[go: up one dir, main page]

CN110735156A - method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis - Google Patents

method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis Download PDF

Info

Publication number
CN110735156A
CN110735156A CN201910973552.3A CN201910973552A CN110735156A CN 110735156 A CN110735156 A CN 110735156A CN 201910973552 A CN201910973552 A CN 201910973552A CN 110735156 A CN110735156 A CN 110735156A
Authority
CN
China
Prior art keywords
chloride
electrolyte
titanium
fluorotitanate
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910973552.3A
Other languages
Chinese (zh)
Inventor
邓斌
穆天柱
彭卫星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201910973552.3A priority Critical patent/CN110735156A/en
Publication of CN110735156A publication Critical patent/CN110735156A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明属于稀有金属提炼技术领域,公开了一种制备含低价钛离子的电解质的方法,该方法包括以下步骤:(1)将氟钛酸盐与金属钛粉混合均匀,并压制为坯体;(2)将一种或多种碱金属卤化物和/或碱土金属卤化物混合物熔融后作为基体电解质;(3)将所述坯体投入所述基体电解质中保温处理。本发明还提供了一种电解提钛的方法,该方法包括:按照上述方法制备混合盐熔融电解质,然后用所述混合盐熔融电解质进行电解,获得金属钛。本发明所述的方法可以避免电解质污染,不会引入其他杂质,而且可以大幅提高制备效率。The invention belongs to the technical field of rare metal refining, and discloses a method for preparing an electrolyte containing low-valent titanium ions. The method comprises the following steps: (1) uniformly mixing fluorotitanate and metal titanium powder, and pressing them into a green body (2) Melting one or more alkali metal halides and/or alkaline earth metal halide mixtures as matrix electrolyte; (3) Putting the green body into the matrix electrolyte for heat preservation treatment. The present invention also provides a method for electrolytically extracting titanium, the method comprising: preparing a mixed salt molten electrolyte according to the above method, and then performing electrolysis with the mixed salt molten electrolyte to obtain metallic titanium. The method of the present invention can avoid electrolyte pollution, introduce no other impurities, and can greatly improve the preparation efficiency.

Description

一种制备含低价钛离子的电解质的方法和电解提钛的方法A method for preparing an electrolyte containing low-valent titanium ions and a method for electrolytically extracting titanium

技术领域technical field

本发明属于稀有金属提炼技术领域,具体涉及一种制备含低价钛离子的电解质的方法和电解提钛的方法,更具体地,涉及一种利用氟钛酸盐与金属钛粉反应向基础熔融电解质中引入Ti2+、Ti3+离子获得含低价钛离子的电解质的方法,以及利用该电解质进行电解提钛的方法。The invention belongs to the technical field of rare metal refining, and in particular relates to a method for preparing an electrolyte containing low-valent titanium ions and a method for electrolytically extracting titanium, and more particularly, to a method for using fluorotitanate and metallic titanium powder to react to base melting A method for obtaining an electrolyte containing low-valent titanium ions by introducing Ti 2+ and Ti 3+ ions into an electrolyte, and a method for electrolytically extracting titanium by using the electrolyte.

背景技术Background technique

熔盐电解精炼钛的电解质通常为含有一定量低价离子的碱金属或碱土金属卤化物,以氯化物熔盐为例,熔融电解质通常采用以下方法制备:配制一种碱金属或碱土金属卤化物或多种混合物熔融后作为基体电解质,电解质中的低价钛离子通常采用TiCl4与海绵钛在熔盐中反应制得,主要包括以下几个反应:The electrolyte of molten salt electrolytic refining of titanium is usually an alkali metal or alkaline earth metal halide containing a certain amount of low-valent ions. Taking chloride molten salt as an example, the molten electrolyte is usually prepared by the following method: formulating an alkali metal or alkaline earth metal halide Or multiple mixtures are melted as the base electrolyte. The low-valent titanium ions in the electrolyte are usually prepared by reacting TiCl 4 with sponge titanium in molten salt, which mainly includes the following reactions:

