CN110759979A - Transcription factor bZIP2 for improving starch synthesis of wheat grains and application thereof - Google Patents
Transcription factor bZIP2 for improving starch synthesis of wheat grains and application thereof Download PDFInfo
- Publication number
- CN110759979A CN110759979A CN201910833620.6A CN201910833620A CN110759979A CN 110759979 A CN110759979 A CN 110759979A CN 201910833620 A CN201910833620 A CN 201910833620A CN 110759979 A CN110759979 A CN 110759979A
- Authority
- CN
- China
- Prior art keywords
- gene
- transcription factor
- tubzip2
- wheat
- tabzip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002472 Starch Polymers 0.000 title claims abstract description 58
- 235000021307 Triticum Nutrition 0.000 title claims abstract description 56
- 239000008107 starch Substances 0.000 title claims abstract description 56
- 235000019698 starch Nutrition 0.000 title claims abstract description 56
- 235000013339 cereals Nutrition 0.000 title claims abstract description 45
- 108091023040 Transcription factor Proteins 0.000 title claims abstract description 41
- 102000040945 Transcription factor Human genes 0.000 title claims abstract description 41
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 20
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 19
- 241000209140 Triticum Species 0.000 title claims abstract description 11
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 77
- 244000098338 Triticum aestivum Species 0.000 claims abstract description 72
- 230000014509 gene expression Effects 0.000 claims abstract description 46
- 230000002018 overexpression Effects 0.000 claims abstract description 40
- 241000196324 Embryophyta Species 0.000 claims abstract description 12
- 108091026890 Coding region Proteins 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 11
- 230000009261 transgenic effect Effects 0.000 claims description 11
- 239000013604 expression vector Substances 0.000 claims description 7
- 230000002441 reversible effect Effects 0.000 claims description 6
- 108091033409 CRISPR Proteins 0.000 claims description 4
- 238000010354 CRISPR gene editing Methods 0.000 claims description 2
- 239000002773 nucleotide Substances 0.000 claims description 2
- 125000003729 nucleotide group Chemical group 0.000 claims description 2
- 238000012216 screening Methods 0.000 claims description 2
- 238000009825 accumulation Methods 0.000 claims 2
- 229920000945 Amylopectin Polymers 0.000 abstract description 26
- 230000008859 change Effects 0.000 abstract description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 abstract description 2
- 229920000856 Amylose Polymers 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 14
- 230000007423 decrease Effects 0.000 description 10
- 230000003247 decreasing effect Effects 0.000 description 10
- 238000003757 reverse transcription PCR Methods 0.000 description 10
- 238000003559 RNA-seq method Methods 0.000 description 8
- 230000029279 positive regulation of transcription, DNA-dependent Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 238000013518 transcription Methods 0.000 description 7
- 230000035897 transcription Effects 0.000 description 7
- 230000033228 biological regulation Effects 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 108090000848 Ubiquitin Proteins 0.000 description 5
- 102000044159 Ubiquitin Human genes 0.000 description 5
- 230000004186 co-expression Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010195 expression analysis Methods 0.000 description 5
- 239000008187 granular material Substances 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 235000013312 flour Nutrition 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 210000001938 protoplast Anatomy 0.000 description 4
- WFPZSXYXPSUOPY-ROYWQJLOSA-N ADP alpha-D-glucoside Chemical compound C([C@H]1O[C@H]([C@@H]([C@@H]1O)O)N1C=2N=CN=C(C=2N=C1)N)OP(O)(=O)OP(O)(=O)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O WFPZSXYXPSUOPY-ROYWQJLOSA-N 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000331 Firefly luciferases Proteins 0.000 description 3
- 108010052090 Renilla Luciferases Proteins 0.000 description 3
- 108010039811 Starch synthase Proteins 0.000 description 3
- 102000039554 bZIP family Human genes 0.000 description 3
- 108091067354 bZIP family Proteins 0.000 description 3
- 238000002856 computational phylogenetic analysis Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000004960 subcellular localization Effects 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 2
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 101100491257 Oryza sativa subsp. japonica AP2-1 gene Proteins 0.000 description 2
- 101150033582 RSR1 gene Proteins 0.000 description 2
- 241001329985 Triticeae Species 0.000 description 2
- 241000209147 Triticum urartu Species 0.000 description 2
- 230000009418 agronomic effect Effects 0.000 description 2
- 125000003275 alpha amino acid group Chemical group 0.000 description 2
- HXXFSFRBOHSIMQ-VFUOTHLCSA-N alpha-D-glucose 1-phosphate Chemical compound OC[C@H]1O[C@H](OP(O)(O)=O)[C@H](O)[C@@H](O)[C@@H]1O HXXFSFRBOHSIMQ-VFUOTHLCSA-N 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 229950010772 glucose-1-phosphate Drugs 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 229940100445 wheat starch Drugs 0.000 description 2
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 1
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 1
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 1
- 102100034112 Alkyldihydroxyacetonephosphate synthase, peroxisomal Human genes 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 101710196526 Cytochrome b-c1 complex subunit Rieske, mitochondrial Proteins 0.000 description 1
- 102100021009 Cytochrome b-c1 complex subunit Rieske, mitochondrial Human genes 0.000 description 1
- 101710132357 Cytochrome bc1 complex Rieske iron-sulfur subunit Proteins 0.000 description 1
- 238000003718 Dual-Luciferase Reporter Assay System Methods 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 241001442556 Gloma Species 0.000 description 1
- 229920001503 Glucan Polymers 0.000 description 1
- 101000799143 Homo sapiens Alkyldihydroxyacetonephosphate synthase, peroxisomal Proteins 0.000 description 1
- 240000005979 Hordeum vulgare Species 0.000 description 1
- 235000007340 Hordeum vulgare Nutrition 0.000 description 1
- 101000635262 Oryza sativa subsp. japonica bZIP transcription factor RISBZ1 Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101710137001 Ubiquinol-cytochrome c reductase iron-sulfur subunit Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000004464 cereal grain Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000013325 dietary fiber Nutrition 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 235000006486 human diet Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- PWPJGUXAGUPAHP-UHFFFAOYSA-N lufenuron Chemical compound C1=C(Cl)C(OC(F)(F)C(C(F)(F)F)F)=CC(Cl)=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F PWPJGUXAGUPAHP-UHFFFAOYSA-N 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 230000010474 transient expression Effects 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8242—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
- C12N15/8243—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
- C12N15/8245—Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/6895—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Nutrition Science (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Cell Biology (AREA)
- Mycology (AREA)
- Plant Pathology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明公开了一个能提高小麦籽粒淀粉合成的转录因子bZIP2及其应用,该转录因子是TubZIP2基因,以及TubZIP2基因在普通小麦中同源基因TabZIP2的三个拷贝:TabZIP‑A2、TabZIP‑ B2和TabZIP‑D2,其编码区是分别由SEQ ID No.1、No.2、No.3和No.4所示核苷酸序列组成。在TubZIP2的过表达小麦株系中,AGPL‑cyto、AGPS‑ cyto和SBEIIa的表达在胚乳灌浆的中后期较野生型的显著提高,而其它淀粉合成相关基因(SSRG)的表达量没有变化,粒长和千粒重也明显增加。敲除普通小麦中的基因TabZIP2,敲除系的总淀粉和支链淀粉含量显著降低,粒长和千粒重也显著减小。TubZIP2过表达系和TabZIP2敲除系的株高、有效分蘖、小穗数和粒长没有明显变化。The invention discloses a transcription factor bZIP2 capable of improving wheat grain starch synthesis and application thereof. The transcription factor is a TubZIP2 gene, and three copies of the TubZIP2 gene homologous gene TabZIP2 in common wheat: TabZIP-A2 , TabZIP - B2 and TabZIP-D2 , its coding region is composed of nucleotide sequences shown in SEQ ID No.1, No.2, No.3 and No.4 respectively. In TubZIP2 -overexpressing wheat lines, the expressions of AGPL-cyto, AGPS- cyto and SBEIIa were significantly increased in the middle and late stages of endosperm filling compared with those of the wild type, while the expression levels of other starch synthesis-related genes (SSRGs) did not change. Length and thousand kernel weight also increased significantly. When the gene TabZIP2 in common wheat was knocked out, the total starch and amylopectin contents of the knockout lines were significantly reduced, and the grain length and thousand-grain weight were also significantly reduced. Plant height, effective tillering, number of spikelets and grain length of TubZIP2 overexpression lines and TabZIP2 knockout lines did not change significantly.
Description
技术领域technical field
本发明涉及遗传工程领域,具体涉及一种提高小麦淀粉合成相关基因表达的转录因子及其应用。The invention relates to the field of genetic engineering, in particular to a transcription factor for improving the expression of wheat starch synthesis-related genes and its application.
背景技术Background technique
作为世界上主要作物之一,小麦不仅为人类健康提供蛋白质、维生素和膳食纤维,还是人类饮食中淀粉和能量的主要来源。淀粉是小麦籽粒胚乳中的主要贮藏成分,占籽粒总重的60-70%,占面粉总重的70-85%。As one of the major crops in the world, wheat not only provides protein, vitamins and dietary fiber for human health, but also is the main source of starch and energy in the human diet. Starch is the main storage component in the endosperm of wheat grains, accounting for 60-70% of the total weight of the grain and 70-85% of the total weight of the flour.
小麦胚乳细胞中的淀粉合成包括一系列复杂的反应,需要一系列酶的参与。在淀粉合成开始时,AGPase催化葡萄糖-1-磷酸(G1c-1-P)和三磷酸腺苷(ATP)转化为腺苷二磷酸葡萄糖(ADP-葡萄糖),是直链淀粉和支链淀粉合成的葡萄糖供体。之后,颗粒结合型淀粉合成酶(GBSS)催化ADP-葡萄糖最终形成直链淀粉,而淀粉合成酶(SS)、淀粉分支酶(SBE)和脱分支酶(DBE)催化ADP-葡萄糖转移到高度支化的葡聚糖支链,最终形成支链淀粉。通过调控淀粉合成相关基因的表达能有效提高籽粒淀粉含量,从而提高小麦的产量。然而,迄今为止,有关谷物籽粒中淀粉合成转录调控的报道并不多。其中RSR1和OsbZIP58是水稻中鉴定得到的淀粉合成调控因子;ZmNAC36、ZmbZIP91、ZmEREB156和 SUSIBA2分别是玉米和大麦中鉴定的调控淀粉合成的转录因子。在小麦中,除了关于水稻RSR1同源基因TaRSR1的研究,还没有关于淀粉合成调控机制的系统研究报道。Starch synthesis in wheat endosperm cells involves a series of complex reactions that require the participation of a series of enzymes. At the beginning of starch synthesis, AGPase catalyzes the conversion of glucose-1-phosphate (G1c-1-P) and adenosine triphosphate (ATP) to adenosine diphosphate glucose (ADP-glucose), which is the glucose supply for amylose and amylopectin synthesis. body. Afterwards, granule-bound starch synthase (GBSS) catalyzes the final formation of amylose from ADP-glucose, while starch synthase (SS), starch branching enzyme (SBE) and debranching enzyme (DBE) catalyze the transfer of ADP-glucose to highly branched The branched chain of glucan is finally formed into amylopectin. By regulating the expression of genes related to starch synthesis, the starch content of grains can be effectively increased, thereby increasing the yield of wheat. However, to date, there are not many reports on the transcriptional regulation of starch synthesis in cereal grains. Among them, RSR1 and OsbZIP58 are starch synthesis regulators identified in rice; ZmNAC36, ZmbZIP91 , ZmEREB156 and SUSIBA2 are transcription factors identified in maize and barley that regulate starch synthesis, respectively. In wheat, except for the study on the rice RSR1 homolog TaRSR1 , no systematic study on the regulatory mechanism of starch synthesis has been reported.
发明内容SUMMARY OF THE INVENTION
本发明通过共表达分析(Weighted Gene Co-expression Network Analysis,WGCNA)鉴定得到了一个和淀粉合成相关基因(starch synthesis related genes, SSRG)在胚乳灌浆期共表达的转录因子TubZIP2。TubZIP2及其在普通小麦中的同源基因TabZIP2能够显著提高AGPL-cyto、AGPS-cyto和SBEIIa基因的表达,进而提高小麦籽粒的总淀粉和支链淀粉含量。同时,TubZIP2和TabZIP2对小麦的其他重要农艺性状没有任何不良影响。The invention identifies and obtains a transcription factor TubZIP2 that is co-expressed with starch synthesis related genes (SSRG) in the endosperm filling stage through co-expression analysis (Weighted Gene Co-expression Network Analysis, WGCNA). TubZIP2 and its homologous gene TabZIP2 in common wheat can significantly increase the expression of AGPL-cyto , AGPS-cyto and SBEIIa genes, thereby increasing the total starch and amylopectin content of wheat grains. Meanwhile, TubZIP2 and TabZIP2 did not have any adverse effects on other important agronomic traits of wheat.
本发明有助于人们对小麦淀粉合成调控的理解,TubZIP2和TabZIP2也可以作为基因工程和传统育种的重要目标基因,培育高产优质的小麦新品种。The invention contributes to people's understanding of the regulation of wheat starch synthesis, and TubZIP2 and TabZIP2 can also be used as important target genes in genetic engineering and traditional breeding to cultivate high-yield and high-quality new wheat varieties.
本发明人通过对乌拉尔图小麦G1812籽粒灌浆期胚乳的转录组数据分析,鉴定得到了TubZIP2与部分SSRG基因具有相似的表达模式。TubZIP2亚细胞定位于细胞核,其1-128aa 具有转录激活活性。在双荧光素酶报告基因系统分析和小麦胚乳瞬时过表达分析中,TubZIP2促进AGPL-cyto、AGPS-cyto和SBEIIa基因启动子的活性。在TubZIP2的过表达小麦株系中,AGPL-cyto、AGPS-cyto和SBEIIa的表达在胚乳灌浆的中后期较野生型的显著提高,而其它SSRG基因的表达量没有变化。相应的,过表达系的总淀粉含量和支链淀粉含量显著提高,同时过表达系的粒长和千粒重也明显增加。相反的,利用CRISPR/Cas9技术敲除TubZIP2在普通小麦中的同源基因TabZIP2, 敲除系的总淀粉含量和支链淀粉含量显著降低,粒长和千粒重也显著减小。TubZIP2过表达系和TabZIP2敲除系的株高、有效分蘖、小穗数和粒长都没有明显变化。总之,TubZIP2和TabZIP2促进小麦籽粒淀粉的合成,且对其他重要农艺性状没有负面影响。By analyzing the transcriptome data of Uraltu wheat G1812 grain-filling endosperm, the inventors identified that TubZIP2 and some SSRG genes have similar expression patterns. TubZIP2 is subcellularly located in the nucleus, and its 1-128aa has transcriptional activation activity. TubZIP2 promoted the activity of AGPL-cyto, AGPS-cyto and SBEIIa gene promoters in dual-luciferase reporter gene system assays and transient overexpression assays in wheat endosperm. In TubZIP2 -overexpressing wheat lines, the expressions of AGPL-cyto, AGPS-cyto and SBEIIa were significantly increased in the middle and late stages of endosperm filling compared with those of the wild type, while the expression levels of other SSRG genes did not change. Correspondingly, the total starch content and amylopectin content of the overexpression lines were significantly increased, and the grain length and thousand-grain weight of the overexpression lines were also significantly increased. On the contrary, using CRISPR/Cas9 technology to knock out the homologous gene of TubZIP2 in common wheat, TabZIP2 , the total starch content and amylopectin content of the knockout line were significantly reduced, and the grain length and thousand-grain weight were also significantly reduced. Plant height, effective tillering, number of spikelets and grain length of TubZIP2 overexpression lines and TabZIP2 knockout lines were not significantly changed. In conclusion, TubZIP2 and TabZIP2 promoted wheat grain starch synthesis without negatively affecting other important agronomic traits.
本发明的目的是提供一个调控SSRG基因表达的转录因子TubZIP2,该转录因子促进淀粉的合成。The purpose of the present invention is to provide a transcription factor TubZIP2 that regulates the expression of SSRG gene, and the transcription factor promotes the synthesis of starch.
本发明所提供的转录因子TubZIP2来源于乌拉尔图小麦,具有SEQ ID No.1所示核苷酸序列组成的编码区。SEQ ID No.1所示的DNA长度为1722 bp(不包括终止密码子), 属于bZIP家族,编码574个氨基酸残基的蛋白质。TubZIP2在普通小麦的同源基因为TabZIP2,其有三个拷贝TabZIP-A2、TabZIP-B2和TabZIP-D2,它们的编码区分别是SEQ ID No.2、SEQID No.3和SEQ ID No.4所示核苷酸序列,它们的编码区长度都为 1722 bp, 编码574个氨基酸残基的蛋白质。The transcription factor TubZIP2 provided by the present invention is derived from Uraltu wheat, and has a coding region composed of the nucleotide sequence shown in SEQ ID No. 1. The DNA shown in SEQ ID No.1 has a length of 1722 bp (excluding stop codons), belongs to the bZIP family, and encodes a protein of 574 amino acid residues. The homologous gene of TubZIP2 in common wheat is TabZIP2 , which has three copies of TabZIP-A2 , TabZIP-B2 and TabZIP-D2 , and their coding regions are SEQ ID No.2, SEQID No.3 and SEQ ID No.4 respectively. The nucleotide sequences are shown, and their coding regions are all 1722 bp in length, encoding a protein of 574 amino acid residues.
同时,本发明提供一种包含权利要求1所述转录因子的重组载体。Meanwhile, the present invention provides a recombinant vector comprising the transcription factor of
本发明还提供一种含有所述转录因子的表达载体,优选为植物表达载体。The present invention also provides an expression vector containing the transcription factor, preferably a plant expression vector.
本发明提供所述转录因子在小麦中提高灌浆期SSRG基因的表达中的应用;所述的应用是将所述转录因子转化小麦,筛选过量表达所述转录因子的阳性转基因株系。The present invention provides the application of the transcription factor in improving the expression of SSRG gene at grain filling stage in wheat; the application is to transform the transcription factor into wheat, and screen positive transgenic lines overexpressing the transcription factor.
本发明还提供胚乳中过表达所述的转录因子的方法,该方法是将含有所述转录因子的过表达载体转化普通小麦的胚乳,优选地,采用基因枪的方法转化普通小麦花后15天的胚乳。The present invention also provides a method for overexpressing the transcription factor in the endosperm. The method is to transform the overexpression vector containing the transcription factor into the endosperm of common wheat, preferably, 15 days after the flower of common wheat is transformed by a gene gun method. of endosperm.
同时,本发明提供扩增TubZIP2和TabZIP2编码区全长的通用引物对,其中,正向引物的序列为SEQ ID No.5所示,反向引物的序列为SEQ ID No.6所示。Meanwhile, the present invention provides a universal primer pair for amplifying the full-length coding regions of TubZIP2 and TabZIP2 , wherein the sequence of the forward primer is shown in SEQ ID No. 5, and the sequence of the reverse primer is shown in SEQ ID No. 6.
本发明还提供利用共表达分析确定调控SSRG基因表达候选转录因子的方法,其通过RNA-Seq分析乌拉尔图小麦灌浆期胚乳的转录组,找到和SSRG基因具有相近表达模式的转录因子。The present invention also provides a method for determining candidate transcription factors for regulating SSRG gene expression by co-expression analysis, which analyzes the transcriptome of Uraltu wheat endosperm at grain filling stage by RNA-Seq, and finds transcription factors with similar expression patterns to SSRG gene.
本发明提供检测转录因子对SSRG基因启动子区调控强度的方法,将转录因子的过表达载体和SSRG基因启动子驱动萤火虫荧光素酶 (Firefly luciferase) 基因表达的报告载体共转化小麦原生质体细胞,并以海肾荧光素 (Renilla luciferase) 作为内参,检测转录因子调控SSRG基因启动子活性的强度。The present invention provides a method for detecting the regulation strength of transcription factor on SSRG gene promoter region. The overexpression vector of transcription factor and the reporter vector whose SSRG gene promoter drives the expression of Firefly luciferase gene are co-transformed into wheat protoplast cells, And Renilla luciferase was used as an internal reference to detect the intensity of transcription factors regulating SSRG gene promoter activity.
本发明提供通过胚乳过表达检测转录因子对SSRG基因表达调控的方法,其将转录因子的过表达载体通过基因枪的方法转化普通小麦花后15天的胚乳,高渗培养基中暗培养48小时,用RT-PCR检测胚乳中SSR基因表达量的变化。The invention provides a method for detecting the regulation of SSRG gene expression by a transcription factor through endosperm overexpression. The overexpression vector of the transcription factor is transformed into the
本发明提供的乌拉尔图小麦TubZIP2能够上调普通小麦未成熟种子中AGPL-cyto、AGPS-cyto和SBEIIa基因的表达并最终提高成熟种子总淀粉和支链淀粉的含量。其在普通小麦中的同源基因TabZIP2具有同样的功能。因此,bZIP2对小麦的淀粉品质改良具有重要意义。The Uraltu wheat TubZIP2 provided by the invention can up-regulate the expression of AGPL - cyto , AGPS - cyto and SBEIIa genes in the immature seeds of common wheat and finally increase the content of total starch and amylopectin in mature seeds. Its homologous gene in common wheat, TabZIP2, has the same function. Therefore, bZIP2 is of great significance for the improvement of starch quality in wheat.
附图说明Description of drawings
图1 TubZIP2进化树分析,亚细胞定位,转录激活活性和表达模式分析。其中,A为TubZIP2的结构,其中128-179 氨基酸(amino acid, aa)代表bZIP家族转录因子的核心区域;B为进化树分析显示TubZIP2和其同源基因在小麦族保守,与来自禾本科其他族群的同源基因关系较远;C为TubZIP2的N-端(1-127 aa)具有转录激活活性;D为TubZIP2定位于细胞核;E为TubZIP2在T. urartu成熟胚乳中特异表达;F为TubZIP2和部分SSRG基因在T. urartu灌浆过程中共表达。Fig. 1 TubZIP2 phylogenetic tree analysis, subcellular localization, transcriptional activation activity and expression pattern analysis. Among them, A is the structure of TubZIP2, of which 128-179 amino acids (amino acids, aa) represent the core region of bZIP family transcription factors; B is the phylogenetic tree analysis showing that TubZIP2 and its homologous genes are conserved in Triticeae, and are similar to other genes from Poaceae The homologous genes of the groups are far away; C means that the N-terminal (1-127 aa) of TubZIP2 has transcriptional activation activity; D means that TubZIP2 is located in the nucleus; E means that TubZIP2 is specifically expressed in the mature endosperm of T. urartu ; F means that TubZIP2 and some SSRG genes were co-expressed in T. urartu during grain filling.
图2 TubZIP2在体外提高AGPL-cyto、AGPS-cyto和SBEIIa基因的转录。A为双荧光素酶报告基因系统中报告载体、表达载体和内参的示意图,其中REN:海肾荧光素酶;LUC:萤火虫荧光素酶;Ubi:ubiquitin;P:启动子;ter:终止。B为TubZIP2在双荧光素酶报告基因系统中显著提高AGPL-cyto、AGPS-cyto和SBEIIa基因的启动子活性;C为TubZIP2在胚乳中过表达载体示意图;D为TubZIP2在胚乳中的过表达提高AGPL-cyto、AGPS-cyto和SBEIIa基因的转录。Figure 2 TubZIP2 increases the transcription of AGPL-cyto , AGPS-cyto and SBEIIa genes in vitro. A is a schematic diagram of the reporter vector, expression vector and internal reference in the dual-luciferase reporter gene system, wherein REN: Renilla luciferase; LUC: Firefly luciferase; Ubi: ubiquitin; P: promoter; ter: termination. B is that TubZIP2 significantly improves the promoter activity of AGPL-cyto , AGPS-cyto and SBEIIa genes in the dual-luciferase reporter gene system; C is the schematic diagram of TubZIP2 overexpression vector in endosperm; D is that the overexpression of TubZIP2 in endosperm improves the Transcription of AGPL-cyto , AGPS-cyto and SBEIIa genes.
图3 TubZIP2提高小麦过表达系中AGPL-cyto、AGPS-cyto和SBEIIa基因的转录水平。A和B分别表示RNA-seq和RT-PCR的结果显示TubZIP2在转基因小麦未成熟胚乳中过量表达;C、E和G分别为RNA-seq分析中花后7天、14天和21天的胚乳中AGPL-cyto、AGPS-cyto和SBEIIa转录水平的变化;D、F和H分别表示RT-PCR验证花后7天、14天和21天的胚乳中AGPL- cyto、AGPS-cyto和SBEIIa基因表达量的变化。Figure 3 TubZIP2 increases the transcription levels of AGPL-cyto , AGPS-cyto and SBEIIa genes in wheat overexpression lines. A and B represent RNA-seq and RT-PCR results, respectively, showing that TubZIP2 was overexpressed in immature endosperm of transgenic wheat; C, E, and G represent endosperm at 7, 14, and 21 days after flowering, respectively, in RNA-seq analysis Changes of AGPL-cyto , AGPS-cyto and SBEIIa transcript levels in the middle; D, F and H represent RT-PCR verification of AGPL- cyto , AGPS-cyto and SBEIIa gene expression in
图4 TubZIP2提高过表达系的总淀粉含量和支链淀粉含量。A为TubZIP2显著提高2017-2018北京、堤上和赵县种植过表达系的总淀粉含量;B电镜扫描对比中发现赵县种植的过表达系籽粒中的A型淀粉颗粒较野生型的多,其中A和B分别表示A型和B型淀粉粒;C、D和E分别为三个地点过表达系的支链淀粉含量、直链淀粉含量和直链淀粉和支链淀粉的比值; F为RVA分析中北京的过表达系相较于野生型有更高的峰值粘度。Figure 4 TubZIP2 increases the total starch content and amylopectin content of the overexpressed lines. A: TubZIP2 significantly increased the total starch content of the overexpression lines planted in Beijing, Dishang and Zhaoxian from 2017 to 2018; B, the electron microscope scanning comparison found that the A-type starch granules in the grains of the overexpression lines planted in Zhaoxian were more than those of the wild type, where A and B represent A- and B-type starch granules, respectively; C, D, and E represent the amylopectin content, amylose content and the ratio of amylose to amylopectin in the overexpression lines at the three sites, respectively; F is the Beijing overexpressed lines had higher peak viscosity compared to wild type in RVA analysis.
图5 TubZIP2提高过表达系籽粒的千粒重和粒宽。A和B分别为野生型与过表达系植株和穗部形态;C、D和E分别为野生型与过表达系的株高、有效分蘖和每穗小穗数;F为野生型与过表达系籽粒的粒长与粒宽形态;G为TubZIP2对转基因系的籽粒长度没有影响;H和I分别为TubZIP2提高过表达系的粒宽和千粒重。Fig. 5 TubZIP2 increases the 1000-grain weight and grain width of overexpression lines. A and B are the plant and panicle morphology of the wild type and overexpression lines, respectively; C, D and E are the plant height, effective tillers and spikelets per panicle of the wild type and overexpression lines, respectively; F is the wild type and overexpression lines The grain length and grain width morphology of the lines; G means that TubZIP2 has no effect on the grain length of transgenic lines; H and I mean that TubZIP2 increases the grain width and 1000-grain weight of the overexpression lines, respectively.
图6 TabZIP2体外提高AGPL-cyto、AGPS-cyto和SBEIIa基因的转录。A为TabZIP2在普通小麦胚乳中特异表达;B为TabZIP2与AGPL-cyto、AGPS-cyto和SBEIIa共表达;C为TabZIP2在胚乳中过表达载体示意图;D为TabZIP2在胚乳中的过表达提高AGPL-cyto、AGPS- cyto和SBEIIa基因的转录。Figure 6 TabZIP2 increases the transcription of AGPL-cyto , AGPS-cyto and SBEIIa genes in vitro. A is the specific expression of TabZIP2 in the endosperm of common wheat; B is the co-expression of TabZIP2 with AGPL-cyto , AGPS-cyto and SBEIIa ; C is the schematic diagram of the overexpression vector of TabZIP2 in the endosperm; D is the overexpression of TabZIP2 in the endosperm to improve AGPL- Transcription of cyto , AGPS- cyto and SBEIIa genes.
图7 TabZIP2敲除系的总淀粉含量和支链淀粉含量下降。A为北京、堤上和赵县TabZIP2敲除系总淀粉含量显著降低;B电镜扫描对比中发现赵县种植的敲除系籽粒中的A型淀粉粒较野生型的少,其中A和B分别表示A型和B型淀粉粒;C为三个地点敲除系的支链淀粉含量;D为快速粘度分析仪(RVA)分析中北京种植的敲除系相较于野生型有更低的峰值粘度; E和F分别显示敲除系的粒宽和千粒重显著下降。Figure 7 Total starch content and amylopectin content decreased in TabZIP2 knockout lines. A shows that the total starch content of the TabZIP2 knockout lines in Beijing, Dishang and Zhaoxian was significantly reduced; B, it was found that the type A starch grains in the grains of the knockout lines planted in Zhaoxian were less than those of the wild type, and A and B were Indicates type A and type B starch granules; C is the amylopectin content of the knockout lines at the three sites; D is the rapid viscosity analyzer (RVA) analysis of the Beijing-grown knockout lines with lower peaks compared to the wild type Viscosity; E and F show a significant decrease in kernel width and thousand kernel weight, respectively, of the knockout lines.
具体实施方式Detailed ways
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。The experimental methods used in the following examples are conventional methods unless otherwise specified. The materials, reagents, etc. used in the following examples can be obtained from commercial sources unless otherwise specified.
实施例1 乌拉尔图小麦TubZIP2和SSR基因的进化树分析,亚细胞定位,转录激活活性和共表达分析,具体包括如下步骤:Example 1 Evolutionary tree analysis, subcellular localization, transcriptional activation activity and co-expression analysis of Uraltu wheat TubZIP2 and SSR genes, including the following steps:
(1)小麦bZIP2基因的克隆:根据TRIUR3_00571的5’末端和3’末端的序列,设计扩增TubZIP2编码区的引物(正向引物的序列为SEQ ID No.5所示,反向引物的序列为SEQ IDNo.6所示),以乌拉尔图小麦花后15天胚乳的cDNA为模板,克隆得到TubZIP2,序列为SEQ IDNo.1所示。根据TubZIP2序列搜索IWGSC BLAST(https://urgi.versailles.inra.fr/blast_iwgsc/dbgroup=wheat_iwgsc_refseq_v1_chromosomes&program=blastn)和WheatExp BLAST(https://wheat.pw.usda.gov/WheatExp/),利用TubZIP2的全长引物以普通小麦中国春花后15天胚乳的cDNA为模板,TubZIP2的全长引物(正向引物的序列为SEQ IDNo.5所示,反向引物的序列为SEQ ID No.6所示)PCR扩增并单克隆测序得到普通小麦TabZIP2的三个拷贝TabZIP-A2、TabZIP-B2和TabZIP-D2,它们的序列分别为SEQ ID No.2、SEQ ID No.3和SEQ ID No.4所示。(1) Cloning of wheat bZIP2 gene: According to the sequences of the 5' and 3' ends of TRIUR3_00571, primers for amplifying the coding region of TubZIP2 were designed (the sequence of the forward primer is shown in SEQ ID No. 5, and the sequence of the reverse primer is shown in SEQ ID No. 5). SEQ ID No. 6), using the 15-day post-flowering endosperm cDNA of Uraltu wheat as a template, TubZIP2 was cloned to obtain TubZIP2 , the sequence is shown in SEQ ID No. 1. Search IWGSC BLAST against TubZIP2 sequences (https://urgi.versailles.inra.fr/blast_iwgsc/ dbgroup=wheat_iwgsc_refseq_v1_chromosomes&program=blastn) and WheatExp BLAST (https://wheat.pw.usda.gov/WheatExp/), using the full-length primers of TubZIP2 to the 15-day post-flowering endosperm cDNA of common wheat as a template, the full-length TubZIP2 The primers (the sequence of the forward primer is shown in SEQ ID No. 5, and the sequence of the reverse primer is shown in SEQ ID No. 6) PCR amplification and monoclonal sequencing to obtain three copies of common wheat TabZIP2 TabZIP-A2 , TabZIP- B2 and TabZIP-D2 , their sequences are shown in SEQ ID No.2, SEQ ID No.3 and SEQ ID No.4, respectively.
(2)进化树分析:将TubZIP2和TabZIP2以及GenBank中与它们序列相似性80%以上基因的氨基酸序列用Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) 软件比对后,用Mega 5.05 (http://www.megasoftware.net/) 构建进化树,结果如图1B所示,TubZIP2及其在小麦族的同源基因在进化树分析中单独聚为一个分支,与来自其它族的同源基因距离较远,这表明bZIP2基因在小麦族保守。(2) Phylogenetic tree analysis: The amino acid sequences of TubZIP2 , TabZIP2 and GenBank genes with more than 80% sequence similarity to them were analyzed by Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) software After the alignment, Mega 5.05 (http://www.megasoftware.net/) was used to construct an evolutionary tree. The results are shown in Figure 1B. TubZIP2 and its homologous genes in Triticaceae were clustered into a single branch in the evolutionary tree analysis. , which is far from homologous genes from other groups, which indicates that the bZIP2 gene is conserved in Triticeae.
(3)转录激活活性检测:TubZIP2氨基酸序列通过NCBI Protein BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgiPROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome)比对,分析发现TubZIP2是一个bZIP类家族的转录因子,包含一个basicleucine zipper(bZIP)结构域(128-179 aa)结果如图1A所示,TubZIP2的128- 179 aa为它的DNA结合区域 (bZIP domain ),。将TubZIP2的全长和片段1-127 aa、128-179 aa以及180-574 aa对应的编码区序列分别与pGBKT7(Clontech,California,USA)构建重组质粒。将重组质粒分别转化酵母菌株AH109(Clontech,California,USA)结果如图1C所示,所有菌株都可以在固体培养基 (SD/-Trp)上正常生长,但只有转化完整基因和转录激活区域重组质粒的菌株可以使X-gal变蓝,而转化DNA结合区域重组质粒的菌株不能变蓝。这表明TubZIP2具有转录激活活性,且其N端1-127 aa行使转录激活活性功能。(3) Detection of transcriptional activation activity: The amino acid sequence of TubZIP2 was analyzed by NCBI Protein BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome) alignment, analysis found that TubZIP2 is a bZIP family transcription factor, containing a basicleucine zipper (bZIP) domain (128-179 aa) The results are shown in Figure 1A, TubZIP2 128-179 aa is its DNA binding region (bZIP domain). The full-length TubZIP2 and the corresponding coding region sequences of fragments 1-127 aa, 128-179 aa and 180-574 aa were respectively combined with pGBKT7 (Clontech, California, USA) to construct recombinant plasmids. The recombinant plasmids were respectively transformed into yeast strain AH109 (Clontech, California, USA). The results are shown in Figure 1C. All strains could grow normally on solid medium (SD/-Trp), but only the transformed intact gene and transcriptional activation region were recombined. Strains with plasmids can turn X-gal blue, while strains transformed with recombinant plasmids in the DNA binding region cannot. This indicates that TubZIP2 has transcriptional activation activity, and its N-terminal 1-127 aa functions as transcriptional activation activity.
(4)亚细胞定位:将TubZIP2连接到pJIT163-UBI-hGFP 载体,构建TubZIP2融合GFP的重组质粒pJIT163-UBI-TubZIP2-hGFP,转化小麦叶片原生质体细胞, 在ubiquitin启动子驱动下实现TubZIP2融合的表达。结果如图1D所示,TubZIP2定位于原生质体细胞的细胞核。TubZIP2在细胞核的定位表明其在核内行使功能,符合转录因子的特征。(4) Subcellular localization: Connect TubZIP2 to the pJIT163-UBI-hGFP vector, construct a recombinant plasmid pJIT163-UBI-TubZIP2-hGFP with TubZIP2 fused to GFP, transform wheat leaf protoplast cells, and realize TubZIP2 fusion under the drive of ubiquitin promoter. Express. As a result, as shown in Figure 1D, TubZIP2 localized to the nucleus of protoplast cells. The localization of TubZIP2 in the nucleus indicates that it functions in the nucleus, which is consistent with the characteristics of transcription factors.
(5)组织特异性表达分析:采用Trizol法提取乌拉尔图小麦花后15天根、茎、叶和胚乳的总RNA,用TubZIP2特异引物,通过RT-PCR验证它们的组织特异性表达,结果如图1E所示,TubZIP2在胚乳中大量表达。(5) Tissue-specific expression analysis: Trizol method was used to extract total RNA from roots, stems, leaves and endosperm of
(6)小麦bZIP2基因和SSRG基因表达模式的验证:在乌拉尔图小麦灌浆期的胚乳中,利用TubZIP2和部分SSRG基因的特异引物,通过RT-PCR验证两者的表达模式。结果如图1F所示,TubZIP2和所选SSRG基因的表达在花后5天达到峰值并随后逐渐降低,这和RNA-Seq的结果是一致的。(6) Verification of the expression patterns of wheat bZIP2 and SSRG genes: In the endosperm of Uraltu wheat at grain filling stage, specific primers for TubZIP2 and some SSRG genes were used to verify the expression patterns of both by RT-PCR. As shown in Figure 1F, the expression of TubZIP2 and selected SSRG genes peaked at 5 days after flowering and then gradually decreased, which was consistent with the results of RNA-Seq.
实施例2 普通小麦TabZIP2和SSRG基因的组织特异性表达和体外促进AGPL-cyto、AGPS-cyto和SBEIIa的转录。Example 2 Tissue-specific expression of common wheat TabZIP2 and SSRG genes and in vitro promotion of transcription of AGPL-cyto , AGPS-cyto and SBEIIa .
(1)组织特异性表达分析:提取普通小麦中国春花后15天植株的根、茎、旗叶、穗子和胚乳的总RNA,用 TabZIP-A2、TabZIP-B2和TabZIP-D2的特异引物,通过RT-PCR验证它们的组织特异性表达,结果如图6A所示,在花后15天的根、茎、旗叶、穗部,TabZIP-B2有少量的表达,TabZIP-A2和TabZIP-D2有微量的表达;在花后15天的胚乳中,TabZIP-A2、TabZIP-B2和TabZIP-D2都有大量表达,且以TabZIP-B2的表达量最高。(1) Tissue-specific expression analysis: Total RNA was extracted from the roots, stems, flag leaves, ears and endosperm of
(2)TabZIP2基因和SSRG基因表达模式的验证:利用RT-PCR检测了普通小麦中国春灌浆期胚乳中TabZIP2和SSRG基因的表达模式,结果如图6B所示,TabZIP-A2、 TabZIP-B2和TabZIP-D2与部分SSRG基因具有相同的表达模式,即起始于花后5天,并在花后10天达到峰值,然后表达量开始下降;这也预示着这三个拷贝有参与了普通小麦SSRG基因的表达调控。(2) Verification of the expression patterns of TabZIP2 and SSRG genes: RT-PCR was used to detect the expression patterns of TabZIP2 and SSRG genes in the endosperm of common wheat at the Chinese spring filling stage. The results are shown in Figure 6B. TabZIP-A2 , TabZIP-B2 and TabZIP-D2 has the same expression pattern as some SSRG genes, that is, it starts at 5 days after flowering, peaks at 10 days after flowering, and then the expression begins to decline; this also indicates that these three copies are involved in common wheat SSRG gene expression regulation.
实施例3 小麦bZIP2基因的功能Example 3 Function of wheat bZIP2 gene
1. 小麦bZIP2对SSRG基因的直接调控1. Direct regulation of SSRG gene by wheat bZIP2
(1)双荧光素酶报告基因系统检测TubZIP2对SSR基因启动子的调控: 用ubiquitin启动子驱动TubZIP2大量表达(Ubi P::TubZIP2),构建TubZIP2的表达载体;利用SSRG基因的启动子 (-2000 bp至-1 bp )驱动萤火虫荧光素酶 (Firefly luciferase) 基因的表达,构建表达载体(SSRG P::LUC),并用此载体作为报告载体。将两个重组载体共转化小麦原生质体细胞,以海肾荧光素酶 (Renilla luciferase) 过表达载体(Ubi P::REN)作为对照,载体示意图如2A所示,LUC/REN代表SSR基因启动子的表达活性。采用Dual-LuciferaseReporter Assay System试剂盒 (Promega, Madison, USA) 和Gloma 20/20 Luminometer(Promega, Madison, USA) 检测荧光强度。结果如图2B所示,TubZIP2显著地提高了SSRG基因AGPL-cyto、AGPS-cyto和SBEIIa 的启动子活性。(1) The dual-luciferase reporter gene system was used to detect the regulation of TubZIP2 on the SSR gene promoter: The ubiquitin promoter was used to drive the massive expression of TubZIP2 (Ubi P::TubZIP2), and the expression vector of TubZIP2 was constructed; the promoter of the SSRG gene (- 2000 bp to -1 bp ) to drive the expression of Firefly luciferase gene, construct an expression vector (SSRG P::LUC), and use this vector as a reporter vector. The two recombinant vectors were co-transformed into wheat protoplast cells, and the Renilla luciferase overexpression vector (Ubi P::REN) was used as a control. The schematic diagram of the vector is shown in 2A, and LUC/REN represents the SSR gene promoter. expression activity. Fluorescence intensity was measured using the Dual-LuciferaseReporter Assay System kit (Promega, Madison, USA) and a
(2)bZIP2的胚乳过表达:pJIT163-UBI-hGFP载体 (氨苄抗性) (由中国科学院遗传与发育生物学研究所高彩霞研究员提供) 是由ubiquitin启动子驱动GFP的表达。将TubZIP2、TabZIP-A2、TabZIP-B2和TabZIP-D2分别重组于pJIT163-UBI-hGFP载体,使其中的ubiquitin启动子驱动bZIP2大量表达,载体示意图分别如图2C和6C所示。(2) Endosperm overexpression of bZIP2 : pJIT163-UBI-hGFP vector (ampicillin resistance) (provided by Gao Caixia, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) is driven by the ubiquitin promoter to drive the expression of GFP. TubZIP2 , TabZIP-A2 , TabZIP-B2 and TabZIP-D2 were recombined into the pJIT163-UBI-hGFP vector, so that the ubiquitin promoter in it drives the massive expression of bZIP2 . The schematic diagrams of the vectors are shown in Figures 2C and 6C, respectively.
将普通小麦中国春花后15天的籽粒用70%的酒精消毒,基因枪轰击胚乳,使上述重组质粒在胚乳实现瞬时表达,后续于高渗培养基中避光培养48小时;提取胚乳的总RNA,反转录成cDNA;RT-PCR验证TubZIP2、TabZIP-A2、TabZIP-B2和TabZIP-D2的瞬时表达及其对SSRG基因表达的影响,结果如图2D(TubZIP2)所示,和导入空载质粒的野生型胚乳相比,TubZIP2能显著提高AGPL-cyto、AGPS-cyto和SBEIIa 的启动子活性;TabZIP2的结果如图6D所示,TabZIP-A2、TabZIP-B2和TabZIP-D2都能上调SSRG基因的表达,其中以TabZIP-B2的上调强度最大,TabZIP-D2效果不明显。The grains of
小麦TubZIP2过表达系RNA-seq及表型鉴定(1)小麦转基因植株筛选:构建利用Glu-1Bx14启动子驱动TubZIP2过表达的载体,使该转录因子在籽粒胚乳特异表达,并于中国科学院遗传与发育生物学研究所转基因平台进行基因枪转化,得到的转化苗种植于温室,并按常规方法小量提取其基因组DNA,取100 ng基因组DNA为模板,用引物对(SEQ IDNo.5所示和SEQ ID No.6所示),通过常规PCR扩增,以野生型小麦基因组DNA为对照,进一步检测阳性植株。纯合自交至T2代的转基因小麦用于后续实验。RNA-seq and phenotypic identification of wheat TubZIP2 overexpression lines (1) Screening of wheat transgenic plants: A vector was constructed using the Glu-1Bx14 promoter to drive the overexpression of TubZIP2 , so that the transcription factor was specifically expressed in the grain endosperm, and was studied in the Chinese Academy of Sciences. The transgenic platform of the Institute of Developmental Biology was used for biolistic transformation, and the obtained transformed seedlings were planted in the greenhouse, and their genomic DNA was extracted in small quantities according to conventional methods. SEQ ID No. 6), amplified by conventional PCR, with wild-type wheat genomic DNA as a control, to further detect positive plants. Transgenic wheat homozygous selfed to the T generation was used for subsequent experiments.
(2)过表达系小麦RNA-seq:分别对花后7天、14天和21天的胚乳取材,液氮迅速冻存,将材料放置与-80℃冰箱,利用Trizol进行RNA提取,三个重复样品进行转录组测序(RNA-seq)。同时将RNA反转录成cDNA,以Ta4045(ubiquinol-cytochrome C reductaseiron-sulfur subunit)作为对照,利用SSRG基因的特异引物,通过RT-PCR验证SSRG基因的表达。结果如图3A和图3B,RNA-seq和RT-PCR验证结果均表明TubZIP2在三个时期的表达均显著上调;图3C和图3D表明TubZIP2在花后7天没有明显的调控作用;图3E和3F所示,TubZIP2在花后14天能显著增加AGPL-cyto、AGPS-cyto和SBEIIa基因的表达;图3G和图3H表明,该基因在花后21天的调控作用减弱,主要上调SBEIIa基因的表达。(2) RNA-seq of wheat overexpression line: The endosperm of 7 days, 14 days and 21 days after flowering was taken, and the material was quickly frozen in liquid nitrogen. Duplicate samples were subjected to transcriptome sequencing (RNA-seq). At the same time, RNA was reverse transcribed into cDNA, and Ta4045 (ubiquinol-cytochrome C reductaseiron-sulfur subunit) was used as a control, and the specific primers of SSRG gene were used to verify the expression of SSRG gene by RT-PCR. The results are shown in Figure 3A and Figure 3B. Both RNA-seq and RT-PCR validation results showed that the expression of TubZIP2 was significantly up-regulated in all three stages; Figure 3C and Figure 3D showed that TubZIP2 had no obvious regulatory effect at 7 days after flowering; Figure 3E and 3F, TubZIP2 can significantly increase the expression of AGPL-cyto , AGPS-cyto and SBEIIa genes at 14 days after flowering; Figure 3G and Figure 3H show that the regulatory effect of this gene is weakened at 21 days after flowering, and the SBEIIa gene is mainly up-regulated expression.
(3)成熟种子总淀粉含量测定:总淀粉含量通过总淀粉试剂盒进行测定(K-TSTA;Megazyme)。结果如图4A所示,过表达系小麦的总淀粉含量在北京,河北堤上和赵县三个地点相比于野生型明显提高,三个系OE82、OE85和OE87分别平均提高约2.88%、4.93%和4.38%。AGPS-cyto和AGPL-cyto是淀粉生物合成通路中的限速酶,总淀粉含量的增加与转基因系二者的转录水平增加有关。(3) Determination of total starch content in mature seeds: The total starch content was determined by a total starch kit (K-TSTA; Megazyme). The results are shown in Fig. 4A, the total starch content of the overexpression lines was significantly increased in Beijing, Hebei Dishang and Zhaoxian compared with the wild type, and the three lines OE82, OE85 and OE87 increased by about 2.88%, OE87 and OE87, respectively. 4.93% and 4.38%. AGPS-cyto and AGPL-cyto are rate-limiting enzymes in starch biosynthesis pathway, and the increase of total starch content was associated with the increase of transcription level of both transgenic lines.
(4)成熟种子电镜扫描:用刀片对野生型和过表达系小麦的成熟籽粒进行横切,对横切面进行电镜扫描。如图4B所示,过表达系有更多的A型淀粉颗粒,这与总淀粉含量增加相一致。(4) Electron microscope scanning of mature seeds: Cross-section of the mature grains of wild-type and overexpression line wheat was carried out with a blade, and electron microscope scanning of the cross-section was carried out. As shown in Figure 4B, the overexpressed lines had more A-type starch granules, consistent with an increase in total starch content.
(5)成熟种子直链淀粉含量测定:利用DPCZ-II型直链淀粉分析仪对过表达系和野生型的面粉进行直链淀粉含量测定,总淀粉含量和直链淀粉含量的差值即为支链淀粉含量。如图4C所示,三个地点过表达系的支链淀粉含量均显著高于野生型,其中OE82平均提高4.79%,OE85和OE87分别提高8.06%和7.50%,这个结果与SBEIIa催化合成支链淀粉合成相符。河北堤上和赵县的直链淀粉含量没有差异(赵县的OE87有9.57%的减少),但是北京地区的OE82、OE85和OE87直链淀粉含量分别减少7.15%、5.02%和5.60%,图4D所示。由于支链淀粉含量的增加和直链淀粉含量稳定不变甚至降低导致三个地点三个过表达系直链淀粉/支链淀粉的值显著降低(堤上和赵县的OE82的直链淀粉/支链淀粉没有明显变化),如图4E所示。(5) Determination of amylose content of mature seeds: The amylose content of the overexpression line and wild-type flour was measured by the DPCZ-II amylose analyzer, and the difference between the total starch content and the amylose content was Amylopectin content. As shown in Figure 4C, the amylopectin content of the overexpression lines at the three sites was significantly higher than that of the wild type, with an average increase of 4.79% in OE82, 8.06% and 7.50% in OE85 and OE87, respectively. This result is consistent with the SBEIIa -catalyzed synthesis of amylopectin. Starch synthesis is consistent. There was no difference in amylose content between Hebei Dishang and Zhaoxian (9.57% reduction in OE87 in Zhaoxian), but the amylose content of OE82, OE85 and OE87 in Beijing decreased by 7.15%, 5.02% and 5.60%, respectively, Fig. 4D is shown. The amylose/amylopectin values of the three overexpression lines at the three sites were significantly decreased due to the increase in amylopectin content and the stable or even decrease of amylose content (amylose/amylopectin in OE82 in Dishang and Zhaoxian County). amylopectin did not change significantly), as shown in Figure 4E.
(6)过表达系成熟种子RVA特性:快速粘度分析仪(RVA)被广泛地用于评估淀粉的糊化特性,RVA产生的峰值粘度与直链淀粉与支链淀粉的比例呈负相关,与直支比下降相一致,如图4F所示,北京种植的过表达系小麦峰值粘度均显著增加。。(6) RVA characteristics of mature seeds of overexpression lines: Rapid viscosity analyzer (RVA) is widely used to evaluate the gelatinization characteristics of starch, the peak viscosity produced by RVA is negatively correlated with the ratio of amylose to amylopectin, and Consistent with the decrease in the straight-to-branch ratio, as shown in Figure 4F, the peak viscosity of wheat in the overexpression lines grown in Beijing all increased significantly. .
(7) 过表达系小麦的植株表型鉴定:对三个地点的转基因小麦的性状进行调查,如图5A、5B和5F分别表示野生型和过表达系的植株,穗子和籽粒性状;图5C、5D和5E分别表示过表达系的株高、有效分蘖和单株小穗数和野生型的没有显著差异;图5G、5H和5I分别表示籽粒的粒长、粒宽和千粒重,其中粒长没有显著差异,过表达系的粒宽和千粒重均高于野生型。其中OE85的粒宽增加幅度最大,高达6.62%,OE82增幅最小,只有3.72%。粒宽的增加引起籽粒千粒重的变化,OE85千粒重平均增加最多,高达13.50%,OE82和OE87平均增加6.98%和11.46%。(7) Plant phenotype identification of overexpression line wheat: The traits of transgenic wheat in three locations were investigated, as shown in Figures 5A, 5B and 5F for wild-type and overexpression line plants, ear and grain traits, respectively; Figure 5C , 5D and 5E indicate that the plant height, effective tillering and number of spikelets per plant of the overexpression lines are not significantly different from those of the wild type, respectively; Figures 5G, 5H and 5I indicate the grain length, grain width and thousand-grain weight, respectively, where the grain length There were no significant differences, and the grain width and thousand grain weight of the overexpression lines were higher than those of the wild type. Among them, OE85 had the largest increase in grain width, up to 6.62%, and OE82 had the smallest increase, only 3.72%. The increase of kernel width caused the change of 1000-kernel weight. The average 1000-kernel weight of OE85 increased the most, up to 13.50%, and the average increase of OE82 and OE87 was 6.98% and 11.46%.
小麦TabZIP2敲除系的表型鉴定Phenotypic identification of a wheat TabZIP2 knockout line
(1)敲除系成熟种子总淀粉含量测定:2017-2018年种植于北京、河北堤上和赵县三个地区的小麦TabZIP2敲除系T2代株系用于后续测定。总淀粉含量通过总淀粉试剂盒进行测定(K-TSTA; Megazyme)。如图7A所示,北京、堤上和赵县地点敲除系的总淀粉含量均显著低于野生型,bZIP2kn-ab 、bZIP2kn-abd1和 bZIP2kn-abd2平均降低4.18%,5.69% 和5.75%。(1) Determination of total starch content in mature seeds of knockout lines: The T 2 generation lines of the TabZIP2 knockout line of wheat planted in Beijing, Hebei Dishang and Zhaoxian from 2017 to 2018 were used for subsequent determination. Total starch content was determined by total starch kit (K-TSTA; Megazyme). As shown in Figure 7A, the total starch content of the knockout lines at the Beijing, Dishang and Zhaoxian sites were all significantly lower than those of the wild type, with an average reduction of 4.18%, 5.69% and 5.69% for bZIP2 kn -ab, bZIP2 kn -abd1 and bZIP2 kn -abd2 5.75%.
(2)敲除系成熟种子电镜扫描:野生型和敲除系小麦的成熟籽粒,刀片横切,对横切面进行电镜扫描,籽粒的A、B型淀粉粒分布随总淀粉降低发生变化。如图7B所示,敲除系含有更少的A型淀粉粒。(2) Electron microscope scanning of mature seeds of knockout line: Mature grains of wild-type and knockout line wheat were cross-sectioned with a blade, and the cross-section was scanned by electron microscope. The distribution of A and B starch grains in the grains changed with the decrease of total starch. As shown in Figure 7B, the knockout lines contained fewer A-type starch granules.
(3)敲除系成熟种子直链淀粉含量测定:利用DPCZ-II型直链淀粉分析仪对野生型和敲除系的面粉进行直链淀粉含量测定,总淀粉含量和直链淀粉含量的差值即为支链淀粉含量,如图7C所示,三个地点敲除系的支链淀粉含量,除了堤上的bZIP2kn-ab变化不明显,其它三个地点的三个系均显示下降,bZIP2kn-ab平均下降3.42%,bZIP2kn-abd1和bZIP2kn-abd2则分别下降5.57%和10.10%。总淀粉含量和支链淀粉含量的下降与敲除系中TabZIP2对TaAGPL-cyto、TaAGPS-cyto和TaSBEIIa的转录活性下降相一致。 (4)敲除系成熟种子RVA特性:通过RVA对面粉的粘度进行分析,如图7D所示,敲除系的峰值粘度显著低于野生型。敲除系支链淀粉含量的下降引起RVA的峰值粘度显著下降。(3) Determination of amylose content in mature seeds of knockout line: The amylose content of wild-type and knockout line flour was measured by DPCZ-II amylose analyzer, and the difference between total starch content and amylose content was measured. The value is the amylopectin content. As shown in Figure 7C, the amylopectin content of the knockout lines in the three sites, except for the bZIP2 kn -ab on the embankment, did not change significantly, and the three lines in the other three sites showed a decrease. bZIP2 kn -ab decreased by an average of 3.42%, and bZIP2 kn -abd1 and bZIP2 kn -abd2 decreased by 5.57% and 10.10%, respectively. The decrease in total starch content and amylopectin content was consistent with the decreased transcriptional activity of TabZIP2 on TaAGPL-cyto , TaAGPS-cyto and TaSBEIIa in the knockout line. (4) RVA characteristics of mature seeds of knockout line: The viscosity of flour was analyzed by RVA, as shown in Figure 7D, the peak viscosity of knockout line was significantly lower than that of wild type. The drop in the amylopectin content of the knockout line caused a significant decrease in the peak viscosity of the RVA.
(5)敲除系成熟种子籽粒性状:如图7E和图7F所示,三个地点敲除系的粒宽和千粒重均显著低于野生型,其中bZIP2kn-ab、bZIP2kn-abd1和 bZIP2kn-abd2粒宽平均降低3.79%、5.40%和5.78%,对应的千粒重平均降低9.19%、14.78%和15.30%。TabZIP2敲除系中TaAGPL-cyto、TaAGPS-cyto和TaSBEIIa的转录活性下降,导致成熟籽粒的总淀粉含量和支链淀粉含量下降,进而引起籽粒粒宽显著下降,进一步导致籽粒千粒重相比野生型显著降低。(5) Grain traits of mature seeds of knockout lines: As shown in Figure 7E and Figure 7F, the grain width and thousand-grain weight of knockout lines at three sites were significantly lower than those of wild type, among which bZIP2 kn -ab, bZIP2 kn -abd1 and bZIP2 The average grain width of kn -abd2 decreased by 3.79%, 5.40% and 5.78%, and the corresponding 1000-grain weight decreased by 9.19%, 14.78% and 15.30% on average. The transcriptional activities of TaAGPL-cyto , TaAGPS-cyto and TaSBEIIa in the TabZIP2 knockout line decreased, resulting in a decrease in the total starch content and amylopectin content of mature grains, which in turn caused a significant decrease in grain width, which further resulted in a significant reduction in 1000-kernel weight compared to wild type. reduce.
<110>中国科学院遗传与发育生物学研究所<110> Institute of Genetics and Developmental Biology, Chinese Academy of Sciences
<120>一个提高小麦籽粒总淀粉含量和支链淀粉含量的转录因子bZIP2及其应用<120> A transcription factor bZIP2 that increases the total starch content and amylopectin content of wheat grains and its application
<160> 6<160> 6
<210> 1<210> 1
<211> 1722<211> 1722
<212> CDS<212> CDS
<213> TubZIP2,小麦属,普通小麦(Triticum aestivum L.)<213> TubZIP2, Triticum, Triticum aestivum L.
<400> 1<400> 1
ATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CGGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCCT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGGCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC GAGGAGCGCG AGCGCTGGGAGCGACGGCAA GGCTAAGGAG GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACCGGGAGAGCGCGCAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAGGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACTGCTGA GAACGCCGCT CTCAAGCAGCAACTGGCCGG TGCTGGTGGA GCAGGCGTCC CGCCGCCGCT GCCGATGTAC CCGGGATTGT ACCCTTTGCCGCTGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCCAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAC GATGCTCTGT GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGACGG GCCTCGAGAT GGTGTCCCGG AAGGTGTTGA TTCGAAGTTG CCACATAATTCAAGTGAGAC GCTCCCGGCC TTGTTGTATA TTCCAAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGAA AGCTTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG TTCCGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAATGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATACCATG GCCGTTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA GAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTCGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TGATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CGGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCCT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGGCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC GAGGAGCGCG AGCGCTGGGAGCGACGGCAA GGCTAAGGAG GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACCGGGAGAGCGCGCAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAGGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACTGCTGA GAACGCCGCT CTCAAGCAGCAACTGGCCGG TGCTGGTGGA GCAGGCGTCC CGCCGCCGCT GCCGATGTAC CCGGGATTGT ACCCTTTGCCGCTGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCCAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAC GATGCTCTGT GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGACGG G CCTCGAGAT GGTGTCCCGG AAGGTGTTGA TTCGAAGTTG CCACATAATTCAAGTGAGAC GCTCCCGGCC TTGTTGTATA TTCCAAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGAA AGCTTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG TTCCGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAATGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATACCATG GCCGTTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA GAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTCGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TG
<210> 2<210> 2
<211> 1722<211> 1722
<212> CDS<212> CDS
<213> TabZIP-A2,小麦属,普通小麦(Triticum aestivum L.)<213> TabZIP-A2, Triticum, Triticum aestivum L.
<400> 2<400> 2
ATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCCT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGCCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGAAGCGACGGCAA GGCTATGAAC GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACAGGGAGAGCGCACAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAGGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACGGCTGA GAACGCCGCT CTCAAGCAGCAACTGGCCGG TGCCGGTGGC GCAGGCGTCC CGCCGCCGCT GCCGATGTAC CCTGGATTGT ACCCTTTGCCGCTGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCAC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCTAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAT GATGCTCTGT GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGACGG GCCTCGAGAT GGTGTCTTGG AAGGTGTTGA TTCGAAGTTG CCGCATAATTCAAGTGAGAC GCTCCCGGCG TTGTTGTATA TTCCTAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATTTGGTTATCCGG TCTGTTGTTG CGAGTGAGAA AGCCTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCCGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCA CCTCCAGTCA GTCCGATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCGTTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCAGTGG TGGTCTCTGT CCTGGCTGAC CCGAGAGTGGACGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TGATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCCT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGCCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGAAGCGACGGCAA GGCTATGAAC GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACAGGGAGAGCGCACAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAGGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACGGCTGA GAACGCCGCT CTCAAGCAGCAACTGGCCGG TGCCGGTGGC GCAGGCGTCC CGCCGCCGCT GCCGATGTAC CCTGGATTGT ACCCTTTGCCGCTGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCAC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCTAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAT GATGCTCTGT GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGACGG G CCTCGAGAT GGTGTCTTGG AAGGTGTTGA TTCGAAGTTG CCGCATAATTCAAGTGAGAC GCTCCCGGCG TTGTTGTATA TTCCTAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATTTGGTTATCCGG TCTGTTGTTG CGAGTGAGAA AGCCTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCCGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCA CCTCCAGTCA GTCCGATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCGTTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCAGTGG TGGTCTCTGT CCTGGCTGAC CCGAGAGTGGACGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TG
<210> 3<210> 3
<211> 1722<211> 1722
<212> CDS<212> CDS
<213> TabZIP-B2,小麦属,普通小麦(Triticum aestivum L.)<213> TabZIP-B2, Triticum, Triticum aestivum L.
<400>3<400>3
ATGGCCCTCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCCCCACCGCCGCTCGCC ACGTCCTCGT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCAGGTGGCGGAGCGG ACGGCGCCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGGAGCGACGGCAA GGCTAAGGAC GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACCGGGAGAGCGCGCAT CTGTCGCGGC AGAGGAAGAA GCAGTACCTC GAGGAGCTGG AGGGGAAGGT CAAAGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACTGCCGA GAACGCTGCT CTCAAGCAGCAGCTGGCTGG CGCCGGTGGC GCAGGCGTCC CCCCGCCGCT GCCGATGTAC CCCGGATTGT ACCCTTTGCCACCGCCATGG ATGCACCCTG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCCATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCCAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAT GATGCTCTGC GGGTGTTTGG TTCCTGCAGTAAATCGGATG TATGGACCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CTTCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGATGG GCCTCGAGAT GGTGTCTCGG AAGGTGTTGA TTCGAAGTTG CCACATAATTCAAGTGAGAC GCTCCCGGCA TTGTTGTATA TTCCGAGGAA TGGGAAACAT GTCAAGATCA ATGGTAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGAA AGCTTCTTCA CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCACGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGAGGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCTGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCAACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCATTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TGATGGCCCTCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCCTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCCCCACCGCCGCTCGCC ACGTCCTCGT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCAGGTGGCGGAGCGG ACGGCGCCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGGAGCGACGGCAA GGCTAAGGAC GGGGAGGGTG AGGACGACAA GCGGCGGGCG CGGCTGGTGC GGAACCGGGAGAGCGCGCAT CTGTCGCGGC AGAGGAAGAA GCAGTACCTC GAGGAGCTGG AGGGGAAGGT CAAAGCCATGCAGGCCACCA TCGCCGACCT CTCCACCAGG ATCTCCTGCG TCACTGCCGA GAACGCTGCT CTCAAGCAGCAGCTGGCTGG CGCCGGTGGC GCAGGCGTCC CCCCGCCGCT GCCGATGTAC CCCGGATTGT ACCCTTTGCCACCGCCATGG ATGCACCCTG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCCATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCTAGG AAGACCAAGAAGGTTGCCAG TGTTAGCCTC CTTGGATTGC TGTTCCTGAT GATGCTCTGC GGGTGTTTGG TTCCTGCAGTAAATCGGATG TATGGACCAG TTGATTCCCG AGAAGGAATT GTGCTTGGTC CTTCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGATGG G CCTCGAGAT GGTGTCTCGG AAGGTGTTGA TTCGAAGTTG CCACATAATTCAAGTGAGAC GCTCCCGGCA TTGTTGTATA TTCCGAGGAA TGGGAAACAT GTCAAGATCA ATGGTAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGAA AGCTTCTTCA CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GACAAGAAGA TACTAGTTTG GCAATTCCTG GCCACGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCTAAAGCA ATAAAAAATA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGAGGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCTGGAATGTGCACCGAAG TGTTCCAGTT TGATATATCG CCAACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCATTCCCC TAAAAGGTTC AACGTCCAAC CACACCGATC ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTA GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TG
<210> 4<210> 4
<211> 1722<211> 1722
<212> CDS<212> CDS
<213> TabZIP-D2,小麦属,普通小麦(Triticum aestivum L.)<213> TabZIP-D2, Triticum, Triticum aestivum L.
<400> 4<400> 4
ATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCGTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCGT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGGCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGGAGCGACGACAA GGCTAGGGAT GGGGAGGGTG AGGACGCCAA GCGGCGCGCG CGGCTGGTGC GGAACAGGGAGAGCGCGCAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAAGCCATGCAGGCCACCA TCGCCGATCT GTCCACCAGG ATCTCCTGTG TCACCGCCGA GAACGCTGCT CTCAAGCAGCAACTGGCTGG CGCAGGTGGT GCAGGGGTCC CGCCGCCGCT TCCTATGTAC CCAGGATTGT ACCCTTTGCCACCGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCCAGG AAGACCAAGAAGGTTGCGAG TGTCAGCCTC CTTGGATTGT TGTTACTGAT GATGCTCTGC GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATACTCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGATGG GCCTCGAGAT GGTGTCTCGG AAGGTGTTGA TTCGAAGCTG CCACATAATTCAAGTGAAAA GCTCCCGGCG TTGTTGTATA TTCCAAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGGA AGCTTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GGCAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCCAAAGCA ATAAAAAACA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCCGGAATGTGCACCGAAG TGTTCCAGTT CGATATATCA CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCATTCCCC TAAAAAGTTC AACGTCCAAC CACACCGATA ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTG GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TGATGGCCATCG CGGAGGCGTC CCCCTTCGCG GACCTGCCCT TCCCCGACGA CCTGCCGGAGTTCCCGCACG GCCCCGTCGG GGACGACGAC GCGTTCGCCC TGGACGGCTT CGATCTCGAC GATCTGGACATCGACTTCGA CTTCGACCTC GACCTCGACC TCCTCCCCAC CGACGACGTG CAGCTCCCGT CGCCGCCGCCGCCGCTCGCC ACGTCCTCGT CCTCGGCCGG GTCGCCGGGC GGGGCAGGGG ACTCCTCCTC CGGCTCCGGTGGCGGAGCGG ACGGCGGCCT GAAGAACGAC GAGTCCTCGG AGACGTCTTC CAGGAGCGCG AGCGCTGGGAGCGACGACAA GGCTAGGGAT GGGGAGGGTG AGGACGCCAA GCGGCGCGCG CGGCTGGTGC GGAACAGGGAGAGCGCGCAC CTGTCGCGGC AGAGGAAGAA GCAGTACGTG GAGGAGCTGG AGGGGAAGGT CAAAGCCATGCAGGCCACCA TCGCCGATCT GTCCACCAGG ATCTCCTGTG TCACCGCCGA GAACGCTGCT CTCAAGCAGCAACTGGCTGG CGCAGGTGGT GCAGGGGTCC CGCCGCCGCT TCCTATGTAC CCAGGATTGT ACCCTTTGCCACCGCCATGG ATGCACCCGG CTTATGCGAT GGGAGCGCGC GGCTCCCAAG TGCCGCTCAT GCCGATACCTCGGCTGAAAA CCAAGCAGCC TGCGTCGGCT GCCGCAGAGC CACCGGCCAA GAAGTCCAGG AAGACCAAGAAGGTTGCGAG TGTCAGCCTC CTTGGATTGT TGTTACTGAT GATGCTCTGC GGGTGTTTGG TTCCTGCGGTAAATCGGATG TATGGAGCAG TTGATACTCG AGAAGGAATT GTGCTTGGTC CATCACAATC ACGTCATGGGAGGGTTCTGG CTGTTGATGG G CCTCGAGAT GGTGTCTCGG AAGGTGTTGA TTCGAAGCTG CCACATAATTCAAGTGAAAA GCTCCCGGCG TTGTTGTATA TTCCAAGGAA TGGGAAGCAT GTCAAGATCA ATGGAAATCTTGTTATCCAG TCTGTTGTTG CGAGTGAGGA AGCTTCTTCG CGCATGTGTC ACTCTGATGG GAAGACTTCATGTAACCAAG GGCAAGAAGA TACTAGTTTG GCAATTCCTG GCCATGTTGC TCAGTTGAAT TCTGGAGAAGTCATGGAATC TGCCAAAGCA ATAAAAAACA AACTGATGGC TTTACCTCCT GGAGATGGAA GCATATACAGAGACGATGAT GAATTACTGC CACAATGGTT TAGTGAAGCA ATGTCAGGTC CTATGTTGAG CTCCGGAATGTGCACCGAAG TGTTCCAGTT CGATATATCA CCGACCACCA TTGTTCCTGT CTACTCCAGT GGTATGCACAACGCATCACA TAACTCCACG GAGAACCTCC CCTCCAGTCA GTCCCATAAG GTCAAGAACA GAAGGATTTTACATTCCATG GCCATTCCCC TAAAAAGTTC AACGTCCAAC CACACCGATA ACCTCAAAGC GCACCCCAAGAACGAGAGCT TTGCTGGAAA CAAACCGGCT TCATCGGTGG TGGTCTCTGT CCTGGCTGAC CCTAGAGTGGATGCTGATGG AAGGATCTCT TCGAAGTCAT TGTCGCGTAT ATTTGTTGTG GTCCTTGTTG ACAGTGTAAAGTATGTCACT TACTCTTGCG TCCTGCCGTT CAAAACCCAT AGCCCTCATC TG
<210> 5<210> 5
<211> 20<211> 20
<212> DNA<212> DNA
<213> 人工合成的序列<213> Synthetic sequences
<400> 5<400> 5
ATGGCAGACCACCTTCAAGTATGGCAGACCACCTTCAAGT
<210> 6<210> 6
<211> 22<211> 22
<212> DNA<212> DNA
<213> 人工合成的序列<213> Synthetic sequences
<400> 6<400> 6
TCAGTACTTCCACATGCCATCCTCAGTACTTCCACATGCCATCC
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910833620.6A CN110759979B (en) | 2019-09-04 | 2019-09-04 | Transcription factor for improving starch synthesis of wheat grainsbZIP2And uses thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910833620.6A CN110759979B (en) | 2019-09-04 | 2019-09-04 | Transcription factor for improving starch synthesis of wheat grainsbZIP2And uses thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110759979A true CN110759979A (en) | 2020-02-07 |
CN110759979B CN110759979B (en) | 2021-09-03 |
Family
ID=69329420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910833620.6A Expired - Fee Related CN110759979B (en) | 2019-09-04 | 2019-09-04 | Transcription factor for improving starch synthesis of wheat grainsbZIP2And uses thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110759979B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807163A (en) * | 2022-03-28 | 2022-07-29 | 河南农业大学 | Application of TaSBE I gene in promoting wheat starch synthesis |
CN117866983A (en) * | 2024-03-11 | 2024-04-12 | 浙江大学海南研究院 | Application of OsbZIP10 gene in regulation of amylose content of rice grains |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1860231A (en) * | 2003-06-06 | 2006-11-08 | 阿博根有限公司 | Transcription factor |
CN101563461A (en) * | 2006-08-02 | 2009-10-21 | 克罗普迪塞恩股份有限公司 | Plants having improved characteristics and a method for making the same |
CN101792773A (en) * | 2009-05-07 | 2010-08-04 | 山东大学 | Application of sh2 and bt2 genes in enhancing starch content in corn seeds and increasing weight of seeds |
CN102471374A (en) * | 2009-07-07 | 2012-05-23 | 巴斯夫植物科学有限公司 | Plants with modulated carbon partitioning and methods of making the same |
CN103160541A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院上海生命科学研究院 | Transcription factor for regulating physical and chemical properties of plant seed starch |
CN103619164A (en) * | 2011-04-22 | 2014-03-05 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and method for making the same |
CN104725493A (en) * | 2013-12-19 | 2015-06-24 | 中国科学院上海生命科学研究院 | Endosperm starch synthesis related transcription factor and application thereof |
CN105753952A (en) * | 2016-01-29 | 2016-07-13 | 北京市农林科学院 | Plant drought tolerance related protein Tabzip174 as well as coding gene and application thereof |
WO2017117633A1 (en) * | 2016-01-07 | 2017-07-13 | Commonwealth Scientific And Industrial Research Organisation | Plants with modified traits |
CN107058343A (en) * | 2017-06-21 | 2017-08-18 | 四川农业大学 | Applications of the transcription factor VP1 in regulation and control crop plant height and Grain starch content |
CN107586324A (en) * | 2016-07-06 | 2018-01-16 | 中国农业科学院作物科学研究所 | TabZIP15 albumen and its encoding gene and application |
CN108424918A (en) * | 2018-04-04 | 2018-08-21 | 河北省农林科学院粮油作物研究所 | It is a kind of inhibit wheaten starch synthesis transcription factor WSR1 genes and its application |
-
2019
- 2019-09-04 CN CN201910833620.6A patent/CN110759979B/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1860231A (en) * | 2003-06-06 | 2006-11-08 | 阿博根有限公司 | Transcription factor |
CN101563461A (en) * | 2006-08-02 | 2009-10-21 | 克罗普迪塞恩股份有限公司 | Plants having improved characteristics and a method for making the same |
CN101792773A (en) * | 2009-05-07 | 2010-08-04 | 山东大学 | Application of sh2 and bt2 genes in enhancing starch content in corn seeds and increasing weight of seeds |
CN102471374A (en) * | 2009-07-07 | 2012-05-23 | 巴斯夫植物科学有限公司 | Plants with modulated carbon partitioning and methods of making the same |
CN103619164A (en) * | 2011-04-22 | 2014-03-05 | 巴斯夫植物科学有限公司 | Plants having enhanced yield-related traits and method for making the same |
CN103160541A (en) * | 2011-12-09 | 2013-06-19 | 中国科学院上海生命科学研究院 | Transcription factor for regulating physical and chemical properties of plant seed starch |
CN104725493A (en) * | 2013-12-19 | 2015-06-24 | 中国科学院上海生命科学研究院 | Endosperm starch synthesis related transcription factor and application thereof |
WO2017117633A1 (en) * | 2016-01-07 | 2017-07-13 | Commonwealth Scientific And Industrial Research Organisation | Plants with modified traits |
CN105753952A (en) * | 2016-01-29 | 2016-07-13 | 北京市农林科学院 | Plant drought tolerance related protein Tabzip174 as well as coding gene and application thereof |
CN107586324A (en) * | 2016-07-06 | 2018-01-16 | 中国农业科学院作物科学研究所 | TabZIP15 albumen and its encoding gene and application |
CN107058343A (en) * | 2017-06-21 | 2017-08-18 | 四川农业大学 | Applications of the transcription factor VP1 in regulation and control crop plant height and Grain starch content |
CN108424918A (en) * | 2018-04-04 | 2018-08-21 | 河北省农林科学院粮油作物研究所 | It is a kind of inhibit wheaten starch synthesis transcription factor WSR1 genes and its application |
Non-Patent Citations (10)
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114807163A (en) * | 2022-03-28 | 2022-07-29 | 河南农业大学 | Application of TaSBE I gene in promoting wheat starch synthesis |
CN114807163B (en) * | 2022-03-28 | 2023-08-25 | 河南农业大学 | Application of TaSBE I Gene in Promoting Wheat Starch Synthesis |
CN117866983A (en) * | 2024-03-11 | 2024-04-12 | 浙江大学海南研究院 | Application of OsbZIP10 gene in regulation of amylose content of rice grains |
CN117866983B (en) * | 2024-03-11 | 2024-05-07 | 浙江大学海南研究院 | Application of OsbZIP10 gene in regulation of amylose content of rice grains |
Also Published As
Publication number | Publication date |
---|---|
CN110759979B (en) | 2021-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III | |
Wei et al. | GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development | |
Li et al. | Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize | |
Jiang et al. | Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality | |
Sun et al. | Characterization and ectopic expression of CoWRI1, an AP2/EREBP domain-containing transcription factor from coconut (Cocos nucifera L.) endosperm, changes the seeds oil content in transgenic Arabidopsis thaliana and rice (Oryza sativa L.) | |
US11725214B2 (en) | Methods for increasing grain productivity | |
Li et al. | Enhancement of grain number per spike by RNA interference of cytokinin oxidase 2 gene in bread wheat | |
CN105087633B (en) | Adjust gene and its application of plant plant height, tillering number and Leaf inclination | |
CN107460199B (en) | Rice Grain Shape Regulation Gene GS9 and Its Application | |
JP2009509509A (en) | Nucleic acids and proteins associated with sucrose degradation in coffee | |
Luo et al. | The MYB family transcription factor TuODORANT1 from Triticum urartu and the homolog TaODORANT1 from Triticum aestivum inhibit seed storage protein synthesis in wheat | |
CN116218876A (en) | A gene OsB12D3 regulating rice chalkiness and its encoded protein and application | |
Yan et al. | A plastidic ATP/ADP transporter gene, IbAATP, increases starch and amylose contents and alters starch structure in transgenic sweetpotato | |
CN117587030A (en) | Peanut pod size related gene AhPSW1 and application thereof | |
CN111511916A (en) | Flowering phase regulation gene CMP1 and related vector and application thereof | |
CN110759979B (en) | Transcription factor for improving starch synthesis of wheat grainsbZIP2And uses thereof | |
WO2014208508A1 (en) | Gene relating to crop yield and utilization thereof | |
CN110777150B (en) | Application of protein GmPLATZ in regulation and control of plant seed yield | |
CN118546947A (en) | A temperature-responsive rice chalky gene PGWC3 and its encoding protein and application | |
CN118599895A (en) | A LOC_Os11g10170 gene regulating rice chalkiness and its encoded protein and application | |
CN107190015A (en) | Corn glycosyltransferase gene UFGT2 is improving the application in plant in flavones content | |
CN104725493B (en) | Endosperm starch synthesizes relevant transcription factor and its application | |
CN116574743A (en) | Application of ZmARGOS9 gene in drought resistance and high yield of corn | |
KR101664451B1 (en) | Method for Controlling Flowering Time by Regulating of SVP-FLM-beta Protein Complex Formation | |
Li et al. | Endosperm-specific accumulation of human α-lactalbumin increases seed lysine content in maize |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20210903 |
|
CF01 | Termination of patent right due to non-payment of annual fee |