CN110728614B - Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method - Google Patents
Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method Download PDFInfo
- Publication number
- CN110728614B CN110728614B CN201910925831.2A CN201910925831A CN110728614B CN 110728614 B CN110728614 B CN 110728614B CN 201910925831 A CN201910925831 A CN 201910925831A CN 110728614 B CN110728614 B CN 110728614B
- Authority
- CN
- China
- Prior art keywords
- watermark
- image
- singular value
- cen
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 241000282461 Canis lupus Species 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000005457 optimization Methods 0.000 title claims abstract description 41
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 37
- 230000008569 process Effects 0.000 claims abstract description 27
- 230000009466 transformation Effects 0.000 claims abstract description 22
- 239000013598 vector Substances 0.000 claims abstract description 9
- 238000000605 extraction Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 12
- 241000282421 Canidae Species 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 3
- 238000010008 shearing Methods 0.000 abstract description 2
- 235000002566 Capsicum Nutrition 0.000 description 14
- 241001504519 Papio ursinus Species 0.000 description 14
- 241000758706 Piperaceae Species 0.000 description 14
- 235000013399 edible fruits Nutrition 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T1/00—General purpose image data processing
- G06T1/0021—Image watermarking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/10—Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
- G06F21/16—Program or content traceability, e.g. by watermarking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2201/00—General purpose image data processing
- G06T2201/005—Image watermarking
- G06T2201/0202—Image watermarking whereby the quality of watermarked images is measured; Measuring quality or performance of watermarking methods; Balancing between quality and robustness
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Technology Law (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域Technical field
本发明属于数字图像水印技术和版权保护领域,涉及一种基于灰狼优化算法和完全三叉树结构的小波域彩色多水印技术。The invention belongs to the field of digital image watermark technology and copyright protection, and relates to a wavelet domain color multi-watermark technology based on gray wolf optimization algorithm and complete ternary tree structure.
背景技术Background technique
随着计算机技术的不断发展,数字产品(如图像、音频、视频等)带给人们便利的同时,这些数字产品也面临着非法拷贝、复制和传播等问题。如何保护这些数字产品免遭非法获取或复制是当今网络安全领域亟需解决的一个研究课题。为了解决上述问题,数字水印技术和加密技术被相继提出。With the continuous development of computer technology, while digital products (such as images, audio, videos, etc.) bring convenience to people, these digital products also face problems such as illegal copying, reproduction, and dissemination. How to protect these digital products from illegal acquisition or copying is an urgent research topic in the field of network security today. In order to solve the above problems, digital watermark technology and encryption technology have been proposed one after another.
数字水印技术的主要原理是将带有版权信息的水印嵌入到数字多媒体中,而又不影响数字多媒体的原有价值,并且可以有效地避开人的视听系统地察觉,不会被外界所感知。为了提高水印的性能,提出了很多方案来调节水印的鲁棒性和不可见性之间的矛盾。最早提出的基于DCT(离散余弦变换)、DWT(离散小波变换)、FT(傅里叶变换)等变换的数字水印可以通过调节嵌入强度使得水印图像具有良好的不可见性,但此类操作很难平衡嵌入水印图像的不可见性及隐藏方法对各种几何攻击或图像处理攻击的鲁棒性。基于此,之后在水印的基础上引入了数字图像加密,通过加密提高水印的鲁棒性。The main principle of digital watermark technology is to embed watermarks with copyright information into digital multimedia without affecting the original value of digital multimedia, and can effectively avoid detection by the human audio-visual system and will not be perceived by the outside world. . In order to improve the performance of watermarks, many solutions have been proposed to adjust the contradiction between the robustness and invisibility of watermarks. The earliest proposed digital watermarks based on DCT (Discrete Cosine Transform), DWT (Discrete Wavelet Transform), FT (Fourier Transform) and other transformations can make the watermark image have good invisibility by adjusting the embedding strength, but such operations are very difficult. It is difficult to balance the invisibility of the embedded watermark image and the robustness of the hiding method to various geometric attacks or image processing attacks. Based on this, digital image encryption was later introduced on the basis of watermarks to improve the robustness of watermarks through encryption.
现阶段数字水印存在的主要问题是,如何平衡水印的不可见性、鲁棒性、容量三者间的制约关系。为了提高水印的不可见性,通常结合人眼视觉特性将水印不可见地嵌入到宿主中。通过对水印进行加密或置乱处理来提高水印的鲁棒性。在容量方面,有二值水印、灰度水印、彩色水印及3D水印等。在水印嵌入过程中,嵌入因子在很大程度上决定了水印的不可见性、鲁棒性以及容量。而通常的水印技术中嵌入因子通过人为的实验来确定,存在偶然性和不确定性。另外不同的图像信息决定了相应地嵌入强度是动态的。因此,如何寻找最佳嵌入因子来平衡水印的主要性能,从而实现好的水印效果,是目前数字水印技术中的重要研究方向。The main problem with digital watermarking at this stage is how to balance the constraints among the invisibility, robustness, and capacity of the watermark. In order to improve the invisibility of the watermark, the watermark is usually embedded into the host invisibly based on the visual characteristics of the human eye. Improve the robustness of watermarks by encrypting or scrambling them. In terms of capacity, there are binary watermarks, grayscale watermarks, color watermarks and 3D watermarks. In the watermark embedding process, the embedding factor determines the invisibility, robustness and capacity of the watermark to a large extent. However, in common watermarking technology, the embedding factors are determined through artificial experiments, which results in contingency and uncertainty. In addition, different image information determines that the corresponding embedding strength is dynamic. Therefore, how to find the best embedding factor to balance the main performance of watermarking and achieve good watermarking effect is an important research direction in current digital watermarking technology.
发明内容Contents of the invention
为克服现有技术的不足,本发明旨在提出提出一种基于灰狼优化算法和完全三叉树结构的小波域彩色多水印技术,该数字水印技术主要针对如何确定水印嵌入过程中对于不同的水印图像对应的动态的嵌入因子,提出一种基于灰狼优化算法(GWO)对水印嵌入过程进行寻优操作,并且通过引入三叉树加密技术,对多幅彩色水印图像进行加密处理,从而提高水印的鲁棒性。提出的三叉树-灰狼优化(Tree-GWO)水印方案可以调节水印的不可见性、鲁棒性以及容量之间的平衡。另外,也可以有效抵抗已知的噪声攻击、剪切攻击、旋转攻击等多种攻击。为此,本发明采取的技术方案是,灰狼优化算法和完全三叉树结构小波域彩色多水印方法,在水印嵌入过程中,三幅彩色水印图像首先通过三叉树加密技术加密成为一个灰度图像;然后,对彩色宿主图像进行小波变换,选中频部分变换到YCbCr颜色空间然后进行奇异值分解,将加密后的多个彩色水印嵌入到载体图像的奇异值部分;最后,将包含秘密图像的奇异值部分与特征向量结合再进行逆小波变换,得到包含秘密图像的载体图像。In order to overcome the shortcomings of the existing technology, the present invention aims to propose a wavelet domain color multi-watermark technology based on the gray wolf optimization algorithm and a complete ternary tree structure. This digital watermark technology is mainly aimed at how to determine the accuracy of different watermarks in the watermark embedding process. Based on the dynamic embedding factor corresponding to the image, a method is proposed to optimize the watermark embedding process based on the Gray Wolf Optimization Algorithm (GWO), and by introducing ternary tree encryption technology, multiple color watermark images are encrypted, thereby improving the performance of the watermark. robustness. The proposed Trinomial Tree-Gray Wolf Optimization (Tree-GWO) watermarking scheme can adjust the balance between the invisibility, robustness and capacity of the watermark. In addition, it can also effectively resist known noise attacks, shear attacks, rotation attacks and other attacks. To this end, the technical solution adopted by the present invention is the gray wolf optimization algorithm and the complete ternary tree structure wavelet domain color multi-watermark method. During the watermark embedding process, three color watermark images are first encrypted into a grayscale image through ternary tree encryption technology. ; Then, perform wavelet transformation on the color host image, transform the selected frequency part into YCbCr color space and then perform singular value decomposition, and embed the encrypted multiple color watermarks into the singular value part of the carrier image; Finally, the singular value containing the secret image is The value part is combined with the feature vector and then subjected to inverse wavelet transform to obtain the carrier image containing the secret image.
具体步骤细化如下:The specific steps are detailed as follows:
水印图像的加密:首先,将三幅彩色水印图像fi分为各自的R、G、B三个通道,i=1,2,3,然后基于三叉树加密技术进行加密,加密结果为Cen;然后对加密结果Cen进行小波变换,对得到的中频部分LHCen进行奇异值分解,对得到的奇异值部分SCen进行变分图像分解得到加密图像的纹理部分Cen_u和细节部分Cen_v;Encryption of watermark images: First, divide the three color watermark images f i into their respective R, G, and B channels, i = 1, 2, 3, and then encrypt them based on ternary tree encryption technology, and the encryption result is Cen; Then perform wavelet transform on the encryption result Cen, perform singular value decomposition on the obtained intermediate frequency part LHCen, and perform variational image decomposition on the obtained singular value part SCen to obtain the texture part Cen_u and detail part Cen_v of the encrypted image;
水印的嵌入过程:首先将彩色宿主图像IH进行小波变换,将得到的RGB颜色空间的中频部分LHr、LHg、LHb通过RGB2YCbCr转换为YCbCr颜色空间:LHY、LHCb、LHCr;对垂直分量的蓝色色度分量LHCb和垂直分量的红色色度分量LHCr进行奇异值分解;然后将步骤1中的Cen_u和Cen_v分别嵌入到LHCb的奇异值分量SCb和LHCr的奇异值分量SCr中;然后通过逆奇异值变换和逆小波变换得到嵌入水印后的宿主图像IW;The watermark embedding process: First, perform wavelet transformation on the color host image IH, and convert the mid-frequency parts LHr, LHg, and LHb of the RGB color space obtained through RGB2YCbCr into the YCbCr color space: LHY, LHCb, and LHCr; for the blue chromaticity of the vertical component The component LHCb and the red chroma component LHCr of the vertical component are subjected to singular value decomposition; then Cen_u and Cen_v in step 1 are embedded into the singular value component SCb of LHCb and the singular value component SCr of LHCr respectively; then through inverse singular value transformation and The inverse wavelet transform is used to obtain the host image IW after the watermark is embedded;
水印的提取过程:首先将嵌入水印的图像IW进行小波分解,将得到的RGB颜色空间的中频部分LHEr、LHEg、LHEb通过RGB2YCbCr转换为YCbCr颜色空间:LHEY、LHECb、LHECr;对垂直分量的蓝色色度分量LHECb和垂直分量的红色色度分量LHECr进行奇异值分解;将得到的奇异值与之前的特征向量结合得到含水印的奇异值SssCb和SssCr;从SssCb和SssCr中分别提取CEN_u和CEN_v,最终得到提取出的加密图像CEN;The watermark extraction process: first perform wavelet decomposition on the image IW embedded with the watermark, and convert the mid-frequency parts LHEr, LHEg, and LHEb of the RGB color space obtained through RGB2YCbCr into the YCbCr color space: LHEY, LHECb, LHECr; for the blue color of the vertical component The metric component LHECb and the red chromaticity component LHECr of the vertical component are subjected to singular value decomposition; the obtained singular values are combined with the previous feature vectors to obtain the watermarked singular values SssCb and SssCr; CEN_u and CEN_v are extracted from SssCb and SssCr respectively, and finally Get the extracted encrypted image CEN;
步骤4:水印图像的解密:利用三叉树技术对被提取的加密图像CEN进行解密运算得到解密水印图像Fi;Step 4: Decryption of the watermark image: Use ternary tree technology to decrypt the extracted encrypted image CEN to obtain the decrypted watermark image Fi ;
步骤5:鲁棒性测试:对嵌入水印的宿主图像进行各种攻击测试,通过计算均方值MSE、峰值信噪比PSNR、相关系数CC值,评价从嵌入水印后被攻击的宿主图像中提取的水印图像的不可见性以及鲁棒性。Step 5: Robustness test: Conduct various attack tests on the host image with embedded watermark. By calculating the mean square value MSE, peak signal-to-noise ratio PSNR, and correlation coefficient CC value, evaluate the extraction from the attacked host image after embedding the watermark. Invisibility and robustness of watermarked images.
水印的嵌入过程具体步骤如下:The specific steps of the watermark embedding process are as follows:
步骤1:将彩色宿主图像IH进行小波分解:Step 1: Perform wavelet decomposition on the color host image IH:
[LL,LH,HL,HH]=DWT(IH) (6)[LL,LH,HL,HH]=DWT(IH) (6)
其中,LL,LH,HL,HH分别为宿主图像小波变化后的低频,水平,垂直,高频分量;Among them, LL, LH, HL, and HH are the low-frequency, horizontal, vertical, and high-frequency components of the host image after wavelet change respectively;
步骤2:对得到的RGB颜色空间的中频部分LHr、LHg、LHb通过RGB2YCbCr转换为YCbCr颜色空间:LHY、LHCb、LHCr:Step 2: Convert the intermediate frequency parts LHr, LHg, and LHb of the obtained RGB color space into YCbCr color space: LHY, LHCb, and LHCr through RGB2YCbCr:
[LHY,LHCb,LHCr]=RGB2YCbCr(LHr,LHg,LHb) (7)[LHY,LHCb,LHCr]=RGB2YCbCr(LHr,LHg,LHb) (7)
步骤3:对垂直分量的蓝色色度分量LHCb和垂直分量的红色色度分量LHCr进行小波变换和奇异值分解:Step 3: Perform wavelet transformation and singular value decomposition on the blue chroma component LHCb of the vertical component and the red chroma component LHCr of the vertical component:
[UCb,SCb,VCb]=SVD(DWT(LHCb)) (8)[UCb,SCb,VCb]=SVD(DWT(LHCb)) (8)
[UCr,SCr,VCr]=SVD(DWT(LHCr)) (9)[UCr,SCr,VCr]=SVD(DWT(LHCr)) (9)
其中,UCb、SCb、VCb分别为LHCb的左奇异值分量、特征奇异值分量、右奇异值分量;UCr、SCr、VCr分别为LHCr的左奇异值分量、特征奇异值分量、右奇异值分量。Among them, UCb, SCb, and VCb are respectively the left singular value component, characteristic singular value component, and right singular value component of LHCb; UCr, SCr, and VCr are respectively the left singular value component, characteristic singular value component, and right singular value component of LHCr.
步骤4:将步骤1中的Cen_u和Cen_v分别嵌入到LHCb的奇异值分量SCb和LHCr的奇异值分量SCr中:Step 4: Embed Cen_u and Cen_v in step 1 into the singular value component SCb of LHCb and the singular value component SCr of LHCr respectively:
SsCb=SCb+af·Cen_u (10)SsCb=SCb+af·Cen_u (10)
SsCr=SCr+af·Cen_v (11)SsCr=SCr+af·Cen_v (11)
其中af为水印嵌入强度;where af is the watermark embedding strength;
步骤5:对嵌入水印的奇异值SsCb和SsCr进行奇异值分解:Step 5: Perform singular value decomposition on the singular values SsCb and SsCr embedded in the watermark:
[U1Cb,S1Cb,V1Cb]=SVD(SsCb) (12)[U1Cb,S1Cb,V1Cb]=SVD(SsCb) (12)
[U1Cr,S1Cr,V1Cr]=SVD(SsCr) (13)[U1Cr,S1Cr,V1Cr]=SVD(SsCr) (13)
步骤6:对得到的奇异值进行逆变换得到包含水印的中频部分:Step 6: Perform inverse transformation on the obtained singular values to obtain the intermediate frequency part containing the watermark:
LH11Cb=UCb·S1Cb·VCb-1 (14)LH11Cb=UCb·S1Cb·VCb -1 (14)
LH11Cr=UCr·S1Cr·VCr-1 (15)LH11Cr=UCr·S1Cr·VCr -1 (15)
步骤7:对得到的中频部分进行逆小波变换:Step 7: Perform inverse wavelet transform on the obtained intermediate frequency part:
LHhCb=IDWT(LL1Cb,LH11Cb,HL1Cb,HH1Cb) (16)LHhCb=IDWT(LL1Cb,LH11Cb,HL1Cb,HH1Cb) (16)
LHhCr=IDWT(LL1Cr,LH11Cr,HL1Cr,HH1Cr) (17)LHhCr=IDWT(LL1Cr,LH11Cr,HL1Cr,HH1Cr) (17)
步骤8:对得到的YCbCr颜色空间的中频部分LHhCb、LHhCr通过YCbCr2RGB转换为RGB颜色空间:Step 8: Convert the intermediate frequency parts LHhCb and LHhCr of the obtained YCbCr color space into RGB color space through YCbCr2RGB:
[LH1r,LH1g,LH1b]=YCbCr2RGB(LH1Y,LHhCb,LHhCr) (18)[LH1r,LH1g,LH1b]=YCbCr2RGB(LH1Y,LHhCb,LHhCr) (18)
步骤9:对重组的中频部分LH1进行逆小波变换得到嵌入水印的宿主图像:Step 9: Perform inverse wavelet transform on the reorganized intermediate frequency part LH1 to obtain the host image with embedded watermark:
IW=IDWT(LL,LH1,HL,HH) (19)IW=IDWT(LL,LH1,HL,HH) (19)
水印嵌入因子af的灰狼优化算法寻优过程如下:The optimization process of the gray wolf optimization algorithm for the watermark embedding factor af is as follows:
1)初始化灰狼种群,以及a,A和C;%a,A和C为参数1) Initialize the gray wolf population, as well as a, A and C; %a, A and C are parameters
2)计算每个灰狼个体的适应度函数值,保存适应度值最好的前三匹狼最好的灰狼个体Xa,第二好的灰狼个体Xb,第三好的灰狼个体Xd;2) Calculate the fitness function value of each gray wolf individual, and save the top three wolves with the best fitness values, the best gray wolf individual X a , the second best gray wolf individual X b , and the third best gray wolf Individual X d ;
3)记t为当前迭代次数,max iteration为最大迭代次数,当迭代次数t<maxiteration时,对于每一个灰狼个体,更新当前灰狼个体的位置,更新a,A和C,并计算全部灰狼的适应度函数值;重复前述各步骤,直至t≥max iteration,则Xa为寻找到的最优解,即所要寻找的最优嵌入强度af。3) Record t as the current number of iterations, and max iteration as the maximum number of iterations. When the number of iterations t<maxiteration, for each gray wolf individual, update the position of the current gray wolf individual, update a, A and C, and calculate all gray wolf individuals. The fitness function value of the wolf; repeat the above steps until t≥max iteration, then X a is the optimal solution found, that is, the optimal embedding strength af to be found.
