en) | A kind of FeOOH/CdS/Ti:Fe2O3Complex light electrode and preparation method thereof | |
CN107268024B (en) | Tricobalt tetroxide composite α-type iron oxide worm-like nanostructure array photoanode, preparation method and application thereof | |
CN111774057A (en) | A high-performance heterojunction material Fe2O3/CuO photoelectrode film and its preparation method and application | |
CN105140597A (en) | Method for preparing heterojunction photoelectrode of photoelectrochomical cell through semiconductor nanomaterial recombination | |
Wei et al. | Room temperature surface modification of ultrathin FeOOH cocatalysts on Fe2O3 photoanodes for high photoelectrochemical water splitting | |
CN110760872A (en) | α -Fe modified by metal boride2O3Preparation method of base photo-anode | |
CN110306204A (en) | A kind of layered nickel hydroxide composite electrode material doped with silver and its preparation method and application | |
CN110205638B (en) | Z-shaped CuBi2O4/SnO2Photoelectric cathode film and preparation method and application thereof | |
CN107268022A (en) | α‑Fe2O3The preparation method and application of nano stick array photo-anode material | |
CN113481546B (en) | Zinc oxide/zinc sulfide composite film photoelectrode and recovery device for solar photo-deposited noble metal | |
CN113529107B (en) | Silver nanowire and cobalt-nickel alloy composite oxygen evolution catalytic material and preparation method thereof | |
CN110965073A (en) | A kind of preparation method of defective WO3 photoelectrode | |
CN110302785A (en) | A kind of amorphous cobalt oxide/ferric oxide composite photocatalyst and its preparation method and application | |
CN114438515A (en) | Co(OH)2-modified NiAl-LDH/α-Fe2O3 composite photoanode and preparation method thereof | |
CN110993355B (en) | Preparation method of two-dimensional titanium carbide substrate layer optimized alpha-phase iron oxide photo-anode | |
CN107937969A (en) | A kind of GN Sb2Se3The preparation method of laminated film | |
CN110965074A (en) | Method for preparing composite film photoelectrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200207 |