Ti+3TiCl4=4TiCl3 Ti+3TiCl 4 =4TiCl 3

Ti+TiCl4=2TiCl2 Ti+TiCl 4 =2TiCl 2

TiCl2+TiCl4=2TiCl3 TiCl 2 +TiCl 4 =2TiCl 3

Ti+2TiCl3=3TiCl2 Ti+2TiCl 3 =3TiCl 2

其中TiCl4通过导管引入到预置在反应器中的海绵钛,并与之发生反应,高温下TiCl4气化为气体,极易腐蚀导管材料造成电解质污染。并且TiCl4为危化品,使用过程中易发生泄漏冒烟事故,控制难度极大。再者制备时,由于以上几个反应同时发生,并且每个反应进行的速率以及程度无法精确控制,导致制备效率极低。Among them, TiCl 4 is introduced into the sponge titanium preset in the reactor through the conduit, and reacts with it. At high temperature, TiCl 4 gasifies into gas, which is very easy to corrode the conduit material and cause electrolyte pollution. In addition, TiCl 4 is a hazardous chemical, which is prone to leakage and smoke accidents during use, which is extremely difficult to control. Furthermore, during preparation, since the above several reactions occur simultaneously, and the rate and extent of each reaction cannot be precisely controlled, the preparation efficiency is extremely low.

发明内容SUMMARY OF THE INVENTION

本发明的目的是为了克服现有技术存在的上述问题,提供一种利用氟钛酸盐与金属钛粉反应向基础熔融电解质中引入Ti2+、Ti3+离子获得含低价钛离子的电解质的方法,并利用该电解质进行电解提钛。The purpose of the present invention is to overcome the above-mentioned problems existing in the prior art, and to provide an electrolyte containing low-valent titanium ions by introducing Ti 2+ and Ti 3+ ions into the basic molten electrolyte by reacting fluorotitanate with metal titanium powder method, and use the electrolyte for electrolytic titanium extraction.

为了实现上述目的,本发明一方面提供了一种制备含低价钛离子的电解质的方法,该方法包括以下步骤:In order to achieve the above object, one aspect of the present invention provides a method for preparing an electrolyte containing low-valent titanium ions, the method comprising the following steps:

(1)将氟钛酸盐与金属钛粉混合均匀,并压制为坯体;(1) Mixing fluorotitanate and metal titanium powder uniformly, and pressing into a green body;

(2)将一种或多种碱金属卤化物和/或碱土金属卤化物混合物熔融后作为基体电解质;(2) melting one or more alkali metal halide and/or alkaline earth metal halide mixture as matrix electrolyte;

(3)将所述坯体投入所述基体电解质中保温处理。(3) Putting the green body into the base electrolyte for heat preservation treatment.

可选的,在步骤(1)中,所述氟钛酸盐与所述金属钛粉的摩尔比为1-3:1。Optionally, in step (1), the molar ratio of the fluorotitanate to the metal titanium powder is 1-3:1.

可选的,所述氟钛酸盐为氟钛酸钾、氟钛酸钠、氟钛酸锂、氟钛酸镁、氟钛酸钙、氟钛酸锶和氟钛酸钡中的至少一种。Optionally, the fluorotitanate is at least one of potassium fluorotitanate, sodium fluorotitanate, lithium fluorotitanate, magnesium fluorotitanate, calcium fluorotitanate, strontium fluorotitanate and barium fluorotitanate .

可选的,在步骤(1)中,所述压制过程的实施压力为5-40MPa。Optionally, in step (1), the implementation pressure of the pressing process is 5-40 MPa.

可选的,在步骤(2)中,所述碱金属卤化物为碱金属的氟化物和/或氯化物,所述碱土金属卤化物为碱土金属的氟化物和/或氯化物;Optionally, in step (2), the alkali metal halide is an alkali metal fluoride and/or chloride, and the alkaline earth metal halide is an alkaline earth metal fluoride and/or chloride;

优选地,所述碱金属的氟化物选自氟化锂、氟化钠和氟化钾中的一种或多种;所述碱金属的氯化物选自氯化锂、氯化钠和氯化钾中的一种或多种;所述碱土金属的氟化物选自氟化镁、氟化钡和氟化钙中的一种或多种;所述碱土金属的氯化物选自氯化镁、氯化钙、氯化锶和氯化钡中的一种或多种。Preferably, the alkali metal fluoride is selected from one or more of lithium fluoride, sodium fluoride and potassium fluoride; the alkali metal chloride is selected from lithium chloride, sodium chloride and chloride One or more of potassium; the fluoride of the alkaline earth metal is selected from one or more of magnesium fluoride, barium fluoride and calcium fluoride; the chloride of the alkaline earth metal is selected from magnesium chloride, One or more of calcium, strontium chloride and barium chloride.

可选的,在步骤(2)中,将至少两种碱金属的氯化物的混合物熔融后作为基体电解质;Optionally, in step (2), a mixture of at least two alkali metal chlorides is melted as a matrix electrolyte;

优选地,所述至少两种碱金属的氯化物的混合物为氯化钾与氯化钠或氯化锂的混合物;Preferably, the mixture of the chlorides of the at least two alkali metals is a mixture of potassium chloride and sodium chloride or lithium chloride;

进一步优选地,在所述至少两种碱金属的氯化物的混合物中,氯化钾与氯化钠或氯化锂的质量比为1.2-1.8:1。Further preferably, in the mixture of the at least two alkali metal chlorides, the mass ratio of potassium chloride to sodium chloride or lithium chloride is 1.2-1.8:1.

可选的,在步骤(3)中,所述基体电解质与所述坯体的重量比为4-66:1。Optionally, in step (3), the weight ratio of the base electrolyte to the green body is 4-66:1.

可选的,在步骤(3)中,保温处理的温度为450-950℃。Optionally, in step (3), the temperature of the heat preservation treatment is 450-950°C.

本发明第二方面提供了一种电解提钛的方法,该方法包括:按照上述方法制备混合盐熔融电解质,然后用所述混合盐熔融电解质进行电解,获得金属钛。A second aspect of the present invention provides a method for electrolytically extracting titanium, the method comprising: preparing a mixed salt molten electrolyte according to the above method, and then performing electrolysis with the mixed salt molten electrolyte to obtain metallic titanium.

可选的,电解过程在电解槽中进行,电解槽的阳极为海绵钛或碳氧钛,阴极为碳钢棒。Optionally, the electrolysis process is carried out in an electrolytic cell, and the anode of the electrolytic cell is titanium sponge or titanium oxycarbide, and the cathode is a carbon steel rod.

本发明所述的方法的有益效果为:首先,避免了使用TiCl4腐蚀反应器材料造成电解质污染,不会引入其他杂质;其次,氟钛酸盐化学性质较TiCl4稳定,操作简单易于实现;再者,低价Ti离子制备时间从使用TiCl4的20~30min/kg降低至8~10min/kg,制备效率大为提高。The beneficial effects of the method of the present invention are as follows: first, the use of TiCl4 to corrode the reactor material is avoided to cause electrolyte pollution, and other impurities will not be introduced; secondly, the chemical property of fluorotitanate is more stable than that of TiCl4 , and the operation is simple and easy to implement; Furthermore, the preparation time of low-valent Ti ions is reduced from 20-30 min/kg using TiCl 4 to 8-10 min/kg, and the preparation efficiency is greatly improved.

具体实施方式Detailed ways

以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。Specific embodiments of the present invention will be described in detail below. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, but not to limit the present invention.

在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。The endpoints of the ranges disclosed herein and any values are not limited to the precise ranges or values, which are to be understood to include values near those ranges or values. For ranges of values, the endpoints of each range, the endpoints of each range and the individual point values, and the individual point values can be combined with each other to yield one or more new ranges of values that Ranges should be considered as specifically disclosed herein.

本发明所述的制备含低价钛离子的电解质的方法包括以下步骤:The method for preparing an electrolyte containing low-valent titanium ions according to the present invention comprises the following steps:

(1)将氟钛酸盐与金属钛粉混合均匀,并压制为坯体;(1) Mixing fluorotitanate and metal titanium powder uniformly, and pressing into a green body;

(2)将一种或多种碱金属卤化物和/或碱土金属卤化物混合物熔融后作为基体电解质;(2) melting one or more alkali metal halide and/or alkaline earth metal halide mixture as matrix electrolyte;

(3)将所述坯体投入所述基体电解质中保温处理。(3) Putting the green body into the base electrolyte for heat preservation treatment.

在步骤(1)中,为使最终获得的低价钛离子为Ti2+或Ti3+或它们的混合物,所述氟钛酸盐与所述金属钛粉的摩尔比优选控制为1-3:1,具体的,例如可以为1:1、1.2:1、1.5:1、1.8:1、2:1、2.2:1、2.5:1、2.8:1或3:1。In step (1), in order to make the finally obtained low-valent titanium ion be Ti 2+ or Ti 3+ or their mixture, the molar ratio of the fluorotitanate to the metal titanium powder is preferably controlled to be 1-3 : 1, specifically, for example, it can be 1:1, 1.2:1, 1.5:1, 1.8:1, 2:1, 2.2:1, 2.5:1, 2.8:1 or 3:1.

在本发明所述的方法中,所述氟钛酸盐可以为本领域的常规选择。在优选情况下,所述氟钛酸盐为氟钛酸钾、氟钛酸钠、氟钛酸锂、氟钛酸镁、氟钛酸钙、氟钛酸锶和氟钛酸钡中的至少一种。最优选的,所述氟钛酸盐为氟钛酸钾。In the method of the present invention, the fluorotitanate can be a conventional choice in the art. In a preferred case, the fluorotitanate is at least one of potassium fluorotitanate, sodium fluorotitanate, lithium fluorotitanate, magnesium fluorotitanate, calcium fluorotitanate, strontium fluorotitanate and barium fluorotitanate kind. Most preferably, the fluorotitanate is potassium fluorotitanate.

在步骤(1)中,所述氟钛酸盐与所述金属钛粉的混合过程优选在球磨机中实施。混合的时间可以为0.1-2h,优选为0.5-1h。In step (1), the mixing process of the fluorotitanate and the metal titanium powder is preferably implemented in a ball mill. The mixing time can be 0.1-2h, preferably 0.5-1h.

在步骤(1)中,所述压制过程的实施压力可以为5-40MPa,优选为10-30MPa,最优选为15-25MPa。通过将所述压制的压力控制在上述范围之内,一方面有利于氟钛酸盐与金属钛粉反应,另一方面也有利于反应的Ti离子扩散。In step (1), the implementation pressure of the pressing process may be 5-40 MPa, preferably 10-30 MPa, and most preferably 15-25 MPa. By controlling the pressing pressure within the above-mentioned range, on the one hand, the reaction between the fluorotitanate and the metallic titanium powder is favorable, and on the other hand, it is also favorable for the diffusion of the reacted Ti ions.

在本发明所述的方法中,所述碱金属卤化物可以为碱金属的氟化物和/或氯化物,所述碱土金属卤化物可以为碱土金属的氟化物和/或氯化物。所述碱金属的氟化物可以为选自氟化锂、氟化钠和氟化钾中的一种或多种。所述碱金属的氯化物可以为选自氯化锂、氯化钠和氯化钾中的一种或多种。所述碱土金属的氟化物可以为选自氟化镁、氟化钡和氟化钙中的一种或多种。所述碱土金属的氯化物可以为选自氯化镁、氯化钙、氯化锶和氯化钡中的一种或多种。In the method of the present invention, the alkali metal halide may be an alkali metal fluoride and/or chloride, and the alkaline earth metal halide may be an alkaline earth metal fluoride and/or chloride. The alkali metal fluoride may be one or more selected from lithium fluoride, sodium fluoride and potassium fluoride. The alkali metal chloride can be one or more selected from lithium chloride, sodium chloride and potassium chloride. The alkaline earth metal fluoride may be one or more selected from magnesium fluoride, barium fluoride and calcium fluoride. The chloride of the alkaline earth metal may be one or more selected from magnesium chloride, calcium chloride, strontium chloride and barium chloride.

在较优选的实施方式中,在步骤(2)中,将至少两种碱金属的氯化物的混合物熔融后作为基体电解质。进一步优选地,所述至少两种碱金属的氯化物的混合物为氯化钾与氯化钠或氯化锂的混合物。具体的,在一种实施方式中,将氯化钾和氯化钠的混合物熔融后作为基体电解质;在另一种实施方式中,将氯化钾和氯化锂的混合物熔融后作为基体电解质。更进一步优选地,在所述至少两种碱金属的氯化物的混合物中,氯化钾与氯化钠或氯化锂的质量比为1.2-1.8:1,优选为1.25-1.75:1,更优选为1.3-1.5:1。In a more preferred embodiment, in step (2), the mixture of at least two alkali metal chlorides is melted and used as the base electrolyte. Further preferably, the mixture of the chlorides of the at least two alkali metals is a mixture of potassium chloride and sodium chloride or lithium chloride. Specifically, in one embodiment, the mixture of potassium chloride and sodium chloride is melted and used as the base electrolyte; in another embodiment, the mixture of potassium chloride and lithium chloride is melted and used as the base electrolyte. Further preferably, in the mixture of the chlorides of the at least two alkali metals, the mass ratio of potassium chloride to sodium chloride or lithium chloride is 1.2-1.8:1, preferably 1.25-1.75:1, more It is preferably 1.3-1.5:1.

在步骤(3)中,所述基体电解质与所述坯体的重量比可以为4-66:1,具体的,例如可以为4:1、5:1、6:1、8:1、10:1、15:1、20:1、25:1、30:1、35:1、40:1、45:1、50:1、55:1、60:1、62:1、64:1、65:1或66:1。优选情况下,所述基体电解质与所述坯体的重量比可以为20-40:1。In step (3), the weight ratio of the base electrolyte to the green body may be 4-66:1, specifically, for example, may be 4:1, 5:1, 6:1, 8:1, 10 :1, 15:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1, 50:1, 55:1, 60:1, 62:1, 64:1 , 65:1 or 66:1. Preferably, the weight ratio of the base electrolyte to the green body may be 20-40:1.

在步骤(3)中,保温处理的温度可以为450-950℃,优选为500-750℃。In step (3), the temperature of the heat preservation treatment can be 450-950°C, preferably 500-750°C.

本发明还提供了一种电解提钛的方法,该方法包括:按照上述方法制备混合盐熔融电解质,然后用所述混合盐熔融电解质进行电解,获得金属钛。The present invention also provides a method for electrolytically extracting titanium, the method comprising: preparing a mixed salt molten electrolyte according to the above method, and then performing electrolysis with the mixed salt molten electrolyte to obtain metallic titanium.

在具体的实施方法中,所述电解的过程在电解槽中进行,电解槽的阳极可以为含钛物料,如海绵钛或碳氧钛,阴极为金属材料,如碳钢棒。具体的作用过程为:阳极Ti以离子形式进入电解质,电解质中的钛离子在阴极沉积获得金属钛,而电解质中的Ti离子总量保持不变。In a specific implementation method, the electrolysis process is carried out in an electrolytic cell, and the anode of the electrolytic cell can be a titanium-containing material, such as titanium sponge or titanium oxycarbide, and the cathode is a metal material, such as a carbon steel rod. The specific action process is as follows: the anode Ti enters the electrolyte in the form of ions, and the titanium ions in the electrolyte are deposited at the cathode to obtain metallic titanium, while the total amount of Ti ions in the electrolyte remains unchanged.

以下将通过实施例对本发明进行详细描述,但本发明的保护范围并不局限于此。The present invention will be described in detail through the following examples, but the protection scope of the present invention is not limited thereto.

实施例1Example 1

称取氟钛酸钾2400g,钛粉480g(摩尔比1:1)在球磨机里混料0.5h,混合均匀后采用5MPa压力成型为坯体。Weigh 2400 g of potassium fluorotitanate and 480 g of titanium powder (molar ratio 1:1) and mix them in a ball mill for 0.5 h.

将烘干后的83kg氯化钠与106kg氯化钾混合均匀,在密闭电解槽内惰性气体保护下进行融化得到基体熔盐。The dried 83kg sodium chloride and 106kg potassium chloride were mixed uniformly, and melted under the protection of inert gas in a closed electrolytic cell to obtain a matrix molten salt.

将上述预成型坯体投入到NaCl-KCl基体熔盐中于950℃保温10min,完成后经取样进行化学分析,获得混合盐熔融电解质中Ti2+、Ti3+离子含量为0.47%。The above-mentioned preformed body was put into NaCl-KCl matrix molten salt and kept at 950°C for 10 minutes. After completion, sampling was carried out for chemical analysis to obtain that the content of Ti 2+ and Ti 3+ ions in the mixed salt molten electrolyte was 0.47%.

以该混合盐作为电解质,海绵钛为阳极,碳钢棒为阴极组成电解槽进行电解,获得纯度大于99.5%的金属钛。Using the mixed salt as the electrolyte, the sponge titanium as the anode, and the carbon steel rod as the cathode, an electrolytic cell is formed for electrolysis to obtain metallic titanium with a purity of more than 99.5%.

实施例2Example 2

称取氟钛酸钾7200g,钛粉480g(摩尔比3:1)在球磨机里混料0.5h,混合均匀后采用40MPa压力成型为坯体。7200 g of potassium fluorotitanate and 480 g of titanium powder (molar ratio 3:1) were weighed and mixed in a ball mill for 0.5 h. After mixing evenly, a green body was formed with a pressure of 40 MPa.

将烘干后的11.15kg氯化锂与19.57kg氯化钾混合均匀,在密闭电解槽内惰性气体保护下进行融化得到基体熔盐。11.15kg of dried lithium chloride and 19.57kg of potassium chloride were mixed uniformly, and melted under the protection of inert gas in a closed electrolytic cell to obtain a matrix molten salt.

将上述预成型坯体投入到NaLi-KCl基体熔盐中于950℃保温15min,完成后经取样进行化学分析,获得混合盐熔融电解质中Ti2+、Ti3+离子含量为5.1%。The above preformed body was put into NaLi-KCl matrix molten salt and kept at 950°C for 15min. After completion, sampling was carried out for chemical analysis to obtain that the content of Ti 2+ and Ti 3+ ions in the mixed salt molten electrolyte was 5.1%.

以该混合盐作为电解质,碳氧钛(Ti2CO)为阳极,碳钢棒为阴极组成电解槽进行电解,获得纯度大于99.5%的金属钛。Using the mixed salt as an electrolyte, titanium oxycarbide (Ti 2 CO) as an anode, and a carbon steel rod as a cathode, an electrolytic cell is formed for electrolysis to obtain metallic titanium with a purity of more than 99.5%.

以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。The preferred embodiments of the present invention have been described above in detail, however, the present invention is not limited thereto. Within the scope of the technical concept of the present invention, a variety of simple modifications can be made to the technical solutions of the present invention, including combining various technical features in any other suitable manner. These simple modifications and combinations should also be regarded as the content disclosed in the present invention. All belong to the protection scope of the present invention.

Claims (10)

  1. A method for producing an electrolyte containing low valent titanium ions, characterized in that the method comprises the steps of:
    (1) mixing fluotitanate and metallic titanium powder uniformly, and pressing into a blank;
    (2) or a mixture of a plurality of alkali metal halides and/or alkaline earth metal halides are used as matrix electrolyte after being melted;
    (3) and putting the blank into the matrix electrolyte for heat preservation treatment.
  2. 2. The method according to claim 1, wherein in the step (1), the molar ratio of the fluorotitanate to the metallic titanium powder is 1-3: 1.
  3. 3. the method according to claim 1 or 2, wherein the fluorotitanate is at least of potassium fluorotitanate, sodium fluorotitanate, fluorolithium titanate, magnesium fluorotitanate, calcium fluorotitanate, strontium fluorotitanate, and barium fluorotitanate.
  4. 4. The method according to claim 1 or 2, wherein in step (1), the pressing process is performed at a pressure of 5 to 40 MPa.
  5. 5. The method according to claim 1, wherein in step (2), the alkali metal halide is a fluoride and/or chloride of an alkali metal, and the alkaline earth metal halide is a fluoride and/or chloride of an alkaline earth metal;
    preferably, the fluoride of the alkali metal is or more selected from lithium fluoride, sodium fluoride and potassium fluoride, the chloride of the alkali metal is or more selected from lithium chloride, sodium chloride and potassium chloride, the fluoride of the alkaline earth metal is or more selected from magnesium fluoride, barium fluoride and calcium fluoride, and the chloride of the alkaline earth metal is or more selected from magnesium chloride, calcium chloride, strontium chloride and barium chloride.
  6. 6. The method according to claim 5, wherein in the step (2), a mixture of chlorides of at least two alkali metals is melted as a matrix electrolyte;
    preferably, the mixture of chlorides of at least two alkali metals is a mixture of potassium chloride and sodium chloride or lithium chloride;
    preferably, the mass ratio of potassium chloride to sodium chloride or lithium chloride in the mixture of the chlorides of at least two alkali metals is 1.2-1.8: 1.
  7. 7. The method of claim 1, wherein in step (3), the weight ratio of the matrix electrolyte to the green body is from 4 to 66: 1.
  8. 8. the method as claimed in claim 1, wherein the temperature of the heat-preserving treatment in the step (3) is 450-950 ℃.
  9. 9. A method for electrolytically extracting titanium, which comprises preparing a mixed salt molten electrolyte according to the method of any of claims 1 to 8, and then performing electrolysis using the mixed salt molten electrolyte to obtain metallic titanium.
  10. 10. The method of claim 9, wherein the electrolysis process is carried out in an electrolytic cell having an anode of titanium sponge or titanium oxycarbide and a cathode of carbon steel rod.
CN201910973552.3A 2019-10-14 2019-10-14 method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis Pending CN110735156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910973552.3A CN110735156A (en) 2019-10-14 2019-10-14 method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910973552.3A CN110735156A (en) 2019-10-14 2019-10-14 method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis

Publications (1)

Publication Number Publication Date
CN110735156A true CN110735156A (en) 2020-01-31

Family

ID=69268875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910973552.3A Pending CN110735156A (en) 2019-10-14 2019-10-14 method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis

Country Status (1)

Country Link
CN (1) CN110735156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747889A (en) * 2022-12-01 2023-03-07 攀钢集团攀枝花钢铁研究院有限公司 A method for preparing electrolyte for titanium electrolytic refining and a method for electrolytically extracting titanium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882477A (en) * 2012-12-21 2014-06-25 攀钢集团攀枝花钢铁研究院有限公司 Electrolyte and molten salt for preparing metal titanium, and metal titanium preparation method
CN104099643A (en) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 Preparation method for titanium-aluminium alloy
CN105441695A (en) * 2015-11-25 2016-03-30 东北大学 Method for preparing titanium or titanium-aluminum alloy with high-titanium aluminum-titanium alloy as reducing agent
CN107130262A (en) * 2017-05-02 2017-09-05 攀钢集团研究院有限公司 Fused salt electrolysis process prepares the electrolytic medium additive of the ultra-pure titanium of target as sputter
CN107587169A (en) * 2017-10-30 2018-01-16 攀钢集团攀枝花钢铁研究院有限公司 Ti in one kind regulation fused electrolyte2+And Ti3+The method of ratio
CN109023430A (en) * 2018-09-20 2018-12-18 成都先进金属材料产业技术研究院有限公司 Electrorefining Ti electrolyte prepares TiCl3Method and recovery method
CN109267100A (en) * 2018-11-23 2019-01-25 北京科技大学 A kind of device and method of electrolysis-pure titanium of chlorination-electrolytic preparation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882477A (en) * 2012-12-21 2014-06-25 攀钢集团攀枝花钢铁研究院有限公司 Electrolyte and molten salt for preparing metal titanium, and metal titanium preparation method
CN104099643A (en) * 2014-07-29 2014-10-15 攀钢集团攀枝花钢铁研究院有限公司 Preparation method for titanium-aluminium alloy
CN105441695A (en) * 2015-11-25 2016-03-30 东北大学 Method for preparing titanium or titanium-aluminum alloy with high-titanium aluminum-titanium alloy as reducing agent
CN107130262A (en) * 2017-05-02 2017-09-05 攀钢集团研究院有限公司 Fused salt electrolysis process prepares the electrolytic medium additive of the ultra-pure titanium of target as sputter
CN107587169A (en) * 2017-10-30 2018-01-16 攀钢集团攀枝花钢铁研究院有限公司 Ti in one kind regulation fused electrolyte2+And Ti3+The method of ratio
CN109023430A (en) * 2018-09-20 2018-12-18 成都先进金属材料产业技术研究院有限公司 Electrorefining Ti electrolyte prepares TiCl3Method and recovery method
CN109267100A (en) * 2018-11-23 2019-01-25 北京科技大学 A kind of device and method of electrolysis-pure titanium of chlorination-electrolytic preparation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
陈书荣 等: ""NaCl-KCl熔融体系电镀钛的研究"", 《稀有金属材料与工程》 *
陈书荣 等: ""熔融盐电镀金属钛的探讨"", 《电镀与涂饰》 *
霍东兴 等: ""钛金属制备方法的研究进展"", 《铸造技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747889A (en) * 2022-12-01 2023-03-07 攀钢集团攀枝花钢铁研究院有限公司 A method for preparing electrolyte for titanium electrolytic refining and a method for electrolytically extracting titanium

Similar Documents

Publication Publication Date Title
JP5658806B2 (en) Method for producing titanium metal using titanium-containing material
CN104947152B (en) The method that fused-salt electrolytic refining method prepares high purity titanium
CN103451682A (en) Method for extracting metal titanium through molten salt electrolysis of titanium-containing soluble anode
JP7296526B2 (en) Method for smelting bastnaesite ore and use of carbon powder
CN106591892B (en) Preparation method of titania-based soluble electrode and its application in electrolytic preparation of high-purity titanium
CN101949038B (en) Method for preparing TiCxOy composite anode with electrolysis method
CN108251866A (en) A kind of preparation method of metallic titanium powder
CN103147096B (en) Method for preparing molten-salt electrolyte containing low-valent titanium chloride and method for extracting titanium
CN105441695B (en) A kind of method that aluminum titanium alloy with high titanium prepares titanium or titanium-aluminium alloy as reducing agent
CN101649471B (en) Method for producing high purity vanadium metal
CN110735156A (en) method for preparing electrolyte containing low-valence titanium ions and method for extracting titanium by electrolysis
CN104099634B (en) The preparation method of vanadium nitride
CN107904626A (en) A kind of purification ultrafine titanium powder or Titanium Powder and preparation method thereof
US11180863B2 (en) Device and method for preparing pure titanium by electrolysis-chlorination-electrolysis
CN106756076A (en) Magnesium reducing agent flux and preparation method thereof
CN113699560A (en) Method for preparing metal titanium by soluble anode electrolysis of fluorine-chlorine mixed molten salt system
CN107326402A (en) The preparation method of Nitinol
CN113279022B (en) Reducing molten salt medium and preparation method thereof
CN109023430A (en) Electrorefining Ti electrolyte prepares TiCl3Method and recovery method
CN113117635B (en) Preparation method of titanium-based lithium ion sieve
CN113463135A (en) Method for preparing metal titanium by dissolving and electrolyzing titanium dioxide in fluoride molten salt
CN107587169A (en) Ti in one kind regulation fused electrolyte2+And Ti3+The method of ratio
CN110668409B (en) A kind of method for preparing TiN with electrolyte of electrolytic refining titanium as raw material
CN209024654U (en) A device for preparing pure titanium by electrolysis-chlorination-electrolysis
CN105220182A (en) A kind of method preparing porous titanium valve

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131