嵌入因子af对应的目标函数为:The objective function corresponding to the embedding factor af is:
其中N为所受攻击种类总数,m为水印数量,CC为相关系数值,IH为原始彩色宿主图像,IW为嵌入水印后的宿主图像,f为三幅原始彩色水印图像,F为提取恢复的三幅水印图像,通过灰狼优化算法进行寻优找到最佳嵌入因子af时所对应的目标函数值应该尽可能的接近4。Among them, N is the total number of attack types, m is the number of watermarks, CC is the correlation coefficient value, IH is the original color host image, IW is the host image after embedding the watermark, f is the three original color watermark images, and F is the extracted and recovered For three watermark images, the corresponding objective function value should be as close to 4 as possible when finding the best embedding factor af through the gray wolf optimization algorithm.
本发明的特点及有益效果是:The characteristics and beneficial effects of the present invention are:
相比已提出的数字水印算法,本发明主要针对于如何确定水印嵌入过程中对于不同的水印图像对应的动态的嵌入因子,提出一种基于灰狼优化算法(GWO)对水印嵌入过程进行寻优操作,并且通过引入三叉树加密技术,在嵌入前对多幅彩色水印图像进行加密处理,从而提高水印的鲁棒性。提出的三叉树-灰狼优化(Tree-GWO)水印方案优势在于:(1)在以往单个二值或灰度或单个彩色水印技术的基础上,通过引入三叉树加密技术,可以同时讲三个水印图像加密成为一个灰度加密结果,不仅很大程度上提高了水印嵌入容量,并且三叉树加密技术可以有效地抵抗各种攻击;(2)对于存在的水印嵌入因子由于人为实验确定而导致的随机性以及不确定性,本发明通过引入灰狼优化算法,设计了基于水印嵌入提取的目标函数,利用GWO优化算法对水印嵌入因子进行寻优操作,从而解决了因为不同图像特征所对应的嵌入因子的动态特性,并且有效地平衡了水印嵌入过程中鲁棒性、不可见性以及容量间相互制约的关系;(3)为了测试本发明的广泛适用性,不仅对于自然彩色图像进行了各种性能的测试,也对医学图像进行了性能测试,表明了本发明不仅适用于自然图像的版权保护,也适用于医学图像的版权保护;(4)本发明测试了彩色宿主以及彩色水印,对于灰度图像以及音频水印同样适用。Compared with the digital watermark algorithms that have been proposed, the present invention mainly focuses on how to determine the dynamic embedding factors corresponding to different watermark images during the watermark embedding process, and proposes a method to optimize the watermark embedding process based on the Gray Wolf Optimization Algorithm (GWO) operation, and by introducing ternary tree encryption technology, multiple color watermark images are encrypted before embedding, thereby improving the robustness of the watermark. The advantages of the proposed ternary tree-grey wolf optimization (Tree-GWO) watermarking scheme are: (1) Based on the previous single binary or grayscale or single color watermark technology, by introducing ternary tree encryption technology, three The watermark image encryption becomes a grayscale encryption result, which not only greatly improves the watermark embedding capacity, but also the ternary tree encryption technology can effectively resist various attacks; (2) For the existing watermark embedding factors determined by artificial experiments, Randomness and uncertainty, the present invention introduces the gray wolf optimization algorithm, designs an objective function based on watermark embedding extraction, and uses the GWO optimization algorithm to optimize the watermark embedding factor, thereby solving the problem of embedding corresponding to different image features. The dynamic characteristics of the factor, and effectively balance the mutual constraints between robustness, invisibility and capacity in the watermark embedding process; (3) In order to test the wide applicability of the present invention, not only various natural color images were Performance tests were also performed on medical images, which showed that the present invention is not only suitable for copyright protection of natural images, but also for copyright protection of medical images; (4) the present invention tested color hosts and color watermarks, and for gray The same applies to image and audio watermarks.
附图说明:Picture description:
图1为提出的Tree-GWO水印技术的嵌入、提取的流程图,图中:Figure 1 is a flow chart of the embedding and extraction of the proposed Tree-GWO watermark technology. In the figure:
(a)为本发明提供的彩色多水印嵌入及加密原理示意图;(a) Schematic diagram of the color multi-watermark embedding and encryption principle provided by the present invention;
(b)为本发明提供的彩色多水印提取及解密原理示意图;(b) Schematic diagram of the principle of color multi-watermark extraction and decryption provided by the present invention;
图2为灰狼优化算法寻找最优嵌入因子的收敛历史示意图;Figure 2 is a schematic diagram of the convergence history of the Gray Wolf optimization algorithm to find the optimal embedding factor;
图3为四幅待嵌入的原始彩色水印图像及两幅原始彩色宿主图像:Figure 3 shows four original color watermark images to be embedded and two original color host images:
(a)为Baboon;(a) is Baboon;
(b)为Fruits;(b) for Fruits;
(c)为Peppers;(c) for Peppers;
(d)为Cell;(d) is Cell;
(e)为Lena;(e) for Lena;
图4为加密图像;Figure 4 shows the encrypted image;
图5为提取及解密的水印图像:Figure 5 shows the extracted and decrypted watermark image:
(a)解密结果Baboon;(a) Decryption result Baboon;
(b)解密结果Fruits;(b) Decryption result Fruits;
(c)解密结果Peppers;(c) Decryption result Peppers;
图6为受到强度为0.2的高斯噪声攻击的嵌入水印图像以及对应的提取及解密水印:Figure 6 shows the embedded watermark image attacked by Gaussian noise with a strength of 0.2 and the corresponding extracted and decrypted watermark:
(a)受0.2高斯噪声攻击的嵌入水印后的宿主Cell;(a) Host Cell with embedded watermark attacked by 0.2 Gaussian noise;
(b)从图6(a)中提取解密出来的Baboon;(b) Extract the decrypted Baboon from Figure 6(a);
(c)从图6(a)中提取解密出来的Fruits;(c) Extract the decrypted Fruits from Figure 6(a);
(d)从图6(a)中提取解密出来的Peppers;(d) Extract the decrypted Peppers from Figure 6(a);
(e)受0.2高斯噪声攻击的嵌入水印后的宿主Lena;(e) Host Lena with embedded watermark attacked by 0.2 Gaussian noise;
(f)从图6(e)中提取解密出来的Baboon;(f) Extract the decrypted Baboon from Figure 6(e);
(g)从图6(e)中提取解密出来的Fruits;(g) Extract the decrypted Fruits from Figure 6(e);
(h)从图6(e)中提取解密出来的Peppers;(h) Extract the decrypted Peppers from Figure 6(e);
图7为受到强度为50%的剪切攻击的嵌入水印图像以及对应的提取及解密水印:Figure 7 shows the embedded watermark image subjected to a shear attack with a strength of 50% and the corresponding extracted and decrypted watermark:
(a)受50%的剪切攻击的嵌入水印后的宿主Cell;(a) Host Cell with watermark embedded under 50% clipping attack;
(b)从图7(a)中提取解密出来的Baboon;(b) Extract the decrypted Baboon from Figure 7(a);
(c)从图7(a)中提取解密出来的Fruits;(c) Extract the decrypted Fruits from Figure 7(a);
(d)从图7(a)中提取解密出来的Peppers;(d) Extract the decrypted Peppers from Figure 7(a);
(e)受50%的剪切攻击的嵌入水印后的宿主Lena;(e) Host Lena with embedded watermark subjected to 50% clipping attack;
(f)从图7(e)中提取解密出来的Baboon;(f) Extract the decrypted Baboon from Figure 7(e);
(g)从图7(e)中提取解密出来的Fruits;(g) Extract the decrypted Fruits from Figure 7(e);
(h)从图7(e)中提取解密出来的Peppers;(h) Extract the decrypted Peppers from Figure 7(e);
图8为经过旋转15°的旋转攻击的嵌入水印图像以及对应的提取及解密水印:Figure 8 shows the embedded watermark image after a rotation attack of 15° and the corresponding extracted and decrypted watermark:
(a)受旋转15°的旋转攻击的嵌入水印后的宿主Cell;(a) Host Cell with watermark embedded under rotation attack of 15°;
(b)从图8(a)中提取解密出来的Baboon;(b) Extract the decrypted Baboon from Figure 8(a);
(c)从图8(a)中提取解密出来的Fruits;(c) Extract the decrypted Fruits from Figure 8(a);
(d)从图8(a)中提取解密出来的Peppers;(d) Extract the decrypted Peppers from Figure 8(a);
(e)受旋转15°的旋转攻击的嵌入水印后的宿主Lena;(e) Host Lena with embedded watermark subjected to a rotation attack of 15°;
(f)从图8(e)中提取解密出来的Baboon;(f) Extract the decrypted Baboon from Figure 8(e);
(g)从图8(e)中提取解密出来的Fruits;(g) Extract the decrypted Fruits from Figure 8(e);
(h)从图8(e)中提取解密出来的Peppers。(h) Extract the decrypted Peppers from Figure 8(e).
附图中,各标号所代表的部件列表如下:In the drawings, the parts represented by each number are listed as follows:
图1(a)中:IH:原始彩色宿主图像;DWT:离散小波变换;LL:低频分量;HL:水平分量;LH:垂直分量;HH:高频分量;LHr:垂直分量的红色通道;LHg:垂直分量的绿色通道;LHb:垂直分量的蓝色通道;RGB2YCbCr:RGB颜色空间转换为YCbCr颜色空间;LHY:垂直分量的亮度分量;LHCb:垂直分量的蓝色色度分量;LHCr:垂直分量的红色色度分量;SVD:奇异值分解;U:奇异值的左奇异值向量;S:奇异值的特征值向量;U:奇异值的右奇异值向量;GreyWolf Optimizer:灰狼优化算法;af:水印嵌入强度;Cen:水印的加密结果;VID:变分图像分解;Cen_u:水印的加密结果的纹理部分;Cen_v:水印的加密结果的细节部分;ISVD:逆奇异值分解;IDWT:逆离散小波变换;YCbCr2RGB:YCbCr颜色空间转换为RGB颜色空间;IW:嵌入水印后的宿主图像。In Figure 1(a): IH: original color host image; DWT: discrete wavelet transform; LL: low-frequency component; HL: horizontal component; LH: vertical component; HH: high-frequency component; LHr: red channel of vertical component; LHg : Green channel of the vertical component; LHb: Blue channel of the vertical component; RGB2YCbCr: RGB color space converted to YCbCr color space; LHY: Luminance component of the vertical component; LHCb: Blue chroma component of the vertical component; LHCr: Vertical component Red chromaticity component; SVD: singular value decomposition; U: left singular value vector of singular values; S: eigenvalue vector of singular values; U: right singular value vector of singular values; GreyWolf Optimizer: gray wolf optimization algorithm; af: Watermark embedding strength; Cen: encryption result of watermark; VID: variational image decomposition; Cen_u: texture part of the encryption result of watermark; Cen_v: detail part of the encryption result of watermark; ISVD: inverse singular value decomposition; IDWT: inverse discrete wavelet Transformation; YCbCr2RGB: Convert YCbCr color space to RGB color space; IW: Host image after embedding watermark.
图1(b)中:LHE:嵌入水印的宿主图像的垂直分量;CEN_u:提取出的加密图像的纹理部分;CEN_v:提取出的加密图像的细节部分;CEN:提取出的加密图像。In Figure 1(b): LHE: the vertical component of the host image embedded with watermark; CEN_u: the extracted texture part of the encrypted image; CEN_v: the extracted detail part of the encrypted image; CEN: the extracted encrypted image.
具体实施方式Detailed ways
本发明旨在提出一种基于灰狼优化算法和完全三叉树结构的小波域彩色多水印技术,该数字水印技术主要针对如何确定水印嵌入过程中对于不同的水印图像对应的动态的嵌入因子,提出一种基于灰狼优化算法(GWO)对水印嵌入过程进行寻优操作,并且通过引入三叉树加密技术,对多幅彩色水印图像进行加密处理,从而提高水印的鲁棒性。提出的三叉树-灰狼优化(Tree-GWO)水印方案可以调节水印的不可见性、鲁棒性以及容量之间的平衡。另外,也可以有效抵抗已知的噪声攻击、剪切攻击、旋转攻击等多种攻击。为此,本发明采取的技术方案是,基于灰狼优化算法和完全三叉树结构的小波域彩色多水印技术,在水印嵌入过程中,三幅彩色水印图像首先通过三叉树加密技术加密成为一个灰度图像;然后,对彩色宿主图像进行小波变换,选中频部分变换到YCbCr颜色空间然后进行奇异值分解,将加密后的多个彩色水印嵌入到载体图像的奇异值部分;最后,将包含秘密图像的奇异值部分与特征向量结合再进行逆小波变换,得到包含秘密图像的载体图像。通过灰狼优化算法寻找最佳的水印嵌入因子,此外,为了测试本发明的广泛适用性,我们测试了分别在彩色自然宿主图像和彩色医学图像的情况下提出算法的可行性。The present invention aims to propose a wavelet domain color multi-watermark technology based on the gray wolf optimization algorithm and a complete ternary tree structure. This digital watermark technology is mainly aimed at how to determine the dynamic embedding factors corresponding to different watermark images during the watermark embedding process. A method is based on the Gray Wolf Optimization Algorithm (GWO) to optimize the watermark embedding process, and by introducing ternary tree encryption technology, multiple color watermark images are encrypted to improve the robustness of the watermark. The proposed Trinomial Tree-Gray Wolf Optimization (Tree-GWO) watermarking scheme can adjust the balance between the invisibility, robustness and capacity of the watermark. In addition, it can also effectively resist known noise attacks, shear attacks, rotation attacks and other attacks. To this end, the technical solution adopted by the present invention is a wavelet domain color multi-watermark technology based on the gray wolf optimization algorithm and a complete ternary tree structure. During the watermark embedding process, the three color watermark images are first encrypted into a gray image through ternary tree encryption technology. degree image; then, perform wavelet transformation on the color host image, transform the selected frequency part into YCbCr color space and then perform singular value decomposition, and embed the encrypted multiple color watermarks into the singular value part of the carrier image; finally, the secret image will be included The singular value part is combined with the eigenvector and then subjected to inverse wavelet transformation to obtain the carrier image containing the secret image. The optimal watermark embedding factor is found through the gray wolf optimization algorithm. Furthermore, in order to test the wide applicability of the present invention, we test the feasibility of the proposed algorithm in the case of color natural host images and color medical images respectively.
具体步骤细化如下:The specific steps are detailed as follows:
步骤1:水印图像的加密:首先,将三幅彩色水印图像fi(i=1,2,3)分为各自的R、G、B三个通道,然后基于三叉树加密技术进行加密,加密结果为Cen,以此加强水印图像的鲁棒性和不可见性;然后对加密结果Cen进行小波变换,对得到的中频部分LHCen进行奇异值分解,对得到的奇异值部分SCen进行变分图像分解(VID)得到加密图像的纹理部分Cen_u和细节部分Cen_v;Step 1: Encryption of watermark images: First, divide the three color watermark images fi ( i =1, 2, 3) into their respective R, G, and B channels, and then encrypt them based on ternary tree encryption technology. The result is Cen, thereby enhancing the robustness and invisibility of the watermark image; then wavelet transform is performed on the encryption result Cen, singular value decomposition is performed on the obtained intermediate frequency part LHCen, and variational image decomposition is performed on the obtained singular value part SCen (VID) Obtain the texture part Cen_u and detail part Cen_v of the encrypted image;
步骤2:水印的嵌入过程:首先将彩色宿主图像IH进行小波变换,将得到的RGB颜色空间的中频部分LHr、LHg、LHb通过RGB2YCbCr转换为YCbCr颜色空间:LHY、LHCb、LHCr;对LHCb(垂直分量的蓝色色度分量)和LHCr(垂直分量的红色色度分量)进行奇异值分解(SVD);然后将步骤1中的Cen_u和Cen_v分别嵌入到LHCb的奇异值分量SCb和LHCr的奇异值分量SCr中;然后通过逆奇异值变换和逆小波变换就可以得到嵌入水印后的宿主图像IW;Step 2: Watermark embedding process: First, perform wavelet transformation on the color host image IH, and convert the obtained intermediate frequency parts LHr, LHg, and LHb of the RGB color space into YCbCr color space through RGB2YCbCr: LHY, LHCb, LHCr; for LHCb (vertical The blue chroma component of the component) and LHCr (the red chroma component of the vertical component) are subjected to singular value decomposition (SVD); then Cen_u and Cen_v in step 1 are embedded into the singular value component SCb of LHCb and the singular value component of LHCr respectively. in SCr; then through inverse singular value transform and inverse wavelet transform, the host image IW with embedded watermark can be obtained;
步骤3:水印的提取过程:首先将嵌入水印的图像IW进行小波分解,将得到的RGB颜色空间的中频部分LHEr、LHEg、LHEb通过RGB2YCbCr转换为YCbCr颜色空间:LHEY、LHECb、LHECr;对LHECb(垂直分量的蓝色色度分量)和LHECr(垂直分量的红色色度分量)进行奇异值分解(SVD);将得到的奇异值与之前的特征向量结合得到含水印的奇异值SssCb和SssCr;从SssCb和SssCr中分别提取CEN_u和CEN_v,最终得到提取出的加密图像CEN;Step 3: Watermark extraction process: First, perform wavelet decomposition on the image IW embedded with the watermark, and convert the obtained intermediate frequency parts LHEr, LHEg, and LHEb of the RGB color space into YCbCr color space through RGB2YCbCr: LHEY, LHECb, LHECr; for LHECb ( The blue chroma component of the vertical component) and LHECr (the red chroma component of the vertical component) are subjected to singular value decomposition (SVD); the obtained singular values are combined with the previous feature vectors to obtain the watermarked singular values SssCb and SssCr; from SssCb Extract CEN_u and CEN_v respectively from SssCr and SssCr, and finally obtain the extracted encrypted image CEN;
步骤4:水印图像的解密:利用三叉树技术对被提取的加密图像CEN进行解密运算得到解密水印图像Fi;Step 4: Decryption of the watermark image: Use ternary tree technology to decrypt the extracted encrypted image CEN to obtain the decrypted watermark image Fi ;
步骤5:鲁棒性测试:对嵌入水印的宿主图像进行各种攻击测试,通过计算MSE(均方值)、PSNR(峰值信噪比)、CC(相关系数)值,评价从嵌入水印后被攻击的宿主图像中提取的水印图像的不可见性以及鲁棒性。Step 5: Robustness test: Conduct various attack tests on the host image with embedded watermark. By calculating MSE (mean square value), PSNR (peak signal-to-noise ratio), and CC (correlation coefficient) values, evaluate the impact of the attack on the host image after embedding the watermark. Invisibility and robustness of watermarked images extracted from the host image of the attack.
对步骤2中水印嵌入因子af的灰狼优化算法寻优过程如下:The optimization process of the gray wolf optimization algorithm for the watermark embedding factor af in step 2 is as follows:
Grey Wolf Optimizer(GWO)是最近开发的一种元启发式搜索算法,模拟灰狼的社会阶层和狩猎机制,用于解决非凸面工程优化问题。主要的步骤为:Gray Wolf Optimizer (GWO) is a recently developed meta-heuristic search algorithm that simulates the social class and hunting mechanism of gray wolves and is used to solve non-convex engineering optimization problems. The main steps are:
1)初始化灰狼种群,以及a,A和C;%a,A和C为参数1) Initialize the gray wolf population, as well as a, A and C; %a, A and C are parameters
2)计算每个灰狼个体的适应度函数值,保存适应度值最好的前三匹狼Xa(最好的灰狼个体),Xβ(第二好的灰狼个体),Xδ(第三好的灰狼个体);2) Calculate the fitness function value of each gray wolf individual, and save the top three wolves with the best fitness values X a (the best gray wolf individual), X β (the second best gray wolf individual), X δ (The third best gray wolf individual);
4)记t为当前迭代次数,max iteration为最大迭代次数,当迭代次数t<maxiteration时,对于每一个灰狼个体,更新当前灰狼个体的位置,更新a,A和C,并计算全部灰狼的适应度函数值。重复前述各步骤,直至t≥max iteration,则Xa为寻找到的最优解,即本方案中所要寻找的最优嵌入强度af。4) Record t as the current number of iterations, and max iteration as the maximum number of iterations. When the number of iterations t<maxiteration, for each gray wolf individual, update the position of the current gray wolf individual, update a, A and C, and calculate all gray The fitness function value of the wolf. Repeat the above steps until t≥max iteration, then X a is the optimal solution found, that is, the optimal embedding strength af sought in this solution.
本发明中嵌入因子af对应的目标函数为:The objective function corresponding to the embedding factor af in the present invention is:
其中N为所受攻击种类总数,m为水印数量,CC为相关系数值,IH为原始彩色宿主图像,Where N is the total number of attack types, m is the number of watermarks, CC is the correlation coefficient value, IH is the original color host image,
IW为嵌入水印后的宿主图像,f为三幅原始彩色水印图像,F为提取恢复的三幅水印图像。为了同时达到好的鲁棒性、不可见性以及容量,通过灰狼优化算法进行寻优找到最佳嵌入因子af时所对应的目标函数值应该尽可能的接近4。IW is the host image after embedding the watermark, f is the three original color watermark images, and F is the three extracted and restored watermark images. In order to achieve good robustness, invisibility and capacity at the same time, the corresponding objective function value when finding the best embedding factor af through the gray wolf optimization algorithm should be as close as possible to 4.
为克服现有技术的不足,本发明主要针对于如何确定水印嵌入过程中对于不同的水印图像对应的动态的嵌入因子,提出一种基于灰狼优化算法(GWO)对水印嵌入过程进行寻优操作,并且通过引入三叉树加密技术,在嵌入前对多幅彩色水印图像进行加密处理,从而提高水印的鲁棒性。提出的三叉树-灰狼优化(Tree-GWO)水印方案优势在于:(1)在以往单个二值或灰度或单个彩色水印技术的基础上,通过引入三叉树加密技术,可以同时讲三个水印图像加密成为一个灰度加密结果,不仅很大程度上提高了水印嵌入容量,并且三叉树加密技术可以有效地抵抗各种攻击;(2)对于存在的水印嵌入因子由于人为实验确定而导致的随机性以及不确定性,本发明通过引入灰狼优化算法,设计了基于水印嵌入提取的目标函数,利用GWO优化算法对水印嵌入因子进行寻优操作,从而解决了因为不同图像特征所对应的嵌入因子的动态特性,并且有效地平衡了水印嵌入过程中鲁棒性、不可见性以及容量间相互制约的关系;(3)为了测试本发明的广泛适用性,不仅对于自然彩色图像进行了各种性能的测试,也对医学图像进行了性能测试,表明了本发明不仅适用于自然图像的版权保护,也适用于医学图像的版权保护;(4)本发明测试了彩色宿主以及彩色水印,对于灰度图像以及音频水印同样适用。In order to overcome the shortcomings of the existing technology, the present invention mainly focuses on how to determine the dynamic embedding factors corresponding to different watermark images in the watermark embedding process, and proposes a method to optimize the watermark embedding process based on the Gray Wolf Optimization Algorithm (GWO). , and by introducing ternary tree encryption technology, multiple color watermark images are encrypted before embedding, thereby improving the robustness of the watermark. The advantages of the proposed ternary tree-grey wolf optimization (Tree-GWO) watermarking scheme are: (1) Based on the previous single binary or grayscale or single color watermark technology, by introducing ternary tree encryption technology, three The watermark image encryption becomes a grayscale encryption result, which not only greatly improves the watermark embedding capacity, but also the ternary tree encryption technology can effectively resist various attacks; (2) For the existing watermark embedding factors determined by artificial experiments, Randomness and uncertainty, the present invention introduces the gray wolf optimization algorithm, designs an objective function based on watermark embedding extraction, and uses the GWO optimization algorithm to optimize the watermark embedding factor, thereby solving the problem of embedding corresponding to different image features. The dynamic characteristics of the factor, and effectively balance the mutual constraints between robustness, invisibility and capacity in the watermark embedding process; (3) In order to test the wide applicability of the present invention, not only various natural color images were Performance tests were also performed on medical images, which showed that the present invention is not only suitable for copyright protection of natural images, but also for copyright protection of medical images; (4) the present invention tested color hosts and color watermarks, and for gray The same applies to image and audio watermarks.
为了清楚地阐述本发明的目的、技术方案及优点,下面就本发明中水印加密算法以及水印嵌入做进一步地详细描述。In order to clearly explain the purpose, technical solutions and advantages of the present invention, the watermark encryption algorithm and watermark embedding in the present invention will be described in further detail below.
(1)彩色水印图像的三叉树加密过程:(1) Triple tree encryption process of color watermark images:
步骤1:将三幅彩色水印图像fi(i=1,2,3)分为各自的R、G、B三个通道,然后基于三叉树加密技术进行加密,加密结果为Cen:Step 1: Divide the three color watermark images f i (i=1,2,3) into their respective R, G, and B channels, and then encrypt them based on ternary tree encryption technology. The encryption result is Cen:
Cen=Encrypt(f1,f2,f3) (22)Cen=Encrypt(f 1 ,f 2 ,f 3 ) (22)
其中Encrypt(·)为三叉树加密过程。Among them, Encrypt(·) is the ternary tree encryption process.
步骤2:对加密后的结果Cen进行小波变换:Step 2: Perform wavelet transform on the encrypted result Cen:
[LLCen,LHCen,HLCen,HHCen]=DWT(Cen) (23)[LLCen,LHCen,HLCen,HHCen]=DWT(Cen) (23)
其中,LLCen,LHCen,HLCen,HHCen分别为加密图像小波变化后的低频,水平,垂直,高频分量。Among them, LLCen, LHCen, HLCen, and HHCen are the low-frequency, horizontal, vertical, and high-frequency components of the encrypted image after wavelet change, respectively.
步骤3:对小波变换得到的中频部分LHCen进行奇异值分解:Step 3: Perform singular value decomposition on the intermediate frequency part LHCen obtained by wavelet transform:
[UCen,SCen,VCen]=SVD(LHCen) (24)[UCen,SCen,VCen]=SVD(LHCen) (24)
步骤4:对奇异值分解得到的奇异值部分SCen进行VID(变分图像分解):Step 4: Perform VID (variational image decomposition) on the singular value part SCen obtained by singular value decomposition:
[SCen_u,SCen_v]=VID(SCen) (25)[SCen_u,SCen_v]=VID(SCen) (25)
(2)水印的嵌入过程:(2) Watermark embedding process:
步骤1:将彩色宿主图像IH进行小波分解:Step 1: Perform wavelet decomposition on the color host image IH:
[LL,LH,HL,HH]=DWT(IH) (26)[LL,LH,HL,HH]=DWT(IH) (26)
步骤2:对得到的RGB颜色空间的中频部分LHr、LHg、LHb通过RGB2YCbCr转换为YCbCr颜色空间:LHY、LHCb、LHCr:Step 2: Convert the intermediate frequency parts LHr, LHg, and LHb of the obtained RGB color space into YCbCr color space: LHY, LHCb, and LHCr through RGB2YCbCr:
[LHY,LHCb,LHCr]=RGB2YCbCr(LHr,LHg,LHb) (27)[LHY,LHCb,LHCr]=RGB2YCbCr(LHr,LHg,LHb) (27)
步骤3:对LHCb(垂直分量的蓝色色度分量)和LHCr(垂直分量的红色色度分量)进行小波变换和奇异值分解:Step 3: Perform wavelet transform and singular value decomposition on LHCb (blue chroma component of vertical component) and LHCr (red chroma component of vertical component):
[UCb,SCb,VCb]=SVD(DWT(LHCb)) (28)[UCb,SCb,VCb]=SVD(DWT(LHCb)) (28)
[UCr,SCr,VCr]=SVD(DWT(LHCr)) (29)[UCr,SCr,VCr]=SVD(DWT(LHCr)) (29)
其中,UCb、SCb、VCb分别为LHCb的左奇异值分量、特征奇异值分量、右奇异值分量;UCr、SCr、VCr分别为LHCr的左奇异值分量、特征奇异值分量、右奇异值分量。Among them, UCb, SCb, and VCb are respectively the left singular value component, characteristic singular value component, and right singular value component of LHCb; UCr, SCr, and VCr are respectively the left singular value component, characteristic singular value component, and right singular value component of LHCr.
步骤4:将步骤1中的Cen_u和Cen_v分别嵌入到LHCb的奇异值分量SCb和LHCr的奇异值分量SCr中:Step 4: Embed Cen_u and Cen_v in step 1 into the singular value component SCb of LHCb and the singular value component SCr of LHCr respectively:
SsCb=SCb+af·Cen_u (30)SsCb=SCb+af·Cen_u (30)
SsCr=SCr+af·Cen_v (31)SsCr=SCr+af·Cen_v (31)
其中af为水印嵌入强度,由灰狼优化算法寻优得到。where af is the watermark embedding strength, which is obtained by the gray wolf optimization algorithm.
步骤5:对嵌入水印的奇异值SsCb和SsCr进行奇异值分解:Step 5: Perform singular value decomposition on the singular values SsCb and SsCr embedded in the watermark:
[U1Cb,S1Cb,V1Cb]=SVD(SsCb) (32)[U1Cb,S1Cb,V1Cb]=SVD(SsCb) (32)
[U1Cr,S1Cr,V1Cr]=SVD(SsCr) (33)[U1Cr,S1Cr,V1Cr]=SVD(SsCr) (33)
步骤6:对得到的奇异值进行逆变换得到包含水印的中频部分:Step 6: Perform inverse transformation on the obtained singular values to obtain the intermediate frequency part containing the watermark:
LH11Cb=UCb·S1Cb·VCb-1 (34)LH11Cb=UCb·S1Cb·VCb -1 (34)
LH11Cr=UCr·S1Cr·VCr-1 (35)LH11Cr=UCr·S1Cr·VCr -1 (35)
步骤7:对得到的中频部分进行逆小波变换:Step 7: Perform inverse wavelet transform on the obtained intermediate frequency part:
LHhCb=IDWT(LL1Cb,LH11Cb,HL1Cb,HH1Cb) (36)LHhCb=IDWT(LL1Cb,LH11Cb,HL1Cb,HH1Cb) (36)
LHhCr=IDWT(LL1Cr,LH11Cr,HL1Cr,HH1Cr) (37)LHhCr=IDWT(LL1Cr,LH11Cr,HL1Cr,HH1Cr) (37)
步骤8:对得到的YCbCr颜色空间的中频部分LHhCb、LHhCr通过YCbCr2RGB转换为RGB颜色空间:Step 8: Convert the intermediate frequency parts LHhCb and LHhCr of the obtained YCbCr color space into RGB color space through YCbCr2RGB:
[LH1r,LH1g,LH1b]=YCbCr2RGB(LH1Y,LHhCb,LHhCr) (38)[LH1r,LH1g,LH1b]=YCbCr2RGB(LH1Y,LHhCb,LHhCr) (38)
步骤9:对重组的中频部分LH1进行逆小波变换得到嵌入水印的宿主图像:Step 9: Perform inverse wavelet transform on the reorganized intermediate frequency part LH1 to obtain the host image with embedded watermark:
IW=IDWT(LL,LH1,HL,HH) (39)IW=IDWT(LL,LH1,HL,HH) (39)
(3)水印的提取过程:(3) Watermark extraction process:
步骤1:将嵌入水印的图像IW进行小波分解:Step 1: Perform wavelet decomposition on the image IW with embedded watermark:
[LLE,LHE,HLE,HHE]=DWT(IW) (40)[LLE,LHE,HLE,HHE]=DWT(IW) (40)
步骤2:将得到的RGB颜色空间的中频部分LHEr、LHEg、LHEb通过RGB2YCbCr转换为YCbCr颜色空间:LHEY、LHECb、LHECr:Step 2: Convert the mid-frequency parts LHEr, LHEg, and LHEb of the obtained RGB color space into YCbCr color space through RGB2YCbCr: LHEY, LHECb, LHECr:
[LHEY,LHECb,LHECr]=RGB2YCbCr(LHEr,LHEg,LHEb) (41)[LHEY,LHECb,LHECr]=RGB2YCbCr(LHEr,LHEg,LHEb) (41)
步骤3:对LHECb(垂直分量的蓝色色度分量)和LHECr(垂直分量的红色色度分量)进行小波变换和奇异值分解:Step 3: Perform wavelet transform and singular value decomposition on LHECb (blue chroma component of vertical component) and LHECr (red chroma component of vertical component):
[U2Cb,S2Cb,V2Cb]=SVD(DWT(LHECb)) (42)[U2Cb,S2Cb,V2Cb]=SVD(DWT(LHECb)) (42)
[U2Cr,S2Cr,V2Cr]=SVD(DWT(LHECr)) (43)[U2Cr,S2Cr,V2Cr]=SVD(DWT(LHECr)) (43)
步骤4:将得到的奇异值与之前的特征向量结合得到含水印的奇异值SssCb和SssCr:Step 4: Combine the obtained singular values with the previous feature vectors to obtain the watermarked singular values SssCb and SssCr:
SssCb=U1Cb·S2Cb·V1Cb-1 (44)SssCb=U1Cb·S2Cb·V1Cb -1 (44)
SssCr=U1Cr·S2Cr·V1Cr-1 (45)SssCr=U1Cr·S2Cr·V1Cr -1 (45)
步骤5:从SssCb和SssCr中分别提取CEN_u和CEN_v,最终得到提取出的加密图像,然后进行逆奇异值变换和逆小波变换得到CEN:Step 5: Extract CEN_u and CEN_v from SssCb and SssCr respectively, and finally obtain the extracted encrypted image, and then perform inverse singular value transform and inverse wavelet transform to obtain CEN:
CEN_u=(SssCb-SCb)/af (46)CEN_u=(SssCb-SCb)/af (46)
CEN_v=(SssCr-SCr)/af (47)CEN_v=(SssCr-SCr)/af (47)
CEN=IDWT(ISVD(CEN_u+CEN_v)) (48)CEN=IDWT(ISVD(CEN_u+CEN_v)) (48)
步骤6:水印图像的解密:利用三叉树技术对被提取的加密图像CEN进行解密运算得到解密水印图像Fi(i=1,2,3):Step 6: Decryption of the watermark image: Use ternary tree technology to decrypt the extracted encrypted image CEN to obtain the decrypted watermark image Fi (i=1,2,3):
F1,F2,F3=Decrypt(CEN) (49)F 1 ,F 2 ,F 3 =Decrypt(CEN) (49)
步骤7:鲁棒性测试:对嵌入水印的宿主图像进行各种攻击测试,通过计算MSE(均方值)、PSNR(峰值信噪比)、CC(相关系数)值,评价从嵌入水印后被攻击的宿主图像中提取的水印图像的不可见性以及鲁棒性。并计算每次迭代过程的适应度函数值。Step 7: Robustness test: Conduct various attack tests on the host image with embedded watermark. By calculating MSE (mean square value), PSNR (peak signal-to-noise ratio), and CC (correlation coefficient) values, evaluate the impact of the attack on the host image after embedding the watermark. Invisibility and robustness of watermarked images extracted from the host image of the attack. And calculate the fitness function value of each iteration process.
为了验证方法的有效性,对输入四幅彩色图像的加解密过程给出实验结果。In order to verify the effectiveness of the method, experimental results are given for the encryption and decryption process of inputting four color images.
图1(a)为本发明提供的彩色多水印嵌入及加密原理示意图。首先将彩色宿主图像IH进行小波变换,将得到的RGB颜色空间的中频部分LHr、LHg、LHb通过RGB2YCbCr转换为YCbCr颜色空间:LHY、LHCb、LHCr;对LHCb(垂直分量的蓝色色度分量)和LHCr(垂直分量的红色色度分量)进行奇异值分解(SVD);然后将步骤1中的Cen_u和Cen_v分别嵌入到LHCb的奇异值分量SCb和LHCr的奇异值分量SCr中;然后通过逆奇异值变换和逆小波变换就可以得到嵌入水印后的宿主图像IW。图1(b)为水印的提取过程:首先将嵌入水印的图像IW进行小波分解,将得到的RGB颜色空间的中频部分LHEr、LHEg、LHEb通过RGB2YCbCr转换为YCbCr颜色空间:LHEY、LHECb、LHECr;对LHECb(垂直分量的蓝色色度分量)和LHECr(垂直分量的红色色度分量)进行奇异值分解(SVD);将得到的奇异值与之前的特征向量结合得到含水印的奇异值SssCb和SssCr;从SssCb和SssCr中分别提取CEN_u和CEN_v,最终得到提取出的加密图像CEN;利用三叉树技术对被提取的加密图像CEN进行解密运算得到解密水印图像Fi。Figure 1(a) is a schematic diagram of the principle of color multi-watermark embedding and encryption provided by the present invention. First, the color host image IH is subjected to wavelet transformation, and the intermediate frequency parts LHr, LHg, and LHb of the RGB color space are converted into the YCbCr color space through RGB2YCbCr: LHY, LHCb, LHCr; for LHCb (the blue chroma component of the vertical component) and LHCr (the red chromaticity component of the vertical component) is subjected to singular value decomposition (SVD); then Cen_u and Cen_v in step 1 are embedded into the singular value component SCb of LHCb and the singular value component SCr of LHCr respectively; then through the inverse singular value Transform and inverse wavelet transform can obtain the host image IW with embedded watermark. Figure 1(b) shows the watermark extraction process: first, the image IW embedded with the watermark is decomposed by wavelet, and the obtained intermediate frequency parts LHEr, LHEg, and LHEb of the RGB color space are converted into YCbCr color space: LHEY, LHECb, LHECr through RGB2YCbCr; Perform singular value decomposition (SVD) on LHECb (the blue chroma component of the vertical component) and LHECr (the red chroma component of the vertical component); combine the obtained singular values with the previous eigenvectors to obtain the watermarked singular values SssCb and SssCr ; Extract CEN_u and CEN_v from SssCb and SssCr respectively, and finally obtain the extracted encrypted image CEN; use ternary tree technology to decrypt the extracted encrypted image CEN to obtain the decrypted watermark image Fi .
图2是灰狼优化算法寻找最优嵌入因子的收敛历史示意图。可以看到在第6次迭代之后,目标函数开始收敛到最大值。说明灰狼优化算法的寻优效率相对较高。Figure 2 is a schematic diagram of the convergence history of the Gray Wolf optimization algorithm to find the optimal embedding factor. It can be seen that after the 6th iteration, the objective function begins to converge to the maximum value. This shows that the optimization efficiency of the gray wolf optimization algorithm is relatively high.
图3(a)-3(c)是三幅原始彩色水印图像(大小为256×256×3),图3(d)和图3(e)分别为原始彩色自然宿主图像Lena(大小为512×512×3)和原始彩色医学宿主图像Cell(大小为512×512×3)。Figures 3(a)-3(c) are three original color watermark images (size 256×256×3), Figure 3(d) and Figure 3(e) are the original color natural host image Lena (size 512 ×512×3) and the original color medical host image Cell (size is 512×512×3).
由图4可以看出,彩色水印图像的信息都被加密,且被加密为一个大小为256×256的灰度图像。As can be seen from Figure 4, the information of the color watermark image is encrypted and encrypted into a grayscale image with a size of 256×256.
图5(a)和图5(b)分别为嵌入水印后的宿主图像Lena和Cell,可以发现仅仅通过肉眼是看不出他们与原始宿主图像有任何区别的。为了方便,本发明只展示了在无攻击下本方案从图5(a)中提取的水印图像(如图5(c)-(e))。Figure 5(a) and Figure 5(b) show the host images Lena and Cell respectively after embedding watermarks. It can be found that there is no difference between them and the original host images just through the naked eye. For convenience, the present invention only shows the watermark image extracted from Figure 5(a) by this scheme without attack (Figure 5(c)-(e)).
为了验证本发明中水印的鲁棒性,分别进行了多种攻击实验,为了简洁,本说明中只展示了其中常见的三种攻击。In order to verify the robustness of the watermark in the present invention, various attack experiments were conducted. For the sake of simplicity, this description only shows three common attacks.
图6(a)为受到强度为0.2的高斯噪声攻击的嵌入水印后的宿主Lena图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图6(b)-(d))。图6(e)为受到强度为0.2的高斯噪声攻击的嵌入水印后的宿主Cell图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图6(f)-(h))。Figure 6(a) shows the host Lena image with embedded watermark attacked by Gaussian noise with a strength of 0.2, and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers (Figure 6(b)-(d)). Figure 6(e) shows the host Cell image after the watermark was embedded and attacked by Gaussian noise with a strength of 0.2, and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers (Figure 6(f)-(h)).
图7(a)为受到强度为50%的剪切攻击的嵌入水印后的宿主Lena图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图7(b)-(d))。图7(e)为受到受50%的剪切攻击的嵌入水印后的宿主Cell图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图7(f)-(h))。Figure 7(a) shows the host Lena image after embedding watermarks and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers (Figure 7(b)-(d)) that were subjected to a shearing attack with a strength of 50%. Figure 7(e) shows the host Cell image after embedding watermarks and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers that are subject to a 50% clipping attack (Figure 7(f)-(h)).
图8(a)为经过旋转15°的旋转攻击的嵌入水印后的宿主Lena图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图7(b)-(d))。图8(e)为经过旋转15°的旋转攻击的嵌入水印后的宿主Cell图像以及对应的提取及解密水印Baboon、Fruits、Peppers(如图8(f)-(h))。Figure 8(a) shows the watermark-embedded host Lena image after a rotation attack of 15° and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers (Figure 7(b)-(d)). Figure 8(e) shows the host Cell image embedded with watermark after a rotation attack of 15° and the corresponding extracted and decrypted watermarks Baboon, Fruits, and Peppers (Figure 8(f)-(h)).
根据图6-8的不同攻击下的提取解密结果可以发现,即使嵌入水印后的图像被很大程度的噪声所污染或部分信息缺失,本发明任然能够提取并解密出可以识别的原始彩色图像,验证了本系统的可行性,满足了实际应用中的多种需求。According to the extraction and decryption results under different attacks in Figures 6-8, it can be found that even if the image after embedding the watermark is contaminated by a large degree of noise or part of the information is missing, the present invention can still extract and decrypt the original color image that can be identified , verified the feasibility of this system and met various needs in practical applications.
尽管上面结合图示对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the illustrations, the present invention is not limited to the above-mentioned specific embodiments. The above-mentioned specific embodiments are only illustrative and not restrictive. Those of ordinary skill in the art will not Under the inspiration of the present invention, many modifications can be made without departing from the spirit of the present invention, and these all fall within the protection of the present invention.
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。Those skilled in the art can understand that the accompanying drawing is only a schematic diagram of a preferred embodiment, and the above-mentioned serial numbers of the embodiments of the present invention are only for description and do not represent the advantages and disadvantages of the embodiments.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within the range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910925831.2A CN110728614B (en) | 2019-09-27 | 2019-09-27 | Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910925831.2A CN110728614B (en) | 2019-09-27 | 2019-09-27 | Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110728614A CN110728614A (en) | 2020-01-24 |
CN110728614B true CN110728614B (en) | 2023-09-19 |
Family
ID=69218519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910925831.2A Active CN110728614B (en) | 2019-09-27 | 2019-09-27 | Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110728614B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111984943B (en) * | 2020-07-29 | 2023-08-22 | 南京信息工程大学 | A DWT-SVD Digital Watermarking Method Based on Artificial Bee Colony Algorithm |
CN112132731B (en) * | 2020-09-10 | 2023-12-05 | 郑州轻工业大学 | DWT-SVD domain self-adaptive robust watermark extraction method adopting preset PSNR |
WO2022094824A1 (en) * | 2020-11-05 | 2022-05-12 | Huawei Technologies Co., Ltd. | Wavelet transform based deep high dynamic range imaging |
CN113129197B (en) * | 2021-04-08 | 2024-01-12 | 陕西科技大学 | Digital watermarking algorithm for solving false positive problem based on two-stage singular value decomposition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1408153A (en) * | 1999-07-23 | 2003-04-02 | 英国电讯有限公司 | Data distribution |
CN109544436A (en) * | 2018-10-26 | 2019-03-29 | 天津大学 | EVD-HG and DWT-SVD self-adapting watermarking image processing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7742619B2 (en) * | 2005-12-21 | 2010-06-22 | Texas Instruments Incorporated | Image watermarking based on sequency and wavelet transforms |
US20080288297A1 (en) * | 2007-05-14 | 2008-11-20 | Samson Koo | Hedged financial product having a guaranteed minimum withdrawal benefit and method of generating the same |
-
2019
- 2019-09-27 CN CN201910925831.2A patent/CN110728614B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1408153A (en) * | 1999-07-23 | 2003-04-02 | 英国电讯有限公司 | Data distribution |
CN109544436A (en) * | 2018-10-26 | 2019-03-29 | 天津大学 | EVD-HG and DWT-SVD self-adapting watermarking image processing method |
Non-Patent Citations (3)
Title |
---|
Yonggang Su.etc."Optical encryption scheme for multiple color images using complete trinary tree structure".《Optics and Lasers in Engineering》.2017,全文. * |
王佳欣."不可见性和鲁棒性均衡的彩色数字水印算法".《计算机仿真》.2014,全文. * |
谷帆 ; 唐晨 ; 苏永钢 ; 程佳佳 ; 李碧原 ; 雷振坤 ; .基于离散余弦变换与二维Ushiki混沌的图像加密.光学技术.2017,(第04期),全文. * |
Also Published As
Publication number | Publication date |
---|---|
CN110728614A (en) | 2020-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Loan et al. | Secure and robust digital image watermarking using coefficient differencing and chaotic encryption | |
CN110728614B (en) | Grey wolf optimization algorithm and full three-tree structure wavelet domain color multi-watermarking method | |
CN111583088B (en) | A Robust Watermarking Method for Self-Embedding Fully Blind Color Images Based on Multiple Transform Domains | |
Ghosal et al. | Binomial transform based fragile watermarking for image authentication | |
CN109544436B (en) | EVD-HG and DWT-SVD Adaptive Watermarking Image Processing Method | |
Rinki et al. | A novel matrix multiplication based LSB substitution mechanism for data security and authentication | |
CN114449359A (en) | Block chain and NSCT-SVD video zero watermark copyright protection method | |
Abbas et al. | Security and imperceptibility improving of image steganography using pixel allocation and random function techniques | |
CN114359012B (en) | Robust combined domain color image zero watermark embedding and extracting method | |
Czaplewski | Joint fingerprinting and decryption method for color images based on quaternion rotation with cipher quaternion chaining | |
Goswami et al. | Hybrid DCT-DWT digital image Steganography | |
Brar et al. | Double layer image security system using encryption and steganography | |
Yang | Robust high-capacity watermarking scheme based on Euclidean norms and quick coefficient alignment | |
Sharma et al. | Secure data hiding scheme using firefly algorithm with hidden compression | |
Sheth | Snake and ladder based algorithm for steganographic application of specific streamline bits on prime gap method | |
Fkirin et al. | A new approach for colored watermarking image into gray scale image using wavelet fusion | |
Maheshwari et al. | Robust multi-modal watermarking using visually encrypted watermark | |
Khan et al. | A New Data Hiding Approach in Images for Secret Data Communication with Steganography | |
Rohith et al. | Reversible data embedding scheme in encrypted image using Arnold transform for satellite images | |
Gangarde et al. | Authenticate audio video-crypto invisible watermarking approach for enhancing hidden information security and robustness | |
Pan et al. | DCT-based watermarking for color images via two-dimensional linear discriminant analysis | |
Lee et al. | A high robust and blind image watermarking using Arnold transform mapping in the DCT domain of YCbCr color space | |
Negrat et al. | Variable length encoding in multiple frequency domain steganography | |
Prudvi et al. | A weight factor based secure invisible image watermarking using Discrete Cosine Transform | |
Hasan et al. | Performance Analysis of Least Significant Bit Based Watermarking Technique Under Various Types of Attacks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |