[go: up one dir, main page]

CN110746187A - 铌酸钾基高温质子导体材料及其制备方法 - Google Patents

铌酸钾基高温质子导体材料及其制备方法 Download PDF

Info

Publication number
CN110746187A
CN110746187A CN201911018585.9A CN201911018585A CN110746187A CN 110746187 A CN110746187 A CN 110746187A CN 201911018585 A CN201911018585 A CN 201911018585A CN 110746187 A CN110746187 A CN 110746187A
Authority
CN
China
Prior art keywords
conductor material
proton conductor
potassium niobate
based high
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911018585.9A
Other languages
English (en)
Other versions
CN110746187B (zh
Inventor
厉英
闫鹏
李宏政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201911018585.9A priority Critical patent/CN110746187B/zh
Publication of CN110746187A publication Critical patent/CN110746187A/zh
Application granted granted Critical
Publication of CN110746187B publication Critical patent/CN110746187B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种铌酸钾基高温质子导体材料及其制备方法,质子导体材料的分子式为KNb1‑xMxO3‑α,M为In、Sc或Yb;方法包括以下步骤:(1)准备K2CO3粉体、Nb2O5粉体和掺杂金属氧化物粉体为原料;(2)将原料以无水乙醇为介质球磨,然后烘干,过200目筛;(3)在700±5℃条件下焙烧,随炉冷却;(4)用压片机压制成片,等静压压制成坯料;(5)置于二氧化锆刚玉坩埚中,加热至900±5℃后烧结,随炉冷却。本发明的方法在低温即可合成目标产物;质子导体材料在氢气、水蒸气传感器、氢燃料电池、有机物的加氢脱氢、电化学合成氨等方面具有良好应用前景。

Description

铌酸钾基高温质子导体材料及其制备方法
技术领域
本发明属于高温质子导体材料技术领域,特别涉及一种铌酸钾基高温质子导体材料及其制备方法。
背景技术
1981年发现氢气氛或水蒸汽存在下,高温下稳定的SrCeO3基稀土掺杂化合物具有质子导电性,从此钙钛矿型高温质子导体被人们所认识。简单钙钛矿型质子导体的结构通式为ABO3,A可以为+1、+2、+3价阳离子,通常为半径比较大的碱土金属元素,位于个八面体中心;B为+5、+4、+3价阳离子,通常半径较小,位于6个O2-构成的八面体中心。
对于钙钛矿型质子导体的掺杂大多存在于B位掺杂,通常用+3或+4价的稀土离子M代替+4或+5价的B位离子,此时,结构中会产生过剩负电荷;为了保持电中性,将产生氧空位;因此,在有水蒸气或氢气存在的情况下,有质子导电现象产生,表示为AB1-xMxO3-σ(x表示掺杂元素的化学计量比,σ表示掺杂氧化物单位晶胞中O2-空位数);高温质子导体在氢气、水蒸气传感器,氢燃料电池,有机物的加氢脱氢,电化学合成氨等方面具有广泛的应用前景。
已发现的具有应用价值的的高温质子导体大多为钙钛矿型固体电解质,主要包括SrCeO3、BaCeO3、SrZrO3、CaZrO3、BaZrO3基体系等,但是各种体系烧结温度高,烧结性能较差;因此,寻找一种易于烧结的质子导体材料成为迫切需要,KNbO3基材料烧结温度低且烧结性能良好,但尚未被用作质子导体材料进行研究;目前,对铌酸钾进行研究的课题均将其作为压电陶瓷,用于电光材料;例如文献(化工技术与开发1671-9905(2012)03-0023-05)中用多种方法制备铌酸钾陶瓷材料,通过XRD、红外光谱、紫外光谱、SEM等对其进行性能表征,应用于光催化分解水,光催化降解有机污染物等。
由于质子导体具有广阔的应用前景,各国研究者对中高温质子导体从制备、性质、质子导电机理和应用等方面进行了研究。因此,寻找一种烧结温度低,烧结性能好的材料迫在眉睫。
发明内容
本发明的目的是提供一种铌酸钾基高温质子导体材料及其制备方法,通过合适离子对KNbO3基体进行掺杂改性,制备出烧结性能良好且质子导电性良好的质子导体材料。
本发明的铌酸钾基高温质子导体材料的分子式为KNb1-xMxO3-α,其中M为In、Sc或Yb;x=0.1,α=0.1。
本发明的铌酸钾基高温质子导体材料为单一钙钛矿结构。
本发明的铌酸钾基高温质子导体材料的相对密度95~99%,气孔率1.7~5%。
本发明的铌酸钾基高温质子导体材料的制备方法包括以下步骤:
1、准备K2CO3粉体、Nb2O5粉体和掺杂金属氧化物粉体为原料;所述的掺杂金属氧化物为In2O3、Sc2O3或Yb2O3;原料中K2CO3粉体、Nb2O5粉体和掺杂金属氧化物的比例按摩尔比为1:(1-x):x,x=0.1;
2、将原料置于球磨罐中,以无水乙醇为球磨介质,球磨混合8~10h,然后烘干去除无水乙醇,过200目筛后制成混合粉体;
3、将混合粉体在700±5℃条件下焙烧4~6h,随炉冷却至常温,获得前驱体;
4、将前驱体采用压片机压制成片,再采用等静压设备制成坯料;
5、将坯料置于坩埚中,加热至900±5℃后烧结4~6h,随炉冷却至常温,制成铌酸钾基高温质子导体材料。
上述的步骤2中,无水乙醇的用量以完全浸没原料为准。
上述的步骤4中,制成坯料的等静压压力150~200MPa。
本发明的方法在低温(1000℃以下)即可合成目标产物并烧结成陶瓷;通过+3价阳离子(In3+,Sc3+,Yb3+)掺杂KNbO3基体,产生氧空位,从而提高质子导体材料的电导率及H+的迁移数;本发明为KNbO3基高温质子导体在氢气、水蒸气传感器、氢燃料电池、有机物的加氢脱氢、电化学合成氨等方面的应用奠定了基础。
附图说明
图1为本发明实施例1中的铌酸钾基高温质子导体材料XRD图;
图2为本发明实施例2中的铌酸钾基高温质子导体材料XRD图;
图3为本发明实施例3中的铌酸钾基高温质子导体材料XRD图;
图4为本发明实施例中的铌酸钾基高温质子导体材料的温度-电导率曲线图;图中,■为实施例1,●为实施例2,▲为实施例3;
图5为本发明实施例中的铌酸钾基高温质子导体材料的温度-质子迁移数曲线图;图中,■为实施例1,●为实施例2,▲为实施例3。
具体实施方式
本发明实施例中采用的K2CO3、Nb2O5、In2O3、Sc2O3和Yb2O3为市购分析纯试剂。
本发明实施例中球磨时采用的磨球材质为ZrO2
本发明实施例中采用的等静压设备为CIP200/1000-300YS冷等静压机。
本发明实施例中采用的X射线衍射设备型号为D8 ADVANCE。
本发明实施例中采用的球磨设备型号为QM-3SP4。
本发明实施例中采用的压片机为红外粉末压片机,型号为HW-01。
本发明实施例中采用的离子传感器测试装置为1260频率响应分析仪。
本发明实施例中利用阿基米德密度排水法测定致密度ρ,计算公式为:
Figure BDA0002246469470000031
式中,m1为被测试样品在空气中称量的质量,单位g;m2为被测试样品在孔隙充满液体后的质量,单位g;m3为被测试样品在液体中称量的浮重质量,单位g;ρ为液体的密度;采用的液体为蒸馏水;测定方法为:在空气中称量m1;将被测试样品置于蒸馏水中,并使蒸馏水充满被测试样品的气孔,然后将表面擦干称量m2;最后置于排水装置中测量其浮重m3
本发明实施例中根据铌酸钾基高温质子导体材料的XRD图谱,利用jade6软件进行晶格参数的拟合,计算铌酸钾基高温质子导体材料的理论密度。
本发明实施例中的铌酸钾基高温质子导体材料用抛光机进行抛光后,涂覆铂浆,再在900℃空气气氛下烧结30min,之后两端连接银丝作为电极,置于烘箱中150℃保温30min,获得待测试样品,利用离子传感器测试装置的交流阻抗进行测试,或者利用吉时利2450仪器在氧分压相同,水分压不同的气氛下进行H+和O2-的迁移数测试。
本发明实施例中,三种铌酸钾基高温质子导体材料在700℃的电导率均达到了10- 4S/cm;三种质子导体中,t(KNb0.9In0.1O3-α)>t(KNb0.9Yb0.1O3-α)>t(KNb0.9Sc0.1O3-α),其中,KNb0.9In0.1O3-α的质子迁移数随温度的变化最小,工作温度在600℃以内,质子迁移数在0.92以上。
本发明实施例中采用的坩埚为二氧化锆刚玉坩埚。
下面通过几个具体的实施例对本发明予以说明:
实施例1
准备K2CO3粉体、Nb2O5粉体和掺杂金属氧化物粉体为原料;所述的掺杂金属氧化物为In2O3、Sc2O3或Yb2O3;原料中K2CO3粉体、Nb2O5粉体和掺杂金属氧化物的比例按摩尔比为1:(1-x):x,x=0.1;
将原料置于球磨罐中,以无水乙醇为球磨介质,球磨混合8h,无水乙醇的用量以完全浸没原料为准,然后烘干去除无水乙醇,过200目筛后的筛下物料作为混合粉体;
将混合粉体在700±5℃条件下焙烧4h,随炉冷却至常温,获得前驱体;
将前驱体采用压片机压制成片,再采用等静压设备制成坯料;等静压压力200MPa;
将坯料置于二氧化锆刚玉坩埚中,加热至900±5℃后烧结6h,随炉冷却至常温,制成铌酸钾基高温质子导体材料,分子式为KNb0.9M0.1O3-α;XRD图如图1所示,为单一钙钛矿结构,未检测到其他杂质相;理论密度4.606611g/cm3,实际密度4.48262g/cm3,相对密度97.3084%,气孔率2.6916%;的温度-电导率曲线如图4所示,在400~800℃,电导率为1.57×10-6~4.71×10-3S·cm-1,可用于电化学传感器;温度-质子迁移数曲线如图5所示,在450~800℃,质子迁移数变化范围为0.99~0.26。
实施例2
方法同实施例1,不同点在于:
(1)掺杂金属氧化物为In2O3、Sc2O3或Yb2O3
(2)球磨混合10h;
(3)焙烧时间5h;
(4)等静压压力150MPa;
(5)烧结时间5h;
(6)分子式KNb0.9M0.1O3-α;XRD图如图2所示,为单一钙钛矿结构,未检测到其他杂质相;理论密度4.824805g/cm3,实际密度4.742124g/cm3,相对密度98.2863%,气孔率1.7137%;的温度-电导率曲线如图4所示,在400~800℃,电导率为1.00×10-5~8.56×10-4S·cm-1;温度-质子迁移数曲线如图5所示,450~800℃,质子迁移数变化范围为0.99~0.31。
实施例3
方法同实施例1,不同点在于:
(1)掺杂金属氧化物为In2O3、Sc2O3或Yb2O3
(2)球磨混合9h;
(3)焙烧时间6h;
(4)等静压压力180MPa;
(5)烧结时间4h;
(6)分子式KNb0.9M0.1O3-α;XRD图如图3所示,为单一钙钛矿结构,未检测到其他杂质相;理论密度4.489238g/cm3,实际密度4.266365g/cm3,相对密度95.0354%,气孔率4.9646%;的温度-电导率曲线如图4所示,在400~750℃,电导率为3.35×10-6~2.71×10-4S·cm-1;温度-质子迁移数曲线如图5所示,400~800℃,质子迁移数变化范围为0.99~0.40。

Claims (6)

1.一种铌酸钾基高温质子导体材料,其特征在于分子式为KNb1-xMxO3-α,其中M为In、Sc或Yb;x=0.1,α=0.1。
2.根据权利要求1所述的铌酸钾基高温质子导体材料,其特征在于其结构为单一钙钛矿结构。
3.根据权利要求1所述的铌酸钾基高温质子导体材料,其特征在于其相对密度95~99%,气孔率1.7~5%。
4.一种权利要求1所述的铌酸钾基高温质子导体材料的制备方法,其特征在于包括以下步骤:
(1)准备K2CO3粉体、Nb2O5粉体和掺杂金属氧化物粉体为原料;所述的掺杂金属氧化物为In2O3、Sc2O3或Yb2O3;原料中K2CO3粉体、Nb2O5粉体和掺杂金属氧化物的比例按摩尔比为1:(1-x):x,x=0.1;
(2)将原料置于球磨罐中,以无水乙醇为球磨介质,球磨混合8~10h,然后烘干去除无水乙醇,过200目筛后制成混合粉体;
(3)将混合粉体在700±5℃条件下焙烧4~6h,随炉冷却至常温,获得前驱体;
(4)将前驱体采用压片机压制成片,在采用等静压设备制成坯料;
(5)将坯料置于二氧化锆刚玉坩埚中,加热至900±5℃后烧结4~6h,随炉冷却至常温,制成铌酸钾基高温质子导体材料。
5.根据权利要求4所述的铌酸钾基高温质子导体材料的制备方法,其特征在于步骤(2)中,无水乙醇的用量以完全浸没原料为准。
6.根据权利要求4所述的铌酸钾基高温质子导体材料的制备方法,其特征在于步骤(4)中,制成坯料的等静压压力150~200MPa。
CN201911018585.9A 2019-10-24 2019-10-24 铌酸钾基高温质子导体材料及其制备方法 Active CN110746187B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911018585.9A CN110746187B (zh) 2019-10-24 2019-10-24 铌酸钾基高温质子导体材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911018585.9A CN110746187B (zh) 2019-10-24 2019-10-24 铌酸钾基高温质子导体材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110746187A true CN110746187A (zh) 2020-02-04
CN110746187B CN110746187B (zh) 2021-11-05

Family

ID=69279789

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911018585.9A Active CN110746187B (zh) 2019-10-24 2019-10-24 铌酸钾基高温质子导体材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110746187B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434862A (ja) * 1990-05-29 1992-02-05 Matsushita Electric Ind Co Ltd 固体電解質型燃料電池
CN101625335A (zh) * 2009-08-19 2010-01-13 河北理工大学 一种厚膜型极限电流氢气传感器及其制备方法
CN101669239A (zh) * 2007-03-27 2010-03-10 丰田自动车株式会社 质子导体、电化学电池和制造质子导体的方法
CN102140692A (zh) * 2011-03-11 2011-08-03 哈尔滨工业大学 钬镱双掺铌酸钾锂单晶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434862A (ja) * 1990-05-29 1992-02-05 Matsushita Electric Ind Co Ltd 固体電解質型燃料電池
CN101669239A (zh) * 2007-03-27 2010-03-10 丰田自动车株式会社 质子导体、电化学电池和制造质子导体的方法
CN101625335A (zh) * 2009-08-19 2010-01-13 河北理工大学 一种厚膜型极限电流氢气传感器及其制备方法
CN102140692A (zh) * 2011-03-11 2011-08-03 哈尔滨工业大学 钬镱双掺铌酸钾锂单晶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. SATO: "Structure and ionic conductivity of MLaNb207 (M - K, Na, Li, H)", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Also Published As

Publication number Publication date
CN110746187B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
Chen et al. Electrochemical performance of a new structured low temperature SOFC with BZY electrolyte
Gu et al. Structure and electrical conductivity of BaCe0. 85Ln0. 15O3− δ (Ln= Gd, Y, Yb) ceramics
Tong et al. Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method
Murugaraj et al. High proton conductivity in barium yttrium stannate Ba2YSnO5. 5
Narendar et al. The importance of phase purity in Ni–BaZr 0.85 Y 0.15 O 3− δ cermet anodes–novel nitrate-free combustion route and electrochemical study
Arabaci Effect of Sm and Gd dopants on structural characteristics and ionic conductivity of ceria
Chen et al. Synthesis and electrical properties of Ce0. 8Sm0. 2O1. 9 ceramics for IT-SOFC electrolytes by urea-combustion technique
Lv et al. Sintering, chemical stability and electrical conductivity of the perovskite proton conductors BaCe0. 45Zr0. 45M0. 1O3− δ (M= In, Y, Gd, Sm)
Chen et al. Preparation of Nd-doped BaCeO3 proton-conducting ceramic and its electrical properties in different atmospheres
Dudek et al. Ba0. 95Ca0. 05Ce0. 9Y0. 1O3 as an electrolyte for proton-conducting ceramic fuel cells
CN109626996A (zh) 一种铝铁共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
Durmuş et al. Electrical, structural and thermal properties of nanoceramic (Bi2O3) 1− x− y (Ho2O3) x (Tm2O3) y ternary system
CN106045482B (zh) 稀土氧化物掺杂氧化铝基高性能金属熔体定氢探头材料的制备方法
Yang et al. Influence of rare-earth doping on the phase composition, sinterability, chemical stability and conductivity of BaHf0. 8Ln0. 2O3-δ (Ln= Yb, Y, Dy, Gd) proton conductors
Lin et al. Stable, easily sintered BaCe0. 5Zr0. 3Y0. 16Zn0. 04O3− δ electrolyte-based protonic ceramic membrane fuel cells with Ba0. 5Sr0. 5Zn0. 2Fe0. 8O3− δ perovskite cathode
Xu et al. Synthesis and electrical properties of BaCeO3-based proton conductors by calcinations of metal-polyvinyl alcohol gel
Zhou et al. Effect of A-site modification on electrical properties and chemical stability of Ba1-xCaxCe0. 5Zr0. 3Y0. 2O3-δ proton-conducting electrolyte
Huang et al. Preparation and ionic conduction of CaZr1− xScxO3− α ceramics
Zhang et al. High-temperature proton conductor Sr (Ce0. 6Zr0. 4) 0.9 Y0. 1O3− δ: Preparation, sintering and electrical properties
CN103700866A (zh) 一种中温固体氧化物燃料电池缺位双钙钛矿结构阴极材料及其制备方法
Zhou et al. The structure and electrical properties of novel BaSn0. 15Ce0. 35Hf0. 25Y0. 1Yb0. 1Ho0. 05O3-δ high-entropy proton-conducting electrolyte
Huang et al. Conductivity and transport number of Sc and Ce co-doped CaHfO3
Srivastava et al. Enhanced ionic conductivity of co-doped ceria solid solutions and applications in IT-SOFCs
Yushi et al. Variation of optimum yttrium doping concentrations of perovskite type proton conductors BaZr1− xYxO3− α (0≤ x≤ 0.3) with temperature
Gorelov et al. Synthesis and properties of high-density protonic solid electrolyte BaZr 0.9 Y 0.1 O 3− α

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant