CN110749827A - Intelligent battery SOC management system and method based on cloud platform - Google Patents
Intelligent battery SOC management system and method based on cloud platform Download PDFInfo
- Publication number
- CN110749827A CN110749827A CN201911214263.1A CN201911214263A CN110749827A CN 110749827 A CN110749827 A CN 110749827A CN 201911214263 A CN201911214263 A CN 201911214263A CN 110749827 A CN110749827 A CN 110749827A
- Authority
- CN
- China
- Prior art keywords
- bms
- battery
- soc
- module
- battery module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000012937 correction Methods 0.000 claims abstract description 87
- 230000007613 environmental effect Effects 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims description 72
- 238000007726 management method Methods 0.000 claims description 39
- 238000004422 calculation algorithm Methods 0.000 claims description 37
- 238000004364 calculation method Methods 0.000 claims description 32
- 238000012544 monitoring process Methods 0.000 claims description 30
- 238000004891 communication Methods 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 19
- 230000032683 aging Effects 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000011217 control strategy Methods 0.000 claims description 4
- 230000002159 abnormal effect Effects 0.000 claims description 2
- 230000003862 health status Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/371—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本公开公开了一种基于云平台的智能化电池SOC管理系统及方法,该系统包括:BMS系统,被配置为采集电池模组的运行参数及当前设备的环境参数,并上传至云端服务器;根据电池模组的运行参数,计算电池模组的SOC值;接收云端服务器下发的调控指令和新的校正系数,对计算得到的SOC值进行校正;云端服务器,被配置为接收BMS系统采集的电池模组的运行参数及当前设备的环境参数,并对其进行分析处理,建立相应的运行参数及环境参数数据库;根据运行参数判断是否需要进行重新校正电池SOC参数,若需要,则下发调控指令至BMS系统,并根据电池模组的运行参数及其历史运行参数信息,重新调整校正系数,得到新的校正系数,并下发给BMS系统。
The present disclosure discloses an intelligent battery SOC management system and method based on a cloud platform. The system includes: a BMS system, which is configured to collect operating parameters of battery modules and environmental parameters of current equipment, and upload them to a cloud server; The operating parameters of the battery module are used to calculate the SOC value of the battery module; the control instructions and new correction coefficients issued by the cloud server are received, and the calculated SOC value is corrected; the cloud server is configured to receive the battery collected by the BMS system. The operating parameters of the module and the environmental parameters of the current equipment are analyzed and processed, and the corresponding operating parameters and environmental parameter databases are established; according to the operating parameters, it is judged whether it is necessary to re-calibrate the battery SOC parameters, and if necessary, issue a control command to the BMS system, and re-adjust the correction coefficient according to the operating parameters of the battery module and its historical operating parameter information, obtain a new correction coefficient, and send it to the BMS system.
Description
技术领域technical field
本公开涉及动力电池技术领域,具体涉及一种基于云平台的智能化电池SOC管理系统及方法。The present disclosure relates to the technical field of power batteries, in particular to an intelligent battery SOC management system and method based on a cloud platform.
背景技术Background technique
随着我国经济社会及新能源行业的快速发展,动力电池广泛应用于电动公交、电动汽车、大型能量存储系统等。电池单体通过串、并联的方式组成电池模组再使用,但模组内电池单体性能不一,需要借助BMS提高电池利用率以及实现电池的动态监测,准确估计电池SOC则是BMS实现功能的前提。而传统BMS受限于运算速度和存储容量的限制,其SOC算法的计算精度不高。并且现有BMS校正都是在出厂前完成的,出厂后无法根据所使用的环境重新标定,使得在一些特殊情况下无法得到可靠的SOC值。With the rapid development of my country's economy, society and new energy industry, power batteries are widely used in electric buses, electric vehicles, and large-scale energy storage systems. The battery cells are used in series and parallel to form a battery module, but the performance of the battery cells in the module is different. It is necessary to use the BMS to improve the battery utilization rate and realize the dynamic monitoring of the battery. The accurate estimation of the battery SOC is the BMS function. the premise. However, the traditional BMS is limited by the limitation of operation speed and storage capacity, and the calculation accuracy of its SOC algorithm is not high. In addition, the existing BMS calibration is completed before leaving the factory, and it cannot be re-calibrated according to the environment used after leaving the factory, so that a reliable SOC value cannot be obtained in some special cases.
动力电池在使用的过程中,需要对电池SOC等状参数进行实时监测。SOC等状态参数的计算需要借助电池能量管理系统BMS,发明人在研发过程中发现,电池模组的BMS只能实现数据的简便计算,如果只根据BMS来获取电池SOC,由于受BMS硬件嵌入式处理器本身计算能力限制,难以实现复杂高精度预测算法的计算,显然会出现BMS计算精度不高的状况,无法准确把握电池模组实际情况。In the process of using the power battery, it is necessary to monitor the battery SOC and other parameters in real time. The calculation of state parameters such as SOC requires the help of the battery energy management system BMS. During the research and development process, the inventor found that the BMS of the battery module can only realize the simple calculation of data. The computing power of the processor itself is limited, and it is difficult to realize the calculation of complex high-precision prediction algorithms. Obviously, the BMS calculation accuracy is not high, and the actual situation of the battery module cannot be accurately grasped.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的不足,本公开提供了一种基于云平台的智能化电池SOC管理系统及方法,该系统在通信状况良好时可根据电池模组所处的运行环境,结合已有历史数据,借助云平台强大的计算能力精确计算SOC,并实时判断BMS数据处理单元的SOC算法是否需要调整,在需要时及时进行数据处理单元的参数校正。In order to overcome the above-mentioned shortcomings of the prior art, the present disclosure provides an intelligent battery SOC management system and method based on a cloud platform. With the help of the powerful computing power of the cloud platform, the SOC can be accurately calculated, and the SOC algorithm of the BMS data processing unit needs to be adjusted in real time, and the parameter correction of the data processing unit is carried out in time when necessary.
本公开一方面提供的一种基于云平台的智能化电池SOC管理系统的技术方案是:One aspect of the present disclosure provides a technical solution for an intelligent battery SOC management system based on a cloud platform:
一种基于云平台的智能化电池SOC管理系统,其特征是,包括:An intelligent battery SOC management system based on a cloud platform, characterized by comprising:
BMS系统,被配置为:BMS system, configured as:
1.当与云端服务器通信状况差时,采集电池模组的电压、电流和温度运行状态参数及当前设备的环境参数,根据电池模组的运行参数,计算电池模组SOC值;1. When the communication with the cloud server is poor, collect the voltage, current and temperature operating state parameters of the battery module and the environmental parameters of the current device, and calculate the SOC value of the battery module according to the operating parameters of the battery module;
2.当与云端服务器通信状况良好时,将采集的数据上传至云端服务器形成电池模组运行数据库,依托服务器的复杂算法和高性能计算能力获取高精度的SOC求解,同时依托自身的计算能力对SOC进行同步计算,最终采用的计算值以服务器的高精度结果为准,BMS系统可根据两者的偏差判断是否需要对本地SOC算法的相关参数进行校正,适时向云服务器发出校正算法请求;此外,BMS也能接收云端服务器自行下发的调控指令和新的校正系数,对其SOC算法进行参数校正;2. When the communication with the cloud server is in good condition, upload the collected data to the cloud server to form a battery module operation database, rely on the server's complex algorithms and high-performance computing capabilities to obtain high-precision SOC solutions, and rely on its own computing capabilities to solve the problem. The SOC is calculated synchronously, and the final calculated value is subject to the high-precision result of the server. The BMS system can judge whether the relevant parameters of the local SOC algorithm need to be corrected according to the deviation between the two, and send a correction algorithm request to the cloud server in a timely manner; , the BMS can also receive the control instructions and new correction coefficients issued by the cloud server, and perform parameter correction on its SOC algorithm;
云端服务器,被配置为:Cloud server, configured as:
1.接收BMS系统采集的电池模组的运行参数及当前设备的环境参数数据,将数据存入相应的电池模组历史状态信息数据库,同时利用云端服务器的强大运算能力对数据进行基于复杂算法的高精度分析处理,计算出电池模组的SOC值,并下发至BMS系统,并在结果与BMS系统计算结果出现严重偏差时接收BMS系统发出的SOC算法校正指令进行参数校正;1. Receive the operating parameters of the battery module and the environmental parameter data of the current equipment collected by the BMS system, store the data in the corresponding historical status information database of the battery module, and use the powerful computing power of the cloud server to process the data based on complex algorithms. High-precision analysis and processing, calculate the SOC value of the battery module, and send it to the BMS system, and receive the SOC algorithm correction command sent by the BMS system to perform parameter correction when the result is seriously deviated from the calculation result of the BMS system;
2.云服务器依托充放电过程数据进行动态匹配,结合云数据库中电池模组的历史数据对电池衰减老化及健康状态进行大数据离线计算,判断是否需要对BMS的简化SOC估算方法的相关参数进行校正。若需要,则下发调控指令至BMS系统,并根据电池模组的运行参数及其历史运行参数信息,重新调整校正系数,得到新的校正系数,并下发给BMS系统。2. The cloud server performs dynamic matching based on the data of the charging and discharging process, and combines the historical data of the battery modules in the cloud database to perform big data offline calculations on the battery attenuation, aging and health status, and determine whether the relevant parameters of the simplified SOC estimation method of the BMS need to be calculated. Correction. If necessary, a regulation command is issued to the BMS system, and the correction coefficient is re-adjusted according to the operating parameters of the battery module and its historical operating parameter information, a new correction coefficient is obtained, and sent to the BMS system.
进一步的,所述云端服务器包括:Further, the cloud server includes:
监控模块,被配置为获取BMS系统上传的电池模组运行参数及当前设备环境参数的数据包,对其进行解析还原,建立相应的运行参数与环境参数数据库,同时将数据发送云服务器的调控模块;将电池模组的实时运行参数与该电池模组的历史运行参数数据进行对比,结合云数据库中电池模组的历史数据对电池衰减老化及健康状态进行大数据离线计算,判断是否需要对BMS的简化SOC估算方法的相关参数进行校正,若判断需要校正,向调控模块发出电池参数校正请求,同时发出BMS数据处理单元参数校正请求;The monitoring module is configured to obtain the data packets of the battery module operating parameters and the current equipment environmental parameters uploaded by the BMS system, parse and restore them, establish a database of corresponding operating parameters and environmental parameters, and send the data to the control module of the cloud server at the same time ;Compare the real-time operating parameters of the battery module with the historical operating parameter data of the battery module, and use the historical data of the battery module in the cloud database to perform big data offline calculations on battery attenuation, aging and health status, and determine whether it is necessary to The relevant parameters of the simplified SOC estimation method are corrected. If it is judged that correction is required, a battery parameter correction request is sent to the control module, and a BMS data processing unit parameter correction request is sent at the same time;
调控模块,被配置为当接收到监控模块发送的电池参数校正请求后,向BMS调控单元发出调控指令,同时将接收到的数据发送给数据处理模块和参数校正模块;当未接到监控模块发送的参数校正请求时,将从监控模块接收的数据直接发送给数据处理模块,同时,将监控模块发送的电池模组运行参数发送给用户端;The control module is configured to send a control instruction to the BMS control unit after receiving the battery parameter correction request sent by the monitoring module, and at the same time send the received data to the data processing module and the parameter correction module; When the parameter correction request is received, the data received from the monitoring module is directly sent to the data processing module, and at the same time, the operating parameters of the battery module sent by the monitoring module are sent to the user terminal;
数据处理模块,被配置为接收调控模块发送的数据,计算电池模组的SOC状态信息,同时与历史数据库中该电池组及同型号电池组的历史运行数据和控制参数进行对比,得到最优的充放电曲线控制策略及可靠的运行模式,并将电池状态信息的计算结果和充放电管理策略下发到BMS数据处理单元;The data processing module is configured to receive the data sent by the control module, calculate the SOC status information of the battery module, and compare it with the historical operation data and control parameters of the battery pack and the battery pack of the same type in the historical database to obtain the optimal one. Charge-discharge curve control strategy and reliable operation mode, and send the calculation results of battery status information and charge-discharge management strategy to the BMS data processing unit;
参数校正模块,被配置为接收BMS调控单元或BMS数据处理单元发送的调控指令后,根据调控模块下发的电池模组运行参数和环境参数,并结合该电池模组的历史运行参数数据,计算BMS数据处理单元的参数校正系数,发送给BMS系统。The parameter correction module is configured to, after receiving the control instruction sent by the BMS control unit or the BMS data processing unit, calculate the operating parameters and environmental parameters of the battery module issued by the control module and combined with the historical operating parameter data of the battery module. The parameter correction coefficient of the BMS data processing unit is sent to the BMS system.
进一步的,所述BMS系统包括:Further, the BMS system includes:
BMS监控单元,被配置为采集电池模组的运行参数及当前设备的环境参数数据,实时判断与云端服务器的通信状况,若与云端服务器的通信状况好时,对采集到的数据进行处理分析后打包发送给云端服务器;同时将采集到的电池模组的运行参数及当前设备的环境参数传输给BMS调控单元;若与云端服务器的通信状况差时,则将采集到的电池模组的运行参数及当前设备的环境参数传输给BMS调控单元;The BMS monitoring unit is configured to collect the operating parameters of the battery module and the environmental parameter data of the current equipment, and judge the communication status with the cloud server in real time. If the communication status with the cloud server is good, the collected data will be processed and analyzed. Packed and sent to the cloud server; at the same time, the collected operating parameters of the battery module and the environmental parameters of the current device are transmitted to the BMS control unit; if the communication with the cloud server is poor, the collected operating parameters of the battery module will be And the environmental parameters of the current equipment are transmitted to the BMS control unit;
BMS调控单元,被配置为接收调控模块下发的调控指令和BMS监控单元采集的电池模组的运行参数及当前设备的环境参数,对电池模组的运行参数进行分析处理,根据电池当前运行状态信息判断能否对BMS数据处理单元进行参数校正,若可以校正,将调控指令发送给参数校正模块和BMS数据处理单元,并发送指令完成信息至调控模块;若判断不能进行参数校正,则将电池模组的运行参数和环境参数以及分析结果传输到BMS的数据处理单元;The BMS control unit is configured to receive the control instructions issued by the control module, the operating parameters of the battery module and the environmental parameters of the current equipment collected by the BMS monitoring unit, and analyze and process the operating parameters of the battery module. The information judges whether the parameter correction of the BMS data processing unit can be performed. If it can be corrected, the control command is sent to the parameter correction module and the BMS data processing unit, and the command completion information is sent to the control module; if it is judged that the parameter correction cannot be performed, the battery The operating parameters and environmental parameters of the module and the analysis results are transmitted to the data processing unit of the BMS;
BMS数据处理单元,被配置为当与云台服务器正常通信时,接收数据处理模块计算得到的电池模组SOC状态参数,同时依托自身的计算能力对SOC进行同步计算,如果两结果出现严重偏差(数据离谱),则认为通讯错误或本地求解错误,放弃本次结果等待下一次的计算数据。如果两者偏差在一个阈值范围之内,则以服务器的高精度结果为准,并判断是否需求对本地SOC算法的相关参数进行校正。如果两者偏差超过该阈值,则发出校正请求,让云服务器的参数校正模块发送BMS的SOC计算算法的校正系数;当接收到参数校正模块下发的校准权重值,对SOC算法进行校正,并将校准完成指令发送给云端服务器;当无法云台服务器正常通信时,采用内部简化算法估算电池模组的SOC值,并利用所得电池状态信息对电池模组进行充放电管理。The BMS data processing unit is configured to receive the battery module SOC state parameters calculated by the data processing module when it communicates normally with the PTZ server, and simultaneously calculate the SOC based on its own computing power. If there is a serious deviation between the two results ( The data is outrageous), it is considered that the communication error or the local solution error is wrong, and the current result is abandoned and the next calculation data is waited. If the deviation between the two is within a threshold range, the high-precision result of the server shall prevail, and it is determined whether the relevant parameters of the local SOC algorithm need to be corrected. If the deviation between the two exceeds the threshold, a correction request will be issued, and the parameter correction module of the cloud server will send the correction coefficient of the SOC calculation algorithm of the BMS; when the calibration weight value issued by the parameter correction module is received, the SOC algorithm will be corrected, and Send the calibration completion command to the cloud server; when the PTZ server cannot communicate normally, an internal simplified algorithm is used to estimate the SOC value of the battery module, and the battery module is charged and discharged using the obtained battery status information.
本公开另一方面提供的一种基于云平台的智能化电池SOC管理方法的技术方案是:Another aspect of the present disclosure provides a technical solution for a cloud platform-based intelligent battery SOC management method:
一种基于云平台的智能化电池SOC管理方法,该方法包括以下步骤:An intelligent battery SOC management method based on a cloud platform, the method includes the following steps:
采集当前充放电循环周期的电池模组的运行参数及当前设备的环境参数,对电池模组的运行参数进行分析处理,并建立相应的运行参数及环境参数数据库;Collect the operating parameters of the battery module in the current charge-discharge cycle and the environmental parameters of the current equipment, analyze and process the operating parameters of the battery module, and establish a database of corresponding operating parameters and environmental parameters;
云服务器依托充放电过程数据进行动态匹配,结合云数据库中电池模组的历史数据对电池衰减老化及健康状态进行大数据离线计算,判断是否需要对BMS数据处理单元的SOC算法进行重新校正;The cloud server performs dynamic matching based on the data of the charging and discharging process, and combines the historical data of the battery modules in the cloud database to perform big data offline calculations on battery attenuation, aging and health status, and determine whether it is necessary to recalibrate the SOC algorithm of the BMS data processing unit;
若需要,则根据采集到的电池模组运行参数及其历史运行参数信息,计算校准权重值;If necessary, calculate the calibration weight value according to the collected battery module operating parameters and their historical operating parameter information;
根据校准权重值对BMS数据处理单元的SOC算法进行重新校准。The SOC algorithm of the BMS data processing unit is recalibrated according to the calibration weight value.
通过上述技术方案,本公开的有益效果是:Through the above technical solutions, the beneficial effects of the present disclosure are:
(1)本公开提出的基于云平台的智能化电池SOC管理系统,通过云服务器可调用对比海量历史数据库,突破了传统BMS数据处理单元运算能力的限制,提高了SOC的计算速度和精度,以更复杂的算法和更快的运算速度得到高精度的SOC,和更高效和更可靠的充放电管理策略,借助5G通信,可以实现实时的高精度响应;(1) The intelligent battery SOC management system based on the cloud platform proposed in this disclosure can call and compare massive historical databases through the cloud server. More complex algorithms and faster operation speed can obtain high-precision SOC, and more efficient and reliable charging and discharging management strategies. With the help of 5G communication, real-time high-precision response can be achieved;
(2)本公开通过云平台实时监控电池组的运行状态,可及时对BMS进行参数校正,在电池不同使用寿命和不同工作状态下,保证BMS通信条件中断而处于独立工作模式时所得SOC的可靠性以及BMS进行能量管理的有效性;(2) The present disclosure monitors the running state of the battery pack in real time through the cloud platform, and can perform parameter correction on the BMS in time, and ensures the reliability of the SOC obtained when the BMS communication conditions are interrupted and in the independent working mode under different service lives and different working states of the battery. performance and the effectiveness of the BMS for energy management;
(3)本公开借助云计算平台,对电池模组的大量数据进行实时高效处理,实现电池模组SOC的高精度要求;可实现BMS对数据的简化处理,在保证基本精度要求下实现对电池模组SOC预测;(3) The present disclosure uses the cloud computing platform to process a large amount of data of the battery module efficiently in real time, so as to achieve the high-precision requirements of the battery module SOC; it can realize the simplified processing of the data by the BMS, and realize the battery module under the requirement of ensuring the basic accuracy. Module SOC prediction;
(4)同型号电池组还可以通过云平台进行数据共享,增大了数据分析的对比样本,提高了可靠性。(4) The same type of battery pack can also share data through the cloud platform, which increases the comparison samples for data analysis and improves reliability.
附图说明Description of drawings
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本申请,并不构成对本公开的不当限定。The accompanying drawings, which constitute a part of the present disclosure, are used to provide further understanding of the present disclosure, and the exemplary embodiments of the present disclosure and their descriptions are used to explain the present application and do not constitute an improper limitation of the present disclosure.
图1是实施例一基于云平台的智能化电池SOC管理系统的结构图一;1 is a structural diagram 1 of an intelligent battery SOC management system based on a cloud platform in Embodiment 1;
图2是实施例一基于云平台的智能化电池SOC管理系统的结构图二;2 is a second structural diagram of an intelligent battery SOC management system based on a cloud platform in Embodiment 1;
图3是实施例二基于云平台的智能化电池SOC管理方法的流程图。FIG. 3 is a flowchart of an intelligent battery SOC management method based on a cloud platform in the second embodiment.
具体实施方式Detailed ways
下面结合附图与实施例对本公开作进一步说明。The present disclosure will be further described below with reference to the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本公开使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed description is exemplary and intended to provide further explanation of the present disclosure. Unless otherwise defined, all technical and scientific terms used in this disclosure have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used herein is for the purpose of describing specific embodiments only, and is not intended to limit the exemplary embodiments according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural as well, furthermore, it is to be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates that There are features, steps, operations, devices, components and/or combinations thereof.
实施例一Example 1
图1和2是本实施例涉及的基于云平台的智能化电池SOC管理系统的结构图。如图1和2所示,所述智能化电池SOC管理系统包括云端服务器、BMS系统和客户端,其中:1 and 2 are structural diagrams of the cloud platform-based intelligent battery SOC management system involved in this embodiment. As shown in Figures 1 and 2, the intelligent battery SOC management system includes a cloud server, a BMS system and a client, wherein:
所述云服务器包括监控模块、调控模块、数据处理模块、参数校正模块和无线数据传输模块,其中:The cloud server includes a monitoring module, a control module, a data processing module, a parameter correction module and a wireless data transmission module, wherein:
监控模块,被配置为获取BMS系统上传的电池模组运行参数及当前设备环境参数的数据包,对其进行解析还原,建立相应的运行参数与环境参数数据库,同时将数据发送云服务器的调控模块;将电池模组的实时运行参数与该电池模组的历史运行参数数据进行对比,结合云数据库中电池模组的历史数据对电池衰减老化及健康状态进行大数据离线计算,判断是否需要对BMS的简化SOC估算方法的相关参数进行校正,若判断需要校正,向调控模块发出电池参数校正请求,同时发出BMS数据处理单元参数校正请求;The monitoring module is configured to obtain the data packets of the battery module operating parameters and the current equipment environmental parameters uploaded by the BMS system, parse and restore them, establish a database of corresponding operating parameters and environmental parameters, and send the data to the control module of the cloud server at the same time ;Compare the real-time operating parameters of the battery module with the historical operating parameter data of the battery module, and use the historical data of the battery module in the cloud database to perform big data offline calculations on battery attenuation, aging and health status, and determine whether it is necessary to The relevant parameters of the simplified SOC estimation method are corrected. If it is judged that correction is required, a battery parameter correction request is sent to the control module, and a BMS data processing unit parameter correction request is sent at the same time;
所述调控模块,被配置为接收监控模块发送的电池参数校正请求,结合当前电池模组运行状态信息,通过云端服务器的无线数据传输模块向BMS调控单元发出调控指令,BMS调控单元根据电池当前运行状态信息判断是否可以对BMS数据处理单元进行参数校正;The control module is configured to receive a battery parameter correction request sent by the monitoring module, and in combination with the current battery module operating status information, send a control instruction to the BMS control unit through the wireless data transmission module of the cloud server, and the BMS control unit is based on the current operation of the battery. The status information judges whether parameter correction can be performed on the BMS data processing unit;
未接到监控模块发送的电池参数校正请求时,调控模块将监控模块发送的电池运行参数直接发送给数据处理模块,同时,将监控模块发送的电池运行参数发送给用户手机客户端(移动APP),方便用户实时监测,最后将所有的数据存到相应数据库。When the battery parameter correction request sent by the monitoring module is not received, the control module directly sends the battery operating parameters sent by the monitoring module to the data processing module, and at the same time, sends the battery operating parameters sent by the monitoring module to the user's mobile phone client (mobile APP) , which is convenient for users to monitor in real time, and finally save all the data to the corresponding database.
所述数据处理模块,被配置为接收调控模块发送的电池模组电流、电压、温度等运行参数,根据电池模组电流、电压、温度等运行参数,采用精确的标准算法计算电池模组的SOC等状态信息,同时与云服务器中该电池组及同型号电池组的历史运行数据和控制参数进行对比,得到最优的充放电曲线控制策略及能可靠规避风险的运行模式,并将电池状态信息的计算结果和充放电管理策略下发到BMS数据处理单元以显示和控制,同时,将电池模组电流、电压、温度等参数和计算结果存储到相应数据库。The data processing module is configured to receive the battery module current, voltage, temperature and other operating parameters sent by the control module, and calculate the SOC of the battery module using an accurate standard algorithm according to the battery module current, voltage, temperature and other operating parameters. At the same time, compare with the historical operation data and control parameters of the battery pack and the same type of battery pack in the cloud server to obtain the optimal charge-discharge curve control strategy and operation mode that can reliably avoid risks. The calculation results and charge and discharge management strategies of the battery are sent to the BMS data processing unit for display and control. At the same time, the parameters and calculation results of the battery module current, voltage, temperature, etc. are stored in the corresponding database.
所述参数校正模块,被配置为根据BMS调控单元或BMS数据处理单元上传的电池模组电流、电压、温度等运行参数,并结合该电池模组的历史运行参数数据,生成BMS数据处理单元的校正系数,将得到的校正系数通过云端服务器的无线数据传输模块发送给BMS数据处理单元,BMS数据处理单元根据新校正系数对SOC算法进行校正。The parameter correction module is configured to generate the current, voltage, temperature and other operating parameters of the battery module uploaded by the BMS control unit or the BMS data processing unit, combined with the historical operating parameter data of the battery module, to generate the data of the BMS data processing unit. Correction coefficient, send the obtained correction coefficient to the BMS data processing unit through the wireless data transmission module of the cloud server, and the BMS data processing unit corrects the SOC algorithm according to the new correction coefficient.
具体地,所述校正系数的调整方法为:Specifically, the adjustment method of the correction coefficient is:
参数校正模块将得到的电池模组运行参数和电池模组历史数据进行分析处理,得到一个校准SOC值;The parameter calibration module analyzes and processes the obtained battery module operating parameters and battery module historical data to obtain a calibrated SOC value;
利用校准SOC值对BMS系统计算的SOC进行误差分析与预估,得到一个校准权重值k,并发送给BMS数据处理单元,更正BMS数据处理单元SOC计算算法。Use the calibrated SOC value to analyze and predict the error of the SOC calculated by the BMS system, obtain a calibration weight value k, and send it to the BMS data processing unit to correct the SOC calculation algorithm of the BMS data processing unit.
所述BMS系统包括BMS监控单元、BMS调控单元、BMS数据处理单元,其中:The BMS system includes a BMS monitoring unit, a BMS control unit, and a BMS data processing unit, wherein:
所述BMS监控单元,被配置为采集电池模组的运行参数及当前设备的环境参数,所述电池模组的运行参数包括电池模组电流、电压、温度等运行参数,所述当前设备的环境参数包括环境温度、盐雾条件、振动参数等,将采集到的电池模组的运行参数及当前设备的环境参数通过CAN总线传输给BMS无线数据传输单元,通过BMS无线数据传输单元将电池模组的运行参数及当前设备的环境参数进行处理分析后打包,并发送给云端服务器的监控模块;同时将采集到的电池模组的运行参数及当前设备的环境参数传输给BMS调控单元。The BMS monitoring unit is configured to collect the operating parameters of the battery module and the environmental parameters of the current device, the operating parameters of the battery module include operating parameters such as battery module current, voltage, temperature, and the environment of the current device. The parameters include ambient temperature, salt spray conditions, vibration parameters, etc. The collected operating parameters of the battery module and the environmental parameters of the current equipment are transmitted to the BMS wireless data transmission unit through the CAN bus, and the battery module is transmitted through the BMS wireless data transmission unit. The operating parameters of the battery module and the environmental parameters of the current equipment are processed and analyzed, packaged, and sent to the monitoring module of the cloud server; at the same time, the collected operating parameters of the battery module and the environmental parameters of the current equipment are transmitted to the BMS control unit.
所述BMS调控单元,被配置为接收调控模块下发的调控指令和BMS监控单元采集的电池模组的运行参数及当前设备的环境参数,对电池模组的运行参数进行分析处理,根据电池当前运行状态信息判断能否对BMS数据处理单元进行参数校正,若可以校正,将调控指令发送给参数校正模块和BMS数据处理单元,并发送指令完成信息至调控模块;若判断不能进行参数校正,则将电池模组的运行参数和环境参数以及分析结果传输到BMS的数据处理单元;The BMS control unit is configured to receive the control instruction issued by the control module, the operating parameters of the battery module and the environmental parameters of the current equipment collected by the BMS monitoring unit, and analyze and process the operating parameters of the battery module. The operation status information judges whether the parameter correction can be performed on the BMS data processing unit. If it can be corrected, the control instruction is sent to the parameter correction module and the BMS data processing unit, and the instruction completion information is sent to the control module; if it is judged that the parameter correction cannot be performed, then Transmit the operating parameters, environmental parameters and analysis results of the battery module to the data processing unit of the BMS;
当通信异常时,BMS系统无法与云端服务器进行数据传输时,BMS调控单元可直接将电池模组运行参数发送给BMS数据处理单元。When the communication is abnormal and the BMS system cannot perform data transmission with the cloud server, the BMS control unit can directly send the battery module operating parameters to the BMS data processing unit.
本实施例在通信良好情况下在需要时对BMS数据处理单元进行参数校正,通讯良好时SOC是云平台计算的,而校正的目的是使BMS在没有通讯条件的时候能独立算出更符合电池状态的SOC。This embodiment corrects the parameters of the BMS data processing unit when necessary when the communication is good. When the communication is good, the SOC is calculated by the cloud platform, and the purpose of the correction is to enable the BMS to independently calculate the battery state when there is no communication condition. SOC.
所述BMS数据处理单元,在依靠云平台工作模式下被配置为,接收数据处理模块计算得到的电池模组SOC状态参数,同时依托自身的计算能力对SOC进行同步计算,如果两结果出现严重偏差(数据离谱),则认为通讯错误或本地求解错误,放弃本次结果等待下一次的计算数据。如果两者偏差在一个阈值范围之内,则以服务器的高精度结果为准,并判断是否需求对本地SOC算法的相关参数进行校正。如果两者偏差超过该阈值,则发出校正请求,让云服务器的参数校正模块发送BMS的SOC计算算法的校正系数;显示最终计算结果,同时通过BMS无线数据传输单元将计算结果传输给手机客户端(移动APP);接收参数校正模块下发的校准权重值,根据参数校正模块下发的校准权重值k,利用Bootloader的引导BMS数据处理单元进行重新校准,通过BMS无线数据传输单元将校准完成指令发送给云端服务器;在独立工作模式下被配置为根据调控单元传输的数据,采用内部简化算法独立进行SOC估算以及利用所得电池状态信息对电池模组进行可靠的充放电管理。The BMS data processing unit is configured to receive the SOC state parameter of the battery module calculated by the data processing module in the working mode of relying on the cloud platform, and simultaneously calculate the SOC by relying on its own computing power. If there is a serious deviation between the two results (The data is outrageous), it is considered that the communication error or the local solution error is wrong, and the current result is abandoned and the next calculation data is waited. If the deviation between the two is within a threshold range, the high-precision result of the server shall prevail, and it is determined whether the relevant parameters of the local SOC algorithm need to be corrected. If the deviation between the two exceeds the threshold, a correction request will be issued, and the parameter correction module of the cloud server will send the correction coefficient of the BMS SOC calculation algorithm; the final calculation result will be displayed, and the calculation result will be transmitted to the mobile client through the BMS wireless data transmission unit. (Mobile APP); Receive the calibration weight value issued by the parameter correction module, use the Bootloader to guide the BMS data processing unit to recalibrate according to the calibration weight value k issued by the parameter correction module, and pass the calibration completion instruction through the BMS wireless data transmission unit It is sent to the cloud server; in the independent working mode, it is configured to independently estimate the SOC by using the internal simplified algorithm according to the data transmitted by the control unit, and use the obtained battery status information to perform reliable charge and discharge management of the battery module.
在本实施例中,所述云端服务器的无线数据传输模块和BMS无线数据传输单元分别采用5G通信模块,可实现电池模组BMS与云平台之间的高效数据传输,有效保证SOC估算和充放电管理控制策略的实时性。In this embodiment, the wireless data transmission module and BMS wireless data transmission unit of the cloud server respectively use 5G communication modules, which can realize efficient data transmission between the battery module BMS and the cloud platform, and effectively ensure SOC estimation and charging and discharging. Manage the real-time nature of control strategies.
实施例二Embodiment 2
本实施例提供一种基于云平台的智能化电池SOC管理方法,该方法基于实施例一所述的基于云平台的智能化电池SOC管理系统的结构图实现的。This embodiment provides a cloud platform-based intelligent battery SOC management method, which is implemented based on the structure diagram of the cloud platform-based intelligent battery SOC management system described in the first embodiment.
请参阅附图3,所述基于云平台的智能化电池SOC管理方法包括以下步骤:Referring to Figure 3, the cloud platform-based intelligent battery SOC management method includes the following steps:
步骤1:采集电池模组的运行参数及当前设备的环境参数,对电池模组的运行参数进行分析处理,并建立相应的运行参数及环境参数数据库。Step 1: Collect the operating parameters of the battery module and the environmental parameters of the current equipment, analyze and process the operating parameters of the battery module, and establish a database of corresponding operating parameters and environmental parameters.
具体地,通过BMS监控单元采集电池模组的运行参数及当前设备的环境参数,所述电池模组的运行参数包括电池模组电流、电压、温度等运行参数;所述当前设备的环境参数包括环境温度、盐雾条件、振动参数等;将采集到的电池模组的运行参数及当前设备的环境参数通过BMS无线数据传输单元将电池模组的运行参数及当前设备的环境参数进行处理分析后打包,并发送给云端服务器的监控模块。Specifically, the operating parameters of the battery module and the environmental parameters of the current equipment are collected through the BMS monitoring unit, where the operating parameters of the battery module include operating parameters such as battery module current, voltage, and temperature; the environmental parameters of the current equipment include: Ambient temperature, salt spray conditions, vibration parameters, etc.; the collected operating parameters of the battery module and the environmental parameters of the current equipment are processed and analyzed through the BMS wireless data transmission unit to process and analyze the operating parameters of the battery module and the environmental parameters of the current equipment Packaged and sent to the monitoring module of the cloud server.
所述监控模块获取BMS监控单元上传的电池模组运行参数数据的TCP/IP包,进行解析还原,建立相应的运行参数与环境参数数据库,实时监测电池模组的运行参数以及当前设备的使用环境参数,并写入相应的数据库中。The monitoring module obtains the TCP/IP packet of the battery module operating parameter data uploaded by the BMS monitoring unit, parses and restores it, establishes a database of corresponding operating parameters and environmental parameters, and monitors the operating parameters of the battery module and the use environment of the current equipment in real time. parameters, and write to the corresponding database.
步骤2:根据电池模组的运行参数判断BMS数据处理单元是否需要进行重新校正,若是,则进入步骤3,若不是,则返回步骤1。Step 2: Determine whether the BMS data processing unit needs to be re-calibrated according to the operating parameters of the battery module, if so, go to Step 3; if not, return to Step 1.
具体地,通过监控模块将电池模组的实时运行参数与该电池模组的历史运行参数数据进行对比,结合云数据库中电池模组的历史数据对电池衰减老化及健康状态进行大数据离线计算,判断是否需要对BMS的简化SOC估算方法的相关参数进行校正,并向调控模块发出参数校正请求。Specifically, the monitoring module compares the real-time operating parameters of the battery module with the historical operating parameter data of the battery module, and combines the historical data of the battery module in the cloud database to perform big data offline calculations on battery decay, aging and health status. Determine whether the relevant parameters of the simplified SOC estimation method of the BMS need to be corrected, and send a parameter correction request to the control module.
步骤3:调控模块向BMS调控单元发出调控指令,将当前充放电循环周期的电池数据传递给数据处理模块和参数校正模块。Step 3: The control module sends a control instruction to the BMS control unit, and transmits the battery data of the current charge-discharge cycle to the data processing module and the parameter correction module.
具体地,调控模块通过接收监控模块发送的电池参数校正请求,结合当前电池模组运行状态信息,通过云端服务器的无线数据传输模块向BMS调控单元发出调控指令,BMS调控单元根据电池当前运行状态信息判断是否可以对BMS数据处理模块计算的SOC值进行参数校正;若需要,则BMS调控单元对BMS数据处理单元和云端的参数校正模块发出调控指令。Specifically, the control module receives the battery parameter correction request sent by the monitoring module, combines the current battery module operating state information, and sends a control instruction to the BMS control unit through the wireless data transmission module of the cloud server, and the BMS control unit is based on the current battery operating state information. It is judged whether parameter correction can be performed on the SOC value calculated by the BMS data processing module; if necessary, the BMS control unit sends a control instruction to the BMS data processing unit and the parameter correction module in the cloud.
步骤4:参数校正模块根据步骤3采集到的当前充放电循环周期的电池模组运行参数和历史运行参数信息,生成校正系数并发送给BMS数据处理单元,BMS数据处理单元根据校正系数对SOC算法进行校正。Step 4: The parameter correction module generates a correction coefficient and sends it to the BMS data processing unit according to the battery module operating parameters and historical operating parameter information of the current charge-discharge cycle collected in step 3, and the BMS data processing unit adjusts the SOC algorithm according to the correction coefficient. Make corrections.
进一步的,所述步骤3的具体步骤为:Further, the specific steps of the step 3 are:
(3-1)调控模块通过云端服务器的无线数据传输模块将调控指令发送给BMS调控单元,同时将当前循环周期的电池运行参数信息传递给参数校正模块;(3-1) The control module sends the control instruction to the BMS control unit through the wireless data transmission module of the cloud server, and simultaneously transmits the battery operating parameter information of the current cycle to the parameter correction module;
(3-2)BMS调控单元接收云端服务器发来的指令并对其进行分析处理,判断在进行该调控指令下BMS数据处理单元校正后SOC算法复杂度和计算精度的变化趋势,若发现SOC算法时间复杂度需要增加但当前已经接近计算速度最低临界值,或发现空间复杂度需要增加而当前已经接近BMS硬件可用内存的最大临界值,则中止调控,若无上述情况,则继续后续操作;(3-2) The BMS control unit receives the instruction sent by the cloud server and analyzes and processes it, and judges the change trend of the complexity and calculation accuracy of the SOC algorithm after the correction of the BMS data processing unit under the control instruction. If the SOC algorithm is found If the time complexity needs to be increased but it is approaching the minimum critical value of the computing speed, or the space complexity needs to be increased and the current is close to the maximum critical value of the available memory of the BMS hardware, the regulation will be aborted.
(3-3)BMS调控单元向参数校正模块和BMS数据处理单元发送调控指令,并发送指令完成信息至调控模块。(3-3) The BMS control unit sends a control instruction to the parameter correction module and the BMS data processing unit, and sends the instruction completion information to the control module.
进一步的,所述步骤4的具体步骤为:Further, the specific steps of the step 4 are:
(4-1)参数校正模块将得到的电池运行状态参数和历史参数数据进行分析处理,得到一个校准SOC值;(4-1) The parameter calibration module analyzes and processes the obtained battery operating state parameters and historical parameter data to obtain a calibrated SOC value;
(4-2)利用校准SOC值进行误差分析与预估,得到一个校准权重值k,更正BMS数据处理单元的SOC算法;(4-2) Using the calibrated SOC value to perform error analysis and estimation, obtain a calibration weight value k, and correct the SOC algorithm of the BMS data processing unit;
(4-3)参数校正模块通过无线数据传输模块将校准权重值下发给BMS数据处理单元,BMS数据处理单元根据新的校准权重值k,完成对计算的SOC值校准;(4-3) The parameter correction module sends the calibration weight value to the BMS data processing unit through the wireless data transmission module, and the BMS data processing unit completes the calibration of the calculated SOC value according to the new calibration weight value k;
(4-4)BMS数据处理单元通过BMS无线数据传输单元将校准完成指令发送给云端服务器。(4-4) The BMS data processing unit sends the calibration completion instruction to the cloud server through the BMS wireless data transmission unit.
从以上的描述中,可以看出,上述的实施例实现了如下技术效果:From the above description, it can be seen that the above-mentioned embodiments achieve the following technical effects:
(1)本公开提出的基于云平台的智能化电池SOC管理系统,通过云服务器可调用对比海量历史数据库,突破了传统BMS数据处理单元运算能力的限制,提高了SOC的计算速度和精度,以更复杂的算法和更快的运算速度得到高精度的SOC,和更高效和更可靠的充放电管理策略,借助5G通信,可以实现实时的高精度响应;(1) The intelligent battery SOC management system based on the cloud platform proposed in this disclosure can call and compare massive historical databases through the cloud server. More complex algorithms and faster operation speed can obtain high-precision SOC, and more efficient and reliable charging and discharging management strategies. With the help of 5G communication, real-time high-precision response can be achieved;
(2)本公开通过云平台实时监控电池组的运行状态,可及时对BMS进行参数校正,在电池不同使用寿命和不同工作状态下,保证BMS通信中断而处于独立工作模式时所得SOC的可靠性以及BMS进行能量管理的有效性;(2) The present disclosure monitors the running state of the battery pack in real time through the cloud platform, and can perform parameter correction on the BMS in time, and ensures the reliability of the SOC obtained when the BMS communication is interrupted and in the independent working mode under different service lives and different working states of the battery. and the effectiveness of the BMS for energy management;
(3)本公开借助云计算平台,对电池模组的大量数据进行实时高效处理,实现电池模组SOC的高精度要求;可实现BMS对数据的简化处理,在保证基本精度要求下实现对电池模组SOC预测;(3) The present disclosure uses the cloud computing platform to process a large amount of data of the battery module efficiently in real time, so as to achieve the high-precision requirements of the battery module SOC; it can realize the simplified processing of the data by the BMS, and realize the battery module under the requirement of ensuring the basic accuracy. Module SOC prediction;
(4)同型号电池组还可以通过云平台进行数据共享,增大了数据分析的对比样本,提高了可靠性。(4) The same type of battery pack can also share data through the cloud platform, which increases the comparison samples for data analysis and improves reliability.
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。Although the specific embodiments of the present disclosure have been described above in conjunction with the accompanying drawings, they do not limit the protection scope of the present disclosure. Those skilled in the art should understand that on the basis of the technical solutions of the present disclosure, those skilled in the art do not need to pay creative efforts. Various modifications or variations that can be made are still within the protection scope of the present disclosure.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911214263.1A CN110749827B (en) | 2019-12-02 | 2019-12-02 | Intelligent battery SOC management system and method based on cloud platform |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911214263.1A CN110749827B (en) | 2019-12-02 | 2019-12-02 | Intelligent battery SOC management system and method based on cloud platform |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110749827A true CN110749827A (en) | 2020-02-04 |
CN110749827B CN110749827B (en) | 2020-10-09 |
Family
ID=69285383
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911214263.1A Active CN110749827B (en) | 2019-12-02 | 2019-12-02 | Intelligent battery SOC management system and method based on cloud platform |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110749827B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111913985A (en) * | 2020-08-28 | 2020-11-10 | 中国科学技术大学 | Intelligent battery charging and discharging management system and method based on 5G cloud computing platform |
CN111934380A (en) * | 2020-08-03 | 2020-11-13 | 广东博力威科技股份有限公司 | Method for controlling battery balance through cloud platform |
CN112290649A (en) * | 2020-11-23 | 2021-01-29 | 国网北京市电力公司 | Charging control method and device, storage medium and processor |
CN112540303A (en) * | 2020-11-18 | 2021-03-23 | 潍柴动力股份有限公司 | Correction method and device |
CN112714156A (en) * | 2020-12-18 | 2021-04-27 | 北京新能源汽车技术创新中心有限公司 | Cloud BMS (battery management system) cooperative management method and system and vehicle |
CN113030757A (en) * | 2021-03-09 | 2021-06-25 | 傲普(上海)新能源有限公司 | SOC estimation method |
CN113625175A (en) * | 2021-10-11 | 2021-11-09 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | SOC estimation method and system based on cloud big data platform |
CN113688568A (en) * | 2021-08-20 | 2021-11-23 | 上海幻电信息科技有限公司 | Battery optimization method and cloud platform |
CN114035072A (en) * | 2021-11-11 | 2022-02-11 | 重庆大学 | Battery pack multi-state joint estimation method based on cloud edge cooperation |
CN114217229A (en) * | 2021-12-14 | 2022-03-22 | 珠海格力电器股份有限公司 | Battery SOC correction system, control method thereof, storage medium and electric vehicle |
CN114264958A (en) * | 2021-12-03 | 2022-04-01 | 北京百通科信机械设备有限公司 | Power battery sub-assembly and debugging method, device, battery management terminal and system |
CN114358967A (en) * | 2020-09-27 | 2022-04-15 | 北京新能源汽车股份有限公司 | A battery safety assessment method, device, equipment and medium |
CN114579623A (en) * | 2022-02-22 | 2022-06-03 | 广东博力威科技股份有限公司 | Battery data processing method and device, electronic equipment and storage medium |
CN114581262A (en) * | 2022-02-11 | 2022-06-03 | 上海能辉科技股份有限公司 | Energy management method and system based on big data AI self-learning |
CN116552322A (en) * | 2023-07-11 | 2023-08-08 | 深圳市南霸科技有限公司 | Battery management method, system, equipment and storage medium based on CAN-BUS |
CN116609674A (en) * | 2023-05-26 | 2023-08-18 | 深蓝汽车科技有限公司 | Real-time correction method, server, device, vehicle and medium for battery SOC |
WO2023155220A1 (en) * | 2022-02-16 | 2023-08-24 | 福建时代星云科技有限公司 | Energy storage system sop optimization method and apparatus based on cloud data |
CN116714476A (en) * | 2023-05-26 | 2023-09-08 | 深蓝汽车科技有限公司 | Battery data processing method and device, electronic equipment and storage medium |
CN116840727A (en) * | 2023-06-30 | 2023-10-03 | 东莞市达锂电子有限公司 | Battery management system BMS collection data calibration method and system based on cloud platform |
WO2023197488A1 (en) * | 2022-04-11 | 2023-10-19 | 上海玫克生储能科技有限公司 | Single-particle electrochemical model calculation apparatus and method |
CN117748664A (en) * | 2023-12-18 | 2024-03-22 | 东莞市维能新能源有限公司 | BMS control method and system based on cloud AI control |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576096A (en) * | 2013-10-09 | 2014-02-12 | 广东电网公司电力科学研究院 | Real-time assessment method and device for residual capacity of power battery of electric automobile |
CN103818266A (en) * | 2014-03-19 | 2014-05-28 | 苏州易美新思新能源科技有限公司 | Management control algorithm for energy storage battery |
CN105789716A (en) * | 2016-03-03 | 2016-07-20 | 北京交通大学 | Generalized battery management system |
CN106908075A (en) * | 2017-03-21 | 2017-06-30 | 福州大学 | Big data is gathered with processing system and based on its electric automobile continuation of the journey method of estimation |
CN107831442A (en) * | 2017-10-18 | 2018-03-23 | 苏州协鑫集成储能科技有限公司 | Long-range estimation SOC method, apparatus, storage medium and computer equipment |
CN108258338A (en) * | 2017-12-29 | 2018-07-06 | 江苏博强新能源科技股份有限公司 | Battery management system and method |
CN108490361A (en) * | 2018-03-22 | 2018-09-04 | 深圳库博能源科技有限公司 | A kind of state-of-charge SoC computational methods based on high in the clouds feedback |
CN110190347A (en) * | 2019-05-30 | 2019-08-30 | 柳州紫荆循环能源科技有限公司 | A kind of lithium battery management system applied to communication base station |
CN110456279A (en) * | 2019-08-15 | 2019-11-15 | 长安大学 | A data-driven model-based power battery cloud management system |
-
2019
- 2019-12-02 CN CN201911214263.1A patent/CN110749827B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103576096A (en) * | 2013-10-09 | 2014-02-12 | 广东电网公司电力科学研究院 | Real-time assessment method and device for residual capacity of power battery of electric automobile |
CN103818266A (en) * | 2014-03-19 | 2014-05-28 | 苏州易美新思新能源科技有限公司 | Management control algorithm for energy storage battery |
CN105789716A (en) * | 2016-03-03 | 2016-07-20 | 北京交通大学 | Generalized battery management system |
CN106908075A (en) * | 2017-03-21 | 2017-06-30 | 福州大学 | Big data is gathered with processing system and based on its electric automobile continuation of the journey method of estimation |
CN107831442A (en) * | 2017-10-18 | 2018-03-23 | 苏州协鑫集成储能科技有限公司 | Long-range estimation SOC method, apparatus, storage medium and computer equipment |
CN108258338A (en) * | 2017-12-29 | 2018-07-06 | 江苏博强新能源科技股份有限公司 | Battery management system and method |
CN108490361A (en) * | 2018-03-22 | 2018-09-04 | 深圳库博能源科技有限公司 | A kind of state-of-charge SoC computational methods based on high in the clouds feedback |
CN110190347A (en) * | 2019-05-30 | 2019-08-30 | 柳州紫荆循环能源科技有限公司 | A kind of lithium battery management system applied to communication base station |
CN110456279A (en) * | 2019-08-15 | 2019-11-15 | 长安大学 | A data-driven model-based power battery cloud management system |
Non-Patent Citations (1)
Title |
---|
曾祥兵: ""基于云端计算的SOC估计策略"", 《现代制造技术与装备》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111934380A (en) * | 2020-08-03 | 2020-11-13 | 广东博力威科技股份有限公司 | Method for controlling battery balance through cloud platform |
CN111913985A (en) * | 2020-08-28 | 2020-11-10 | 中国科学技术大学 | Intelligent battery charging and discharging management system and method based on 5G cloud computing platform |
CN114358967A (en) * | 2020-09-27 | 2022-04-15 | 北京新能源汽车股份有限公司 | A battery safety assessment method, device, equipment and medium |
CN112540303A (en) * | 2020-11-18 | 2021-03-23 | 潍柴动力股份有限公司 | Correction method and device |
CN112540303B (en) * | 2020-11-18 | 2022-11-29 | 潍柴动力股份有限公司 | A calibration method and device |
CN112290649A (en) * | 2020-11-23 | 2021-01-29 | 国网北京市电力公司 | Charging control method and device, storage medium and processor |
CN112714156A (en) * | 2020-12-18 | 2021-04-27 | 北京新能源汽车技术创新中心有限公司 | Cloud BMS (battery management system) cooperative management method and system and vehicle |
CN113030757A (en) * | 2021-03-09 | 2021-06-25 | 傲普(上海)新能源有限公司 | SOC estimation method |
CN113030757B (en) * | 2021-03-09 | 2023-08-29 | 傲普(上海)新能源有限公司 | SOC estimation method |
CN113688568A (en) * | 2021-08-20 | 2021-11-23 | 上海幻电信息科技有限公司 | Battery optimization method and cloud platform |
CN113625175A (en) * | 2021-10-11 | 2021-11-09 | 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) | SOC estimation method and system based on cloud big data platform |
CN114035072A (en) * | 2021-11-11 | 2022-02-11 | 重庆大学 | Battery pack multi-state joint estimation method based on cloud edge cooperation |
CN114035072B (en) * | 2021-11-11 | 2023-10-03 | 重庆大学 | A multi-state joint estimation method for battery packs based on cloud-edge collaboration |
CN114264958A (en) * | 2021-12-03 | 2022-04-01 | 北京百通科信机械设备有限公司 | Power battery sub-assembly and debugging method, device, battery management terminal and system |
CN114217229A (en) * | 2021-12-14 | 2022-03-22 | 珠海格力电器股份有限公司 | Battery SOC correction system, control method thereof, storage medium and electric vehicle |
CN114581262A (en) * | 2022-02-11 | 2022-06-03 | 上海能辉科技股份有限公司 | Energy management method and system based on big data AI self-learning |
WO2023155220A1 (en) * | 2022-02-16 | 2023-08-24 | 福建时代星云科技有限公司 | Energy storage system sop optimization method and apparatus based on cloud data |
CN114579623A (en) * | 2022-02-22 | 2022-06-03 | 广东博力威科技股份有限公司 | Battery data processing method and device, electronic equipment and storage medium |
WO2023197488A1 (en) * | 2022-04-11 | 2023-10-19 | 上海玫克生储能科技有限公司 | Single-particle electrochemical model calculation apparatus and method |
CN116609674B (en) * | 2023-05-26 | 2025-06-13 | 深蓝汽车科技有限公司 | Real-time correction method, server, device, vehicle and medium for battery SOC |
CN116609674A (en) * | 2023-05-26 | 2023-08-18 | 深蓝汽车科技有限公司 | Real-time correction method, server, device, vehicle and medium for battery SOC |
CN116714476A (en) * | 2023-05-26 | 2023-09-08 | 深蓝汽车科技有限公司 | Battery data processing method and device, electronic equipment and storage medium |
CN116840727B (en) * | 2023-06-30 | 2025-04-11 | 东莞市达锂电子有限公司 | Battery management system BMS data collection calibration method and system based on cloud platform |
CN116840727A (en) * | 2023-06-30 | 2023-10-03 | 东莞市达锂电子有限公司 | Battery management system BMS collection data calibration method and system based on cloud platform |
CN116552322B (en) * | 2023-07-11 | 2023-09-08 | 深圳市南霸科技有限公司 | Battery management method, system, equipment and storage medium based on CAN-BUS |
CN116552322A (en) * | 2023-07-11 | 2023-08-08 | 深圳市南霸科技有限公司 | Battery management method, system, equipment and storage medium based on CAN-BUS |
CN117748664B (en) * | 2023-12-18 | 2024-06-11 | 东莞市维能新能源有限公司 | BMS control method and system based on cloud AI control |
CN117748664A (en) * | 2023-12-18 | 2024-03-22 | 东莞市维能新能源有限公司 | BMS control method and system based on cloud AI control |
Also Published As
Publication number | Publication date |
---|---|
CN110749827B (en) | 2020-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110749827B (en) | Intelligent battery SOC management system and method based on cloud platform | |
EP3224632B1 (en) | Wireless network based battery management system | |
CN111913985B (en) | Intelligent battery charging and discharging management system and method based on 5G cloud computing platform | |
CN115663312B (en) | Battery operation monitoring system and method based on battery protection | |
WO2018214266A1 (en) | Battery pack peak power estimation method, device, and system | |
CN105955146A (en) | Remote monitoring system for power battery pack of electric vehicle | |
CN112714156A (en) | Cloud BMS (battery management system) cooperative management method and system and vehicle | |
CN211702078U (en) | Battery manager based on cloud-end mixed state estimation | |
CN105904986A (en) | Remote battery management and detection method and system for new-energy vehicle | |
CN118376927B (en) | Dynamic correction method and system for SOC and rated capacity of energy storage battery | |
CN115079026B (en) | An SOC automatic calibration method and device suitable for high-voltage energy storage systems | |
EP4559735A1 (en) | Battery data processing method and apparatus, and electronic device and storage medium | |
CN114597992A (en) | Acquisition and setting method of charge cut-off electric quantity and charge management system | |
CN109204062A (en) | The system and its monitoring method of a kind of real-time monitoring electric current, remaining capacity and insulation performance | |
CN115792673A (en) | SOH relation determination method and device for hybrid battery, electronic device and storage medium | |
JP7570589B2 (en) | Method for charging power battery and battery management system | |
CN111077466B (en) | Method and device for determining vehicle battery health state | |
CN116338476A (en) | Method, system, device and equipment for determining standard duration of battery depolarization | |
CN113829952A (en) | Battery control method and system of electric automobile and electric automobile | |
US20140095656A1 (en) | Remote Monitoring of Battery Packs | |
CN209141935U (en) | A kind of system of real-time monitoring electric current, remaining capacity and insulation performance | |
CN103208657A (en) | Storage battery set on-line balancing and activating device based on handshaking technology communication | |
WO2024244228A1 (en) | Real-time correction method for soc of battery, server, apparatus, vehicle, and medium | |
CN214850550U (en) | A capacity testing device and system for automatic adjustment of battery temperature | |
WO2023197488A1 (en) | Single-particle electrochemical model calculation apparatus and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220818 Address after: Room 201, Scientific Research Building, South Side of North Ring Expressway, North of Mili Road, Huaiyin District, Jinan City, Shandong Province, 250000 Patentee after: Yuanshan (Jinan) Electronic Technology Co.,Ltd. Address before: 250061, No. ten, No. 17923, Lixia District, Ji'nan City, Shandong Province Patentee before: SHANDONG University |
|
TR01 | Transfer of patent right |