CN110750116B - Temperature interval control circuit and electronic equipment - Google Patents
Temperature interval control circuit and electronic equipment Download PDFInfo
- Publication number
- CN110750116B CN110750116B CN201911167474.4A CN201911167474A CN110750116B CN 110750116 B CN110750116 B CN 110750116B CN 201911167474 A CN201911167474 A CN 201911167474A CN 110750116 B CN110750116 B CN 110750116B
- Authority
- CN
- China
- Prior art keywords
- operational amplifier
- temperature
- xor gate
- voltage
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 230000003750 conditioning effect Effects 0.000 claims description 10
- 239000013256 coordination polymer Substances 0.000 claims description 6
- 230000009286 beneficial effect Effects 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
- G05D23/24—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element having a resistance varying with temperature, e.g. a thermistor
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Control Of Temperature (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及温度控制领域,特别涉及一种温度区间控制电路及电子设备。The present invention relates to the field of temperature control, and in particular to a temperature range control circuit and electronic equipment.
背景技术Background technique
目前,再对被测对象的温度进行控制时,采用的方式为:单片机控制温度传感器采集被测对象的温度后对其进行分析,然后控制驱动单元驱动升降温装置来对进行被测对象进行降温或升温,从而实现温度控制,但假如单片机所内嵌的软件存在问题则温度控制很有可能失效,并且单片机的工作温度是有限制的,超过工作温度则会导致工作异常。At present, when the temperature of the object under test is controlled, the method adopted is: the single-chip microcomputer controls the temperature sensor to collect the temperature of the object under test and analyze it, and then controls the drive unit to drive the heating and cooling device to cool down or heat up the object under test, thereby realizing temperature control. However, if there is a problem with the software embedded in the single-chip microcomputer, the temperature control is likely to fail, and the operating temperature of the single-chip microcomputer is limited. Exceeding the operating temperature will cause abnormal operation.
因此,如何实现一种不需要单片机且性能稳定的温度区间控制电路是业内亟待解决的技术问题。Therefore, how to realize a temperature range control circuit that does not require a single-chip microcomputer and has stable performance is a technical problem that needs to be solved urgently in the industry.
发明内容Summary of the invention
本发明所要解决的技术问题是针对现有技术的不足,提供一种温度区间控制电路及电子设备。The technical problem to be solved by the present invention is to provide a temperature range control circuit and an electronic device in view of the deficiencies in the prior art.
本发明的一种温度区间控制电路的技术方案如下:A technical solution of a temperature range control circuit of the present invention is as follows:
包括温度转换电路、温度比较电路和温度控制电路,其中,所述温度转换电路包括温度传感器C、第一运算放大器u1,所述温度比较电路包括第三运算放大器u3和第四运算放大器u4,所述温度控制电路包括第一异或门y1、第二异或门y2、第三异或门y3和D型触发器u5;It includes a temperature conversion circuit, a temperature comparison circuit and a temperature control circuit, wherein the temperature conversion circuit includes a temperature sensor C and a first operational amplifier u1, the temperature comparison circuit includes a third operational amplifier u3 and a fourth operational amplifier u4, and the temperature control circuit includes a first XOR gate y1, a second XOR gate y2, a third XOR gate y3 and a D-type flip-flop u5;
所述温度传感器C的输出端连接第一电阻R1后接地,向所述温度传感器C输入第四电压,当温度为0℃时,将温度传感器C的输出端的电压值标记为第一电压值,在所述第一运算放大器u1的反向输入端连接所述第一电压值大小的第一电压,所述第一运算放大器u1的同向输入端连接所述温度传感器C的输出端,所述第一运算放大器u1的输出端分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端;The output end of the temperature sensor C is connected to the first resistor R1 and then grounded, a fourth voltage is input to the temperature sensor C, when the temperature is 0°C, the voltage value of the output end of the temperature sensor C is marked as the first voltage value, a first voltage of the first voltage value is connected to the reverse input end of the first operational amplifier u1, the non-inverting input end of the first operational amplifier u1 is connected to the output end of the temperature sensor C, and the output end of the first operational amplifier u1 is respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4;
所述第三运算放大器u3的反向输入端连接第二电压,所述第三运算放大器u3的输出端连接在第一异或门y1的第一输入端A1;The inverting input terminal of the third operational amplifier u3 is connected to the second voltage, and the output terminal of the third operational amplifier u3 is connected to the first input terminal A1 of the first XOR gate y1;
所述第四运算放大器u4的正向输入端连接第三电压,所述第四运算放大器u4的输出端分别连接在第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3;The positive input terminal of the fourth operational amplifier u4 is connected to the third voltage, and the output terminal of the fourth operational amplifier u4 is respectively connected to the second input terminal B1 of the first XOR gate y1, the second input terminal B2 of the second XOR gate y2 and the second input terminal B3 of the third XOR gate y3;
所述第三异或门y3的第一输入端A3连接所述第一异或门y1的输出端,所述第三异或门y3的输出端分别连接所述D型触发器的D端、所述第二异或门y2的第一输入端A2;The first input terminal A3 of the third XOR gate y3 is connected to the output terminal of the first XOR gate y1, and the output terminal of the third XOR gate y3 is respectively connected to the D terminal of the D-type flip-flop and the first input terminal A2 of the second XOR gate y2;
所述开关K1的电压控制端连接所述第二异或门y2的输出端,所述开关K1的输入端输入方波信号,所述开关K1的输出端连接在所述D型触发器的CP端;The voltage control end of the switch K1 is connected to the output end of the second XOR gate y2, the input end of the switch K1 inputs a square wave signal, and the output end of the switch K1 is connected to the CP end of the D-type flip-flop;
所述D型触发器的Q端接地,所述D型触发器的端用于连接电子设备的驱动单元。The Q terminal of the D-type flip-flop is grounded. The terminal is used to connect the drive unit of the electronic device.
本发明的一种温度区间控制电路的有益效果是:The beneficial effects of a temperature range control circuit of the present invention are:
由于将第一电压输入第一运算放大器u1的反向输入端,可将温度转换电路将温度传感器将所采集到的温度转化为电位,温度比较电路中通过第二电压和第三电压来分别模拟预设温度区间的上限和下限,对该电位与第二电压和第三电压分别进行比较后确定温度传感器将所采集到的温度是否处于预设的温度区间内,并以电压信号形式将比较结果输出至温度控制电路,温度控制电路对比较结果的电压信号进行逻辑判断后向电子设备的驱动单元输出电位信号,驱动单元根据温度控制电路输出的电位信号确定是否驱动电子设备的升降温装置进行升温或降温,由此实现一种不需要单片机且性能稳定的温度区间控制电路。Since the first voltage is input into the reverse input terminal of the first operational amplifier u1, the temperature conversion circuit can convert the temperature collected by the temperature sensor into a potential. The temperature comparison circuit simulates the upper limit and lower limit of the preset temperature range respectively through the second voltage and the third voltage. After comparing the potential with the second voltage and the third voltage respectively, it is determined whether the temperature collected by the temperature sensor is within the preset temperature range, and the comparison result is output to the temperature control circuit in the form of a voltage signal. The temperature control circuit performs logical judgment on the voltage signal of the comparison result and outputs a potential signal to the driving unit of the electronic device. The driving unit determines whether to drive the heating and cooling device of the electronic device to heat or cool according to the potential signal output by the temperature control circuit, thereby realizing a temperature range control circuit that does not require a single-chip microcomputer and has stable performance.
在上述方案的基础上,本发明的一种温度区间控制电路还可以做如下改进。Based on the above solution, a temperature range control circuit of the present invention can also be improved as follows.
进一步,所述温度转换电路还包括基本运算放大电路,所述第一运算放大器u1的输出端连接所述基本运算放大电路后再分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端。Furthermore, the temperature conversion circuit also includes a basic operational amplifier circuit, and the output end of the first operational amplifier u1 is connected to the basic operational amplifier circuit and then respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4.
采用上述进一步方案的有益效果是:在温度转换电路中设置基本运算放大电路,将温度传感器将采集到的温度所转换的电位进行放大后再作为当前温度的比较电位,相应地,只需调整第二电压的电压值和第三电压的电压值与温度区间的上限和下限相对应后就能与比较电位进行对比,使比较结果更为准确。The beneficial effect of adopting the above further scheme is: a basic operational amplifier circuit is set in the temperature conversion circuit, and the potential converted by the temperature sensor from the collected temperature is amplified and then used as the comparison potential of the current temperature. Accordingly, it is only necessary to adjust the voltage value of the second voltage and the voltage value of the third voltage to correspond to the upper and lower limits of the temperature range before comparing them with the comparison potential, so that the comparison result is more accurate.
进一步,所述基本运算放大电路包括第二运算放大器u2、第五电阻R5和第六电阻R6,所述第一运算放大器u1的输出端连接在所述第二运算放大器u2的正向输入端,所述第二运算放大器u2的输出端分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端;所述第二运算放大器u2的输出端和其反向输入端之间串联所述第六电阻R6,并通过所述第五电阻R5接地。Furthermore, the basic operational amplifier circuit includes a second operational amplifier u2, a fifth resistor R5 and a sixth resistor R6, the output end of the first operational amplifier u1 is connected to the positive input end of the second operational amplifier u2, the output end of the second operational amplifier u2 is respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4; the sixth resistor R6 is connected in series between the output end of the second operational amplifier u2 and its reverse input end, and is grounded through the fifth resistor R5.
采用上述进一步方案的有益效果是:基本运算放大电路为反相运算放大器电路,使温度传感器将采集到的温度所转换的电位进行放大后再作为当前温度的电位更为稳定。The beneficial effect of adopting the above further solution is that the basic operational amplifier circuit is an inverting operational amplifier circuit, so that the temperature sensor amplifies the potential converted by the collected temperature and then uses it as the potential of the current temperature, which is more stable.
进一步,所述温度转换电路还包括第二电阻R2、第三电阻R3和第四电阻R4,所述第一运算放大器u1的反向输入端依次通过第二电阻R2、第三电阻后R3后接地,所述第四电阻R4的一端连接在所述第二电阻和所述第三电阻之间,所述第四电阻R4的另一端连接第一电源,所述第一电源通过所述第四电阻R4、所述第二电阻R2向所述第一运算放大器u1的反向输入端输入所述第一电压。Furthermore, the temperature conversion circuit also includes a second resistor R2, a third resistor R3 and a fourth resistor R4. The reverse input terminal of the first operational amplifier u1 is connected to the ground through the second resistor R2, the third resistor R3 and then the ground. One end of the fourth resistor R4 is connected between the second resistor and the third resistor. The other end of the fourth resistor R4 is connected to a first power supply. The first power supply inputs the first voltage to the reverse input terminal of the first operational amplifier u1 through the fourth resistor R4 and the second resistor R2.
采用上述进一步方案的有益效果是:可通过设置第二电阻R2、第三电阻R3和第四电阻R4的电阻值以及第一电源的电压值,可精确向第一运算放大器u1的反向输入端输入第一电压,且电路简单。The beneficial effect of adopting the above further scheme is that the first voltage can be accurately input to the reverse input terminal of the first operational amplifier u1 by setting the resistance values of the second resistor R2, the third resistor R3 and the fourth resistor R4 and the voltage value of the first power supply, and the circuit is simple.
进一步,所述温度比较电路还包括第一导线H1、第二导线H2和连接第二电源的串联电路,所述串联电路由多个电阻串联后接地组成,所述第一导线H1的一端和所述第二导线H2的一端分别连接在不同的两个相邻的所述电阻之间,所述第一导线H1的另一端和所述第二导线H2的另一端分别连接第三运算放大器u3的反向输入端和第四运算放大器u4的正向输入端,并将其分别输入所述第二电压和所述第三电压。Furthermore, the temperature comparison circuit also includes a first wire H1, a second wire H2 and a series circuit connected to a second power supply, the series circuit is composed of a plurality of resistors connected in series and then grounded, one end of the first wire H1 and one end of the second wire H2 are respectively connected between two different adjacent resistors, the other end of the first wire H1 and the other end of the second wire H2 are respectively connected to the reverse input terminal of the third operational amplifier u3 and the forward input terminal of the fourth operational amplifier u4, and the second voltage and the third voltage are respectively input into them.
采用上述进一步方案的有益效果是:通过第一导线H1和第二导线H2连接在串联电路中不同的两个电阻之间,来分别向第三运算放大器u3的反向输入端和第四运算放大器u4的正向输入端输出第二电压和第三电压,电路简单。The beneficial effect of adopting the above further scheme is: by connecting the first wire H1 and the second wire H2 between two different resistors in the series circuit, the second voltage and the third voltage are output to the reverse input terminal of the third operational amplifier u3 and the positive input terminal of the fourth operational amplifier u4 respectively, and the circuit is simple.
进一步,所述温度控制电路还包括第四异或门y4,所述第四异或门y4的第一输入端A4和其第二输入端B4分别连接所述第三运算放大器u3的输出端和所述第四运算放大器u4的输出端,所述第四异或门y4的输出端连接灯L1后接地。Furthermore, the temperature control circuit also includes a fourth XOR gate y4, a first input terminal A4 and a second input terminal B4 of the fourth XOR gate y4 are respectively connected to the output terminal of the third operational amplifier u3 and the output terminal of the fourth operational amplifier u4, and the output terminal of the fourth XOR gate y4 is connected to the lamp L1 and then grounded.
采用上述进一步方案的有益效果是:当驱动单元工作时,灯L1发亮,即通过灯是否发亮来提示驱动单元是否在工作。The beneficial effect of adopting the above further solution is that when the driving unit is working, the lamp L1 is lit, that is, whether the driving unit is working is indicated by whether the lamp is lit.
进一步,所述温度比较电路还包括第一整流二极管N1和第二整流二极管N2,所述第三运算放大器u3的输出端先连接所述第一整流二极管N1后再分别连接所述第一异或门y1的第一输入端A1和所述第四异或门y4的第一输入端A4;所述第四运算放大器u4的输出端先连接所述第二整流二极管N2后再分别连接在第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3。Furthermore, the temperature comparison circuit also includes a first rectifier diode N1 and a second rectifier diode N2; the output end of the third operational amplifier u3 is first connected to the first rectifier diode N1 and then respectively connected to the first input end A1 of the first XOR gate y1 and the first input end A4 of the fourth XOR gate y4; the output end of the fourth operational amplifier u4 is first connected to the second rectifier diode N2 and then respectively connected to the second input end B1 of the first XOR gate y1, the second input end B2 of the second XOR gate y2 and the second input end B3 of the third XOR gate y3.
采用上述进一步方案的有益效果是:通过设置第一整流二极管N1和第二整流二极管N2,保证由第三运算放大器u3的输出端和第四运算放大器u4的输出端所输出的比较结果的电压信号更为稳定。The beneficial effect of adopting the above further solution is: by setting the first rectifier diode N1 and the second rectifier diode N2, it is ensured that the voltage signal of the comparison result output by the output end of the third operational amplifier u3 and the output end of the fourth operational amplifier u4 is more stable.
进一步,还包括信号调理单元,所述D型触发器的端通过所述信号调理单元后连接电子设备的驱动单元。Furthermore, it also includes a signal conditioning unit, the D-type trigger The end is connected to a driving unit of the electronic device after passing through the signal conditioning unit.
采用上述进一步方案的有益效果是:通过设置温度调理单元以便于将温度控制电路所输出的电压信号调理成更适合驱动单元处理的电压信号。The beneficial effect of adopting the above further solution is: by providing a temperature conditioning unit, the voltage signal output by the temperature control circuit can be conditioned into a voltage signal that is more suitable for processing by the driving unit.
一种电子设备,采用上述任一项所述的温度区间控制电路。An electronic device adopts any one of the temperature range control circuits described above.
本发明的一种电子设备的有益效果是:实现了一种能对温度进行控制的电子设备。The beneficial effect of an electronic device of the present invention is that an electronic device capable of controlling temperature is realized.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的一种温度区间控制电路的原理图;FIG1 is a schematic diagram of a temperature range control circuit according to an embodiment of the present invention;
图2为本发明实施例的一种温度区间控制电路的电路图;FIG2 is a circuit diagram of a temperature range control circuit according to an embodiment of the present invention;
具体实施方式Detailed ways
本发明实施例的一种电流控制电路,包括温度转换电路101、温度比较电路102和温度控制电路103,其中,所述温度转换电路101包括温度传感器C、第一运算放大器u1,所述温度比较电路102包括第三运算放大器u3和第四运算放大器u4,所述温度控制电路103包括第一异或门y1、第二异或门y2、第三异或门y3和D型触发器u5;A current control circuit according to an embodiment of the present invention includes a temperature conversion circuit 101, a temperature comparison circuit 102 and a temperature control circuit 103, wherein the temperature conversion circuit 101 includes a temperature sensor C and a first operational amplifier u1, the temperature comparison circuit 102 includes a third operational amplifier u3 and a fourth operational amplifier u4, and the temperature control circuit 103 includes a first XOR gate y1, a second XOR gate y2, a third XOR gate y3 and a D-type flip-flop u5;
所述温度传感器C的输出端连接第一电阻R1后接地,向所述温度传感器C输入第四电压,当温度为0℃时,将温度传感器C的输出端的电压值标记为第一电压值,在所述第一运算放大器u1的反向输入端连接所述第一电压值大小的第一电压,所述第一运算放大器u1的同向输入端连接所述温度传感器C的输出端,所述第一运算放大器u1的输出端分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端;The output end of the temperature sensor C is connected to the first resistor R1 and then grounded, a fourth voltage is input to the temperature sensor C, when the temperature is 0°C, the voltage value of the output end of the temperature sensor C is marked as the first voltage value, a first voltage of the first voltage value is connected to the reverse input end of the first operational amplifier u1, the non-inverting input end of the first operational amplifier u1 is connected to the output end of the temperature sensor C, and the output end of the first operational amplifier u1 is respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4;
所述第三运算放大器u3的反向输入端连接第二电压,所述第三运算放大器u3的输出端连接在第一异或门y1的第一输入端A1;The inverting input terminal of the third operational amplifier u3 is connected to the second voltage, and the output terminal of the third operational amplifier u3 is connected to the first input terminal A1 of the first XOR gate y1;
所述第四运算放大器u4的正向输入端连接第三电压,所述第四运算放大器u4的输出端分别连接在第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3;The positive input terminal of the fourth operational amplifier u4 is connected to the third voltage, and the output terminal of the fourth operational amplifier u4 is respectively connected to the second input terminal B1 of the first XOR gate y1, the second input terminal B2 of the second XOR gate y2 and the second input terminal B3 of the third XOR gate y3;
所述第三异或门y3的第一输入端A3连接所述第一异或门y1的输出端,所述第三异或门y3的输出端分别连接所述D型触发器的D端、所述第二异或门y2的第一输入端A2;The first input terminal A3 of the third XOR gate y3 is connected to the output terminal of the first XOR gate y1, and the output terminal of the third XOR gate y3 is respectively connected to the D terminal of the D-type flip-flop and the first input terminal A2 of the second XOR gate y2;
所述开关K1的电压控制端即a端连接所述第二异或门y2的输出端,所述开关K1的输入端即b端输入方波信号,所述开关K1的输出端即c端连接在所述D型触发器的CP端;The voltage control end of the switch K1, i.e., the end a, is connected to the output end of the second XOR gate y2, the input end of the switch K1, i.e., the end b, is input with a square wave signal, and the output end of the switch K1, i.e., the end c, is connected to the CP end of the D-type flip-flop;
所述D型触发器的Q端接地,所述D型触发器的端用于连接电子设备的驱动单元105。The Q terminal of the D-type flip-flop is grounded. The end is used to connect to the driving unit 105 of the electronic device.
由于将第一电压输入第一运算放大器u1的反向输入端,可将温度转换电路101将温度传感器将所采集到的温度转化为电位,温度比较电路102中通过第二电压和第三电压来分别模拟预设温度区间的上限和下限,对该电位与第二电压和第三电压分别进行比较后确定温度传感器将所采集到的温度是否处于预设的温度区间内,并以电压信号形式将比较结果输出至温度控制电路103,温度控制电路103对比较结果的电压信号进行逻辑判断后向电子设备的驱动单元105输出电位信号,驱动单元105根据温度控制电路103输出的电位信号确定是否驱动电子设备的升降温装置进行升温或降温,由此实现一种不需要单片机且性能稳定的温度区间控制电路,且成本低。Since the first voltage is input into the reverse input terminal of the first operational amplifier u1, the temperature conversion circuit 101 can convert the temperature collected by the temperature sensor into a potential. The temperature comparison circuit 102 simulates the upper limit and the lower limit of the preset temperature range respectively through the second voltage and the third voltage. After comparing the potential with the second voltage and the third voltage respectively, it is determined whether the temperature collected by the temperature sensor is within the preset temperature range, and the comparison result is output to the temperature control circuit 103 in the form of a voltage signal. The temperature control circuit 103 performs logical judgment on the voltage signal of the comparison result and outputs a potential signal to the drive unit 105 of the electronic device. The drive unit 105 determines whether to drive the temperature increase and decrease device of the electronic device to increase or decrease the temperature according to the potential signal output by the temperature control circuit 103, thereby realizing a temperature range control circuit that does not require a single-chip microcomputer and has stable performance and is low in cost.
其中,可直接通过电源输出第一电压、第二电压、第三电压和第四电压,也可通过如下文所述的方式输出第一电压、第二电压和第三电压,方波信号可由信号发生器、方波信号发生器、方波信号发生电路输出。Among them, the first voltage, the second voltage, the third voltage and the fourth voltage can be output directly through the power supply, or the first voltage, the second voltage and the third voltage can be output in the manner described below, and the square wave signal can be output by a signal generator, a square wave signal generator, or a square wave signal generating circuit.
较优地,在上述技术方案中,所述温度转换电路101还包括基本运算放大电路,所述第一运算放大器u1的输出端连接所述基本运算放大电路后再分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端。Preferably, in the above technical solution, the temperature conversion circuit 101 also includes a basic operational amplifier circuit, and the output end of the first operational amplifier u1 is connected to the basic operational amplifier circuit and then respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4.
在温度转换电路101中设置基本运算放大电路,将温度传感器将采集到的温度所转换的电位进行放大后再作为当前温度的比较电位,相应地,只需调整第二电压的电压值和第三电压的电压值与温度区间的上限和下限相对应后就能与比较电位进行对比,使比较结果更为准确。其中,基本运算放大电路可选用正相运算放大电路和反相运算放大电路。A basic operational amplifier circuit is set in the temperature conversion circuit 101, and the potential converted by the temperature sensor from the collected temperature is amplified and then used as the comparison potential of the current temperature. Accordingly, it is only necessary to adjust the voltage value of the second voltage and the voltage value of the third voltage to correspond to the upper and lower limits of the temperature range to compare with the comparison potential, so that the comparison result is more accurate. Among them, the basic operational amplifier circuit can select a positive phase operational amplifier circuit and an inverting operational amplifier circuit.
当基本运算放大电路选用反相运算放大电路时,具体为:所述基本运算放大电路包括第二运算放大器u2、第五电阻R5和第六电阻R6,所述第一运算放大器u1的输出端连接在所述第二运算放大器u2的正向输入端,所述第二运算放大器u2的输出端分别连接所述第三运算放大器u3的正向输入端和所述第四运算放大器u4的反向输入端;所述第二运算放大器u2的输出端和其反向输入端之间串联所述第六电阻R6,并通过所述第五电阻R5接地,使温度传感器将采集到的温度所转换的电位进行放大后再作为当前温度的电位更为稳定。When the basic operational amplifier circuit selects an inverting operational amplifier circuit, specifically: the basic operational amplifier circuit includes a second operational amplifier u2, a fifth resistor R5 and a sixth resistor R6, the output end of the first operational amplifier u1 is connected to the positive input end of the second operational amplifier u2, and the output end of the second operational amplifier u2 is respectively connected to the positive input end of the third operational amplifier u3 and the reverse input end of the fourth operational amplifier u4; the sixth resistor R6 is connected in series between the output end of the second operational amplifier u2 and its reverse input end, and is grounded through the fifth resistor R5, so that the temperature sensor amplifies the potential converted by the collected temperature and then uses it as the potential of the current temperature more stably.
较优地,在上述技术方案中,所述温度转换电路101还包括第二电阻R2、第三电阻R3和第四电阻R4,所述第一运算放大器u1的反向输入端依次通过第二电阻R2、第三电阻后R3后接地,所述第四电阻R4的一端连接在所述第二电阻和所述第三电阻之间,所述第四电阻R4的另一端连接第一电源,所述第一电源通过所述第四电阻R4、所述第二电阻R2向所述第一运算放大器u1的反向输入端输入所述第一电压。Preferably, in the above technical solution, the temperature conversion circuit 101 also includes a second resistor R2, a third resistor R3 and a fourth resistor R4, the reverse input terminal of the first operational amplifier u1 is connected to ground via the second resistor R2, the third resistor R3 and then the ground, one end of the fourth resistor R4 is connected between the second resistor and the third resistor, the other end of the fourth resistor R4 is connected to a first power supply, and the first power supply inputs the first voltage to the reverse input terminal of the first operational amplifier u1 via the fourth resistor R4 and the second resistor R2.
可通过设置第二电阻R2、第三电阻R3和第四电阻R4的电阻值以及第一电源的电压值,可精确向第一运算放大器u1的反向输入端输入第一电压,且电路简单。By setting the resistance values of the second resistor R2, the third resistor R3 and the fourth resistor R4 and the voltage value of the first power supply, the first voltage can be accurately input to the inverting input terminal of the first operational amplifier u1, and the circuit is simple.
较优地,在上述技术方案中,所述温度比较电路102还包括第一导线H1、第二导线H2和连接第二电源的串联电路,所述串联电路由多个电阻串联后接地组成,所述第一导线H1的一端和所述第二导线H2的一端分别连接在不同的两个相邻的所述电阻之间,所述第一导线H1的另一端和所述第二导线H2的另一端分别连接第三运算放大器u3的反向输入端和第四运算放大器u4的正向输入端,并将其分别输入所述第二电压和所述第三电压。Preferably, in the above technical solution, the temperature comparison circuit 102 also includes a first wire H1, a second wire H2 and a series circuit connected to a second power supply, the series circuit is composed of a plurality of resistors connected in series and then grounded, one end of the first wire H1 and one end of the second wire H2 are respectively connected between two different adjacent resistors, the other end of the first wire H1 and the other end of the second wire H2 are respectively connected to the reverse input terminal of the third operational amplifier u3 and the positive input terminal of the fourth operational amplifier u4, and the second voltage and the third voltage are respectively input into them.
通过第一导线H1和第二导线H2连接在串联电路中不同的两个电阻之间,来分别向第三运算放大器u3的反向输入端和第四运算放大器u4的正向输入端输出第二电压和第三电压,电路简单。The first wire H1 and the second wire H2 are connected between two different resistors in the series circuit to output the second voltage and the third voltage to the reverse input terminal of the third operational amplifier u3 and the positive input terminal of the fourth operational amplifier u4 respectively. The circuit is simple.
较优地,在上述技术方案中,所述温度控制电路103还包括第四异或门y4,所述第四异或门y4的第一输入端A4和其第二输入端B4分别连接所述第三运算放大器u3的输出端和所述第四运算放大器u4的输出端,所述第四异或门y4的输出端连接灯L1后接地。当驱动单元105工作时,灯L1发亮,即通过灯是否发亮来提示驱动单元105是否在工作Preferably, in the above technical solution, the temperature control circuit 103 further includes a fourth XOR gate y4, a first input terminal A4 and a second input terminal B4 of the fourth XOR gate y4 are respectively connected to the output terminal of the third operational amplifier u3 and the output terminal of the fourth operational amplifier u4, and the output terminal of the fourth XOR gate y4 is connected to the lamp L1 and then grounded. When the driving unit 105 is working, the lamp L1 lights up, that is, whether the driving unit 105 is working is indicated by whether the lamp is lit.
较优地,在上述技术方案中,所述温度比较电路102还包括第一整流二极管N1和第二整流二极管N2,所述第三运算放大器u3的输出端先连接所述第一整流二极管N1后再分别连接所述第一异或门y1的第一输入端A1和所述第四异或门y4的第一输入端A4;所述第四运算放大器u4的输出端先连接所述第二整流二极管N2后再分别连接在第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3。Preferably, in the above technical solution, the temperature comparison circuit 102 also includes a first rectifier diode N1 and a second rectifier diode N2, the output end of the third operational amplifier u3 is first connected to the first rectifier diode N1 and then respectively connected to the first input end A1 of the first XOR gate y1 and the first input end A4 of the fourth XOR gate y4; the output end of the fourth operational amplifier u4 is first connected to the second rectifier diode N2 and then respectively connected to the second input end B1 of the first XOR gate y1, the second input end B2 of the second XOR gate y2 and the second input end B3 of the third XOR gate y3.
通过设置第一整流二极管N1和第二整流二极管N2,保证由第三运算放大器u3的输出端和第四运算放大器u4的输出端所输出的比较结果的电压信号更为稳定。By providing the first rectifying diode N1 and the second rectifying diode N2, it is ensured that the voltage signal of the comparison result outputted by the output end of the third operational amplifier u3 and the output end of the fourth operational amplifier u4 is more stable.
较优地,在上述技术方案中,还包括信号调理单元104,所述D型触发器的端通过所述信号调理单元104后连接电子设备的驱动单元105。Preferably, in the above technical solution, a signal conditioning unit 104 is further included, and the D-type trigger The end is connected to the driving unit 105 of the electronic device after passing through the signal conditioning unit 104.
通过设置温度调理单元以便于将温度控制电路103所输出的电压信号调理成更适合驱动单元105处理的电压信号。The temperature conditioning unit is provided to condition the voltage signal output by the temperature control circuit 103 into a voltage signal more suitable for processing by the driving unit 105 .
下面结合图1和图2进行进一步阐述:The following is further explained in conjunction with Figures 1 and 2:
本实施例中一种温度区间控制电路包括温度转换电路101、温度比较电路102、温度控制电路103、信号调理单元104和驱动单元105,其中,温度转换电路101包括温度传感器C、第一运算放大器u1、基本运算放大电路、第一电阻R1、第二电阻R2、第三电阻R3和第四电阻R4,其中基本运算放大电路包括第二运算放大器u2、第五电阻R5和第六电阻R6,其中温度传感器C选用负温度系数热敏电阻NTC,被测对象的温度越高时,其电阻越小,向温度传感器C输入第四电压,测量出温度传感器在0℃时与第一电阻R1串联时所输出的电压,根据第一电源输出的电压值选用合适的第二电阻R2、第三电阻R3、第四电阻R4来使输入第一运算放大器u1的反向输入端的第一电压等于温度传感器在0℃时所输出的电压,从而将温度传感器C所采集的被测对象的温度转为电位,然后通过第一运算放大器u1和基本运算放大电路进行放大后形成比较电位。In this embodiment, a temperature range control circuit includes a temperature conversion circuit 101, a temperature comparison circuit 102, a temperature control circuit 103, a signal conditioning unit 104 and a driving unit 105, wherein the temperature conversion circuit 101 includes a temperature sensor C, a first operational amplifier u1, a basic operational amplifier circuit, a first resistor R1, a second resistor R2, a third resistor R3 and a fourth resistor R4, wherein the basic operational amplifier circuit includes a second operational amplifier u2, a fifth resistor R5 and a sixth resistor R6, wherein the temperature sensor C uses a negative temperature coefficient thermistor NTC, and the measured The higher the temperature of the object, the smaller its resistance. The fourth voltage is input to the temperature sensor C, and the voltage output by the temperature sensor when it is connected in series with the first resistor R1 at 0°C is measured. According to the voltage value output by the first power supply, the appropriate second resistor R2, third resistor R3, and fourth resistor R4 are selected to make the first voltage input to the reverse input terminal of the first operational amplifier u1 equal to the voltage output by the temperature sensor at 0°C, thereby converting the temperature of the object collected by the temperature sensor C into a potential, which is then amplified by the first operational amplifier u1 and the basic operational amplifier circuit to form a comparison potential.
其中,温度比较电路102包括第三运算放大器u3、第四运算放大器u4、第一整流二极管N1、第二整流二极管N2以及由7个电阻串联而成的串联电路,并将7个电阻分别标记为第一串联电阻Rt1、第二串联电路Rt2、第三串联电阻Rt3、第四串联电阻Rt4、第五串联电阻Rt5、第六串联电阻Rt6、第七串联电阻Rt7,其中第一导线H1的一端连接在第一串联电阻Rt1和第二串联电路Rt2之间,H1的另一端连接在第三运算放大器u3的反向输入端,第二导线H2的一端连接在第四串联电阻Rt4和第五串联电阻Rt5之间,第二导线H2的另一端连接第四运算放大器u4的正向输入端,例如预设温度区间为30℃至70℃,即预设温度区间的上限为70℃,预设温度区间的下限为30℃,向温度传感器C输入第四电压,测量出温度传感器在70℃时所输出的电压以及在30℃时与第一电阻R1串联后所输出的电压,为便于表示分别表示为上限电压和下限电压,此时按照第一运算放大器u1和基本运算放大电路对比较电路进行放大的倍数对上限电压和下限电压乘以相同倍数,分别得到倍数上限电压和倍数下限电压,此时,根据第二电压的输出电压可选用合适电阻值的第一串联电阻Rt1、第二串联电路Rt2、第三串联电阻Rt3、第四串联电阻Rt4、第五串联电阻Rt5、第六串联电阻Rt6、第七串联电阻Rt7,使第一串联电阻Rt1和第二串联电路Rt2之间的电位等于倍数上限电压,使第四串联电阻Rt4和第五串联电阻Rt5之间的电位等于倍数下限电压,即第二电压等于倍数上限电压,第三电压等于倍数下限电压,从而将预设温度区间的上限和下限转为第二电压和第三电压,便于与比较电位进行比较,且由于比较电位、第二电压和第三电压也是基于零电位,因此,其各自的值可直接进行比较。The temperature comparison circuit 102 includes a third operational amplifier u3, a fourth operational amplifier u4, a first rectifier diode N1, a second rectifier diode N2, and a series circuit formed by seven resistors connected in series, and the seven resistors are marked as a first series resistor Rt1, a second series circuit Rt2, a third series resistor Rt3, a fourth series resistor Rt4, a fifth series resistor Rt5, a sixth series resistor Rt6, and a seventh series resistor Rt7, wherein one end of the first wire H1 is connected to the first series resistor Rt1 and the second series circuit Rt 2, the other end of H1 is connected to the inverting input end of the third operational amplifier u3, one end of the second wire H2 is connected between the fourth series resistor Rt4 and the fifth series resistor Rt5, and the other end of the second wire H2 is connected to the positive input end of the fourth operational amplifier u4. For example, the preset temperature range is 30°C to 70°C, that is, the upper limit of the preset temperature range is 70°C, and the lower limit of the preset temperature range is 30°C. The fourth voltage is input to the temperature sensor C, and the voltage output by the temperature sensor at 70°C and the voltage at 30°C with the first resistor R1 are measured. The voltages output after the series connection are expressed as an upper limit voltage and a lower limit voltage for convenience. At this time, the upper limit voltage and the lower limit voltage are multiplied by the same multiples according to the multiples of the comparison circuit amplified by the first operational amplifier u1 and the basic operational amplifier circuit to obtain the multiple upper limit voltage and the multiple lower limit voltage respectively. At this time, the first series resistor Rt1, the second series circuit Rt2, the third series resistor Rt3, the fourth series resistor Rt4, the fifth series resistor Rt5, the sixth series resistor Rt6, and the seventh series resistor Rt7 with appropriate resistance values can be selected according to the output voltage of the second voltage, so that the potential between the first series resistor Rt1 and the second series circuit Rt2 is equal to the multiple upper limit voltage, and the potential between the fourth series resistor Rt4 and the fifth series resistor Rt5 is equal to the multiple lower limit voltage, that is, the second voltage is equal to the multiple upper limit voltage, and the third voltage is equal to the multiple lower limit voltage, thereby converting the upper limit and the lower limit of the preset temperature range into the second voltage and the third voltage, which is convenient for comparison with the comparison potential. Moreover, since the comparison potential, the second voltage and the third voltage are also based on the zero potential, their respective values can be directly compared.
其中,温度控制电路103包括第一异或门y1、第二异或门y2、第三异或门y3、第四异或门y4、开关K1、D型触发器u5和灯L1;将上述各元件按照上文中的连接方式进行连接,且在温度控制电路103中还包括:第七电阻R7、第八电阻R8、第九电阻R9和第十电阻R10,其中,第四异或门y4连接第七电阻R7后再连接灯L1,D型触发器u5的Q端通过第八电阻R8后接地,D型触发器的端通过第九电阻R9后分别连接信号调理单元104和第十电阻R10,且第十电阻R10接地,其工作过程如下:The temperature control circuit 103 includes a first XOR gate y1, a second XOR gate y2, a third XOR gate y3, a fourth XOR gate y4, a switch K1, a D-type trigger u5 and a lamp L1; the above components are connected according to the connection method described above, and the temperature control circuit 103 also includes: a seventh resistor R7, an eighth resistor R8, a ninth resistor R9 and a tenth resistor R10, wherein the fourth XOR gate y4 is connected to the seventh resistor R7 and then to the lamp L1, the Q end of the D-type trigger u5 is grounded after passing through the eighth resistor R8, and the D-type trigger The terminals are connected to the signal conditioning unit 104 and the tenth resistor R10 respectively through the ninth resistor R9, and the tenth resistor R10 is grounded. The working process is as follows:
温度转换电路101将温度传感器C采集的被控对象的温度转换为当前温度的电位,并输入所述温度比较电路102,那么:The temperature conversion circuit 101 converts the temperature of the controlled object collected by the temperature sensor C into the potential of the current temperature and inputs it into the temperature comparison circuit 102. Then:
1)若当前被控对象的温度高于预设温度区间的上限时,第二电压和第三电压均大于比较电位,则第三运算放大器u3的输出端经第一整流二极管N1输出高电位至第一异或门y1的第一输出端A1和第四异或门y4的第一输入端A4,所述第四运算放大器u4的输出端经第二整流二极管N2输出低电位至第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3,第一异或门y1的输出端将输出高电位至第三异或门y3的第一输入端A3,然后第三异或门y3的输出端将输出高电位至第二异或门y2的第一输入端A2和D型触发器u5的D端,第二异或门y2的输出端将输出高电位至开关K1的电压控制端即a端使其闭合,此时方波信号将输入D型触发器u5的CP端触发其工作,所述D型触发器u5的端将输出低电位信号至信号调理单元104后进行调整后发送至驱动单元105,此时驱动单元105驱动升降温装置进行降温,其中,第四异或门y4的输出端将输出高电位至灯L1,使其点亮,以提示驱动单元105正在工作。1) If the temperature of the current controlled object is higher than the upper limit of the preset temperature range, the second voltage and the third voltage are both greater than the comparison potential, then the output end of the third operational amplifier u3 outputs a high potential to the first output end A1 of the first XOR gate y1 and the first input end A4 of the fourth XOR gate y4 through the first rectifier diode N1, and the output end of the fourth operational amplifier u4 outputs a low potential to the second input end B1 of the first XOR gate y1, the second input end B2 of the second XOR gate y2 and the second input end B3 of the third XOR gate y3 through the second rectifier diode N2, the output end of the first XOR gate y1 will output a high potential to the first input end A3 of the third XOR gate y3, and then the output end of the third XOR gate y3 will output a high potential to the first input end A2 of the second XOR gate y2 and the D end of the D-type flip-flop u5, the output end of the second XOR gate y2 will output a high potential to the voltage control end of the switch K1, i.e., the a end, to close it, at this time the square wave signal will be input to the CP end of the D-type flip-flop u5 to trigger its operation, and the D-type flip-flop u5 The output end of the fourth XOR gate y4 will output a high potential to the lamp L1 to light it up, to indicate that the driving unit 105 is working.
2)若当前被控对象的温度低于预设温度区间的下限时,第二电压和第三电压均小于比较电位,则第三运算放大器u3的输出端经第一整流二极管N1输出低电位至第一异或门y1的第一输入端A1和第四异或门y4的第一输入端A4,第四运算放大器u4的输出端经第二整流二极管N2输出高电位至第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3。第一异或门y1的输出端将会输出高电位至第三异或门y3的第一输入端A3,第三异或门y3的输出端将输出低电位至第二异或门y2的第一输入端A2和D型触发器u5的D端,第二异或门y2的输出端将输出高电位至开关K1的电压控制端即a端使其闭合,方波信号将输入至D型触发器u5的CP端触发其工作,所述D型触发器u5的端将输出高电位信号至信号调理单元104后进行调整后发送至驱动单元105,此时驱动单元105驱动升降温装置进行升温。其中,第四异或门y4的输出端将输出高电位至灯L1,使其点亮,以提示驱动单元105正在工作。2) If the temperature of the current controlled object is lower than the lower limit of the preset temperature range, the second voltage and the third voltage are both lower than the comparison potential, then the output end of the third operational amplifier u3 outputs a low potential to the first input end A1 of the first XOR gate y1 and the first input end A4 of the fourth XOR gate y4 through the first rectifier diode N1, and the output end of the fourth operational amplifier u4 outputs a high potential to the second input end B1 of the first XOR gate y1, the second input end B2 of the second XOR gate y2, and the second input end B3 of the third XOR gate y3 through the second rectifier diode N2. The output end of the first XOR gate y1 will output a high potential to the first input end A3 of the third XOR gate y3, the output end of the third XOR gate y3 will output a low potential to the first input end A2 of the second XOR gate y2 and the D end of the D-type flip-flop u5, the output end of the second XOR gate y2 will output a high potential to the voltage control end of the switch K1, i.e., the a end, to close it, and the square wave signal will be input to the CP end of the D-type flip-flop u5 to trigger its operation, and the D-type flip-flop u5 will be turned on. The output terminal of the fourth XOR gate y4 will output a high potential signal to the lamp L1, which will light up and indicate that the driving unit 105 is working.
3)若当前被控对象温度在预设温度区间内时,第二电压小于其比较电位,第三电压大于其比较电位,此时,则第三运算放大器u3的输出端经第一整流二极管N1输出低电位至第一异或门y1的第一输入端A1和第四异或门y4的第一输入端A4,第四运算放大器u4经第二整流二极管N2输出低电位至第一异或门y1的第二输入端B1、第二异或门y2的第二输入端B2和第三异或门y3的第二输入端B3。第一异或门y1的输出端将输出低电位至第三异或门y3的第一输入端A3,第三异或门y3的输出端将输出低电位至第二异或门y2的第一输入端A2和D型触发器u5的D端,第二异或门y2的输出端将输出低电位至开关K1的电压控制端即a端使其断开,方波信号将无法输入至D型触发器u5的CP端使其工作,此时,D型触发器u5的端将无电位信号输出,驱动单元105将停止工作,升降温装置不会工作,由于第四异或门y4的输出端将输出低电位至灯L1,使其不会点亮,以提示驱动单元105没有工作。3) If the temperature of the controlled object is within the preset temperature range, the second voltage is less than the comparison potential, and the third voltage is greater than the comparison potential. At this time, the output end of the third operational amplifier u3 outputs a low potential to the first input end A1 of the first XOR gate y1 and the first input end A4 of the fourth XOR gate y4 through the first rectifier diode N1, and the fourth operational amplifier u4 outputs a low potential to the second input end B1 of the first XOR gate y1, the second input end B2 of the second XOR gate y2, and the second input end B3 of the third XOR gate y3 through the second rectifier diode N2. The output end of the first XOR gate y1 will output a low potential to the first input end A3 of the third XOR gate y3, the output end of the third XOR gate y3 will output a low potential to the first input end A2 of the second XOR gate y2 and the D end of the D-type flip-flop u5, and the output end of the second XOR gate y2 will output a low potential to the voltage control end of the switch K1, i.e., the a end, to disconnect it. The square wave signal will not be able to be input to the CP end of the D-type flip-flop u5 to make it work. At this time, the D-type flip-flop u5 The end will output a no-potential signal, the driving unit 105 will stop working, and the heating and cooling device will not work. Since the output end of the fourth XOR gate y4 will output a low potential to the lamp L1, it will not light up, to indicate that the driving unit 105 is not working.
一种电子设备,采用上述任一实施例中的电流控制电路,即实现了一种实现了一种能对温度进行控制的电子设备,其中电子设备可为恒温箱,温箱腔的升降温装置为加热器和由压缩机、冷凝器、节流装置、蒸发器的降温装置,温度传感器C检测恒温箱腔内的温度,预设温度区间为4℃至5℃,若恒温箱腔内的温度为6℃时,则恒温箱的降温装置启动开始降温,若恒温箱腔内的温度为3℃时,则恒温箱的加热器启动开始加热,若恒温箱腔内的温度为4.5℃时,则恒温箱的降温装置和加热器均不启动,在此,对驱动单元105进行解释,驱动单元105可理解为电路板,在传统的温度控制中,是单片机通过向恒温箱的电路板输入信号后,再通过电路板驱动加热器或降温装置启动,而本申请中,是利用上述实施例中的温度区间控制电路连接电路板后,再通过电路板驱动加热器或降温装置启动,具体过程请参考上述内容,在此不做赘述。An electronic device, using the current control circuit in any of the above embodiments, realizes an electronic device capable of controlling temperature, wherein the electronic device can be a thermostat, the temperature rise and fall device of the thermostat cavity is a heater and a cooling device composed of a compressor, a condenser, a throttling device, and an evaporator, the temperature sensor C detects the temperature in the thermostat cavity, the preset temperature range is 4°C to 5°C, if the temperature in the thermostat cavity is 6°C, the cooling device of the thermostat cavity starts to cool down, if the temperature in the thermostat cavity is 3°C, the heater of the thermostat cavity starts to cool down Heating, if the temperature in the thermostat chamber is 4.5°C, the cooling device and the heater of the thermostat are not started. Here, the driving unit 105 is explained. The driving unit 105 can be understood as a circuit board. In traditional temperature control, the single-chip microcomputer inputs a signal to the circuit board of the thermostat, and then drives the heater or the cooling device to start through the circuit board. In this application, the temperature range control circuit in the above embodiment is connected to the circuit board, and then the circuit board drives the heater or the cooling device to start. Please refer to the above content for the specific process, which will not be repeated here.
在另外一个实施例中,电子设备也可为电脑,由于电脑的CPU一般会出现过热现象,预设温度区间为10℃至50℃,若温度传感器C检测电脑的CPU的温度超过50℃时,即可开启风扇进行降温,且电子设备还可选为手机等。In another embodiment, the electronic device may also be a computer. Since the CPU of a computer generally overheats, the preset temperature range is 10°C to 50°C. If the temperature sensor C detects that the temperature of the computer's CPU exceeds 50°C, the fan can be turned on for cooling. The electronic device may also be a mobile phone, etc.
在本发明中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In the present invention, the terms "first" and "second" are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as "first" and "second" may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of "plurality" is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it is to be understood that the above embodiments are exemplary and are not to be construed as limitations of the present invention. A person skilled in the art may change, modify, replace and vary the above embodiments within the scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911167474.4A CN110750116B (en) | 2019-11-25 | 2019-11-25 | Temperature interval control circuit and electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911167474.4A CN110750116B (en) | 2019-11-25 | 2019-11-25 | Temperature interval control circuit and electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110750116A CN110750116A (en) | 2020-02-04 |
CN110750116B true CN110750116B (en) | 2024-07-16 |
Family
ID=69284524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911167474.4A Active CN110750116B (en) | 2019-11-25 | 2019-11-25 | Temperature interval control circuit and electronic equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110750116B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN211123804U (en) * | 2019-11-25 | 2020-07-28 | 武汉科技大学 | A temperature range control circuit and electronic equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT132641B (en) * | 1931-09-02 | 1933-04-10 | Bbc Ag Oesterr | Electric power generation and distribution system. |
CN102545161B (en) * | 2012-02-09 | 2014-08-06 | 西安理工大学 | Overcurrent protection device of variable-frequence governor |
CN105277292A (en) * | 2014-07-23 | 2016-01-27 | 中兴通讯股份有限公司 | Temperature measurement device |
CN204650318U (en) * | 2015-02-17 | 2015-09-16 | 赵晓玲 | A kind of practical analog temperature control system |
CN108710389A (en) * | 2018-05-18 | 2018-10-26 | 哈尔滨工业大学深圳研究生院 | No temperature sensor stablizes temperature control system and method |
-
2019
- 2019-11-25 CN CN201911167474.4A patent/CN110750116B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN211123804U (en) * | 2019-11-25 | 2020-07-28 | 武汉科技大学 | A temperature range control circuit and electronic equipment |
Also Published As
Publication number | Publication date |
---|---|
CN110750116A (en) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100594745C (en) | Hot air gun circuit device | |
CN102052341A (en) | Fan control system | |
CN205755246U (en) | An AC‑DC power module | |
TW201526488A (en) | Rotational speed adjusting circuit for fan | |
CN113915154B (en) | Fan speed regulation circuit based on real-time temperature monitoring | |
CN100486072C (en) | Circuit for continuous current-limiting point regulation and temperature protection of switching power source | |
CN211123804U (en) | A temperature range control circuit and electronic equipment | |
WO2017197844A1 (en) | Control chip for integrated system of photovoltaic inverter | |
CN110750116B (en) | Temperature interval control circuit and electronic equipment | |
TWI407284B (en) | Control circuit for fan | |
CN202443344U (en) | Radiator temperature control device | |
CN111828363A (en) | A system and method for adjusting heat dissipation of a board device in a voltage debugging process | |
CN116337259B (en) | A high temperature testing device and method for PCS | |
CN110267369A (en) | Heater circuit | |
CN208421660U (en) | Temperature monitoring circuit for host computer | |
Kumar et al. | AUTOMATIC TEMPERATURE BASED FAN CONTROLLER | |
CN202732417U (en) | Stepless variable-speed temperature-control fan circuit | |
CN114639897A (en) | Heating system, heating control method, and electronic apparatus | |
CN109917882B (en) | Heat dissipation device and terminal | |
CN2884767Y (en) | Circuit device of hot air gun | |
TWI232080B (en) | Radiator having a fan with a variable rotation speed | |
CN221921417U (en) | Fan control circuit | |
CN106841764B (en) | Method for realizing output current detection by using MOSFET internal resistance | |
CN213934801U (en) | Circuit for keeping constant temperature and energy saving of computer | |
CN214846422U (en) | Three-state constant temperature control circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |