CN110726709A - Preparation method of secondary deep graphene oxide loaded nanogold composite SERS enhanced substrate - Google Patents
Preparation method of secondary deep graphene oxide loaded nanogold composite SERS enhanced substrate Download PDFInfo
- Publication number
- CN110726709A CN110726709A CN201911031331.0A CN201911031331A CN110726709A CN 110726709 A CN110726709 A CN 110726709A CN 201911031331 A CN201911031331 A CN 201911031331A CN 110726709 A CN110726709 A CN 110726709A
- Authority
- CN
- China
- Prior art keywords
- solution
- graphene oxide
- sers
- preparation
- composite sers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 31
- 239000000758 substrate Substances 0.000 title claims abstract description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 26
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000000243 solution Substances 0.000 claims abstract description 26
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 24
- HGUFODBRKLSHSI-UHFFFAOYSA-N 2,3,7,8-tetrachloro-dibenzo-p-dioxin Chemical compound O1C2=CC(Cl)=C(Cl)C=C2OC2=C1C=C(Cl)C(Cl)=C2 HGUFODBRKLSHSI-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 14
- 239000002253 acid Substances 0.000 claims abstract description 14
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims abstract description 14
- 239000001509 sodium citrate Substances 0.000 claims abstract description 14
- 239000007800 oxidant agent Substances 0.000 claims abstract description 12
- 230000001590 oxidative effect Effects 0.000 claims abstract description 12
- 239000010931 gold Substances 0.000 claims abstract description 10
- 229910052737 gold Inorganic materials 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000003756 stirring Methods 0.000 claims abstract description 8
- 230000007704 transition Effects 0.000 claims abstract description 7
- 239000008367 deionised water Substances 0.000 claims abstract description 6
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000007864 aqueous solution Substances 0.000 claims abstract description 4
- 239000000523 sample Substances 0.000 claims abstract description 4
- 230000000694 effects Effects 0.000 claims description 6
- 238000001237 Raman spectrum Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 230000003595 spectral effect Effects 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000010438 heat treatment Methods 0.000 abstract 1
- 238000004611 spectroscopical analysis Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 7
- 125000000524 functional group Chemical group 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- 238000000479 surface-enhanced Raman spectrum Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/198—Graphene oxide
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法。首先将氧化石墨烯GO溶液、去离子水、双氧水氧化剂混合加热制成过渡溶液;再加入双氧水氧化剂,加热搅拌制成ro‑GO溶液;再向制得的ro‑GO溶液中加入柠檬酸钠水溶液和氯金酸,继续加热搅拌后获得ro‑GO/AuNPs复合SERS增强基底;利用2,3,7,8‑TCDD作为拉曼探针分子对ro‑GO/AuNPs复合SERS增强基底进行拉曼信号测试;通过调节柠檬酸钠与氯金酸的用量比,制备不同纳米尺寸和负载密度的复合SERS增强基底。该方法能够使氧化石墨烯表面负载AuNPs数量增加,适合用于2,3,7,8‑TCDD的SERS分析。
The invention discloses a preparation method of a secondary deep graphene oxide loaded nano-gold composite SERS enhanced substrate. First, the graphene oxide GO solution, deionized water, and hydrogen peroxide oxidant are mixed and heated to form a transition solution; then hydrogen peroxide oxidant is added, and the ro-GO solution is prepared by heating and stirring; and sodium citrate aqueous solution is added to the obtained ro-GO solution. and chloroauric acid, continue to heat and stir to obtain ro‑GO/AuNPs composite SERS enhanced substrate; use 2,3,7,8‑TCDD as Raman probe molecule to conduct Raman signal on ro‑GO/AuNPs composite SERS enhanced substrate Test: By adjusting the dosage ratio of sodium citrate to chloroauric acid, composite SERS-enhanced substrates with different nanometer sizes and loading densities were prepared. This method can increase the number of AuNPs supported on the surface of graphene oxide, which is suitable for SERS analysis of 2, 3, 7, 8‑TCDD.
Description
技术领域technical field
本发明涉及表面增强拉曼光谱应用技术领域,尤其涉及一种二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法。The invention relates to the technical field of surface-enhanced Raman spectroscopy, in particular to a preparation method of a secondary deep graphene oxide-supported nano-gold composite SERS enhanced substrate.
背景技术Background technique
石墨烯(Graphene,Gr)是一种由碳原子以SP2杂化组成的二维碳纳米材料。由Gr带来的石墨烯介导拉曼增强(Graphene-mediated Enhanced Raman scattering,GERS)效应已被发现,由于其优越的物理结构,使得其具有独特的光学、力学性质,被认为是一种革命性的材料。近年来,Gr负载纳米贵金属的“Gr-MNP”型复合材料颇受关注,该类型的复合材料同时具有金属纳米颗粒(Metal Nanopraticles,MNPs)的表面增强拉曼(Surface-enhancedRaman Spectroscopy,SERS)效应以及Gr的GERS协同效应,利于提高目标物的分析灵敏度和稳定性。Graphene (Gr) is a two-dimensional carbon nanomaterial composed of carbon atoms hybridized with SP 2 . The Graphene-mediated Enhanced Raman scattering (GERS) effect brought by Gr has been discovered. Due to its superior physical structure, it has unique optical and mechanical properties, which is considered to be a revolutionary sexual material. In recent years, the "Gr-MNP" type composites of Gr-loaded nano-precious metals have attracted much attention. This type of composites also has the surface-enhanced Raman Spectroscopy (SERS) effect of metal nanoparticles (MNPs). As well as the GERS synergistic effect of Gr, it is beneficial to improve the analytical sensitivity and stability of the target.
然而,在该种材料的制备中,如何提高Gr的负载效率以及优化MNP的纳米形态,对Gr-MNP复合材料的SERS效应影响较大,而现有技术中并没有相应的解决方案。However, in the preparation of this material, how to improve the loading efficiency of Gr and optimize the nano-morphology of MNP has a great impact on the SERS effect of the Gr-MNP composite, and there is no corresponding solution in the prior art.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法,该方法能够使氧化石墨烯表面AuNPs负载密度增加,从而提高氧化石墨烯表面活性官能团数量。The purpose of the present invention is to provide a preparation method of a secondary deep graphene oxide supported nano-gold composite SERS enhanced substrate, which can increase the loading density of AuNPs on the surface of graphene oxide, thereby increasing the number of active functional groups on the surface of graphene oxide.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法,所述方法包括:A preparation method of a secondary deep graphene oxide-loaded nano-gold composite SERS enhanced substrate, the method comprising:
步骤1、将一定量的氧化石墨烯GO溶液、去离子水以及双氧水氧化剂混合加热制成过渡溶液;Step 1. Mix and heat a certain amount of graphene oxide GO solution, deionized water and hydrogen peroxide oxidant to prepare a transition solution;
步骤2、取部分过渡溶液再加入一定量的双氧水氧化剂,继续加热搅拌制成二次深度氧化石墨烯ro-GO溶液;
步骤3、再向制得的ro-GO溶液中加入一定比例的柠檬酸钠水溶液和氯金酸,继续加热搅拌后获得二次深度氧化石墨烯负载纳米金ro-GO/AuNPs复合SERS增强基底;
步骤4、利用2,3,7,8-TCDD作为拉曼探针分子对制得的ro-GO/AuNPs复合SERS增强基底进行拉曼信号测试,并获取相应的拉曼光谱数据;
步骤5、进一步通过调节柠檬酸钠与氯金酸的用量比,制备不同纳米尺寸和负载密度的复合SERS增强基底。
由上述本发明提供的技术方案可以看出,上述方法能够使氧化石墨烯表面AuNPs负载密度增加,从而提高氧化石墨烯表面活性官能团数量,进而提高SERS增强基底的性能。It can be seen from the technical solution provided by the present invention that the above method can increase the loading density of AuNPs on the surface of graphene oxide, thereby increasing the number of active functional groups on the surface of graphene oxide, thereby improving the performance of the SERS-enhanced substrate.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without any creative effort.
图1为本发明实施例提供的二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法流程示意图;1 is a schematic flowchart of a preparation method of a secondary deep graphene oxide-supported nano-gold composite SERS enhanced substrate provided in an embodiment of the present invention;
图2为本发明实施例所提供的不同浓度2,3,7,8-TCDD的SERS光谱示意图;2 is a schematic diagram of the SERS spectra of 2,3,7,8-TCDD with different concentrations provided in an embodiment of the present invention;
图3为本发明实施例所述不同比例的柠檬酸钠与氯金酸用量制备得到复合基底对2,3,7,8-TCDD的SERS分析示意图;3 is a schematic diagram of the SERS analysis of 2, 3, 7, 8-TCDD by a composite substrate prepared with different proportions of sodium citrate and chloroauric acid according to the embodiment of the present invention;
图4为本发明实施例所述不同比例的柠檬酸钠与氯金酸用量制备得到复合基底对2,3,7,8-TCDD在I1207处的稳定(0-180天)趋势图。4 is a trend diagram of the stability (0-180 days) of the composite substrate prepared by the dosage of sodium citrate and chloroauric acid in different proportions according to the embodiment of the present invention to 2,3,7,8-TCDD at I 1207 .
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
下面将结合附图对本发明实施例作进一步地详细描述,如图1所示为本发明实施例提供的二次深度氧化石墨烯负载纳米金复合SERS增强基底的制备方法流程示意图,所述方法包括:The embodiments of the present invention will be described in further detail below with reference to the accompanying drawings. FIG. 1 is a schematic flowchart of a method for preparing a secondary deep graphene oxide-supported nano-gold composite SERS enhanced substrate provided by the embodiments of the present invention, and the method includes: :
步骤1、将一定量的氧化石墨烯GO溶液、去离子水以及双氧水氧化剂混合加热制成过渡溶液;Step 1. Mix and heat a certain amount of graphene oxide GO solution, deionized water and hydrogen peroxide oxidant to prepare a transition solution;
在该步骤中,各组分的具体用量可以为:In this step, the specific consumption of each component can be:
8mL的GO溶液、50mL的去离子水以及5-8mL的双氧水氧化剂。8 mL of GO solution, 50 mL of deionized water, and 5-8 mL of hydrogen peroxide oxidant.
步骤2、取部分过渡溶液再加入一定量的双氧水氧化剂,继续加热搅拌制成二次深度氧化石墨烯ro-GO溶液;
在步骤2中,第二次氧化所使用的双氧水氧化剂用量为5mL。In
步骤3、再向制得的ro-GO溶液中加入一定比例的柠檬酸钠水溶液和氯金酸,继续加热搅拌后获得二次深度氧化石墨烯负载纳米金ro-GO/AuNPs复合SERS增强基底;
步骤4、利用2,3,7,8-TCDD作为拉曼探针分子对制得的ro-GO/AuNPs复合SERS增强基底进行拉曼信号测试,并获取相应的拉曼光谱数据;
所述步骤4的过程具体为:The process of
向10μL的2,3,7,8-四氯二苯并对二恶英(2,3,7,8-TCDD)中加入600μL ro-GO/AuNPs复合SERS增强基底;To 10 μL of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), 600 μL of ro-GO/AuNPs composite SERS enhanced substrate was added;
再加入80uL硝酸,振荡60s后对其进行拉曼扫描,具体参数为:扫描时间10s、扫描次数2、平滑参数1、扫描功率为100mw;Then add 80uL of nitric acid, and conduct Raman scanning after shaking for 60s. The specific parameters are: scanning time 10s,
然后采集1000-2000cm-1范围的拉曼光谱数据,如图2所示为本发明实施例所提供的不同浓度2,3,7,8-TCDD的SERS光谱示意图,从图2中可知:两次深度氧化使得氧化石墨烯表面负载AuNPs数量增加,对2,3,7,8-TCDD的拉曼信号增强效果也得到提高。Then collect Raman spectral data in the range of 1000-2000 cm -1 , as shown in FIG. 2 , which is a schematic diagram of the SERS spectra of 2, 3, 7, 8-TCDD with different concentrations provided by the embodiment of the present invention. It can be seen from FIG. 2 that the two The sub-deep oxidation increases the number of AuNPs loaded on the surface of graphene oxide, and the Raman signal enhancement effect on 2,3,7,8-TCDD is also improved.
步骤5、进一步通过调节柠檬酸钠与氯金酸的用量比,制备不同纳米尺寸和负载密度的复合SERS增强基底。
如图3所示为本发明实施例所述不同比例的柠檬酸钠与氯金酸用量制备得到复合基底对2,3,7,8-TCDD的SERS分析示意图,如图4所示为本发明实施例所述不同比例的柠檬酸钠与氯金酸用量制备得到复合基底对2,3,7,8-TCDD在I1207处的稳定(0~180天)趋势图,结合图3和4:Figure 3 is a schematic diagram showing the SERS analysis of 2,3,7,8-TCDD by a composite substrate prepared with different proportions of sodium citrate and chloroauric acid according to the embodiment of the present invention, and Figure 4 is a schematic diagram of the present invention The different proportions of sodium citrate and chloroauric acid described in the examples were prepared to obtain the stable (0-180 days) trend diagram of the composite substrate to 2,3,7,8-TCDD at I 1207 , combined with Figures 3 and 4:
增强稳定性在180天内,特征峰强度I1207下降12.9%。当调节柠檬酸钠和氯金酸的用量比为7:12时,所制备的ro-GO/AuNPs复合SERS增强基底对2,3,7,8-TCDD具有最大的SERS增强效果。Enhanced stability The characteristic peak intensity I 1207 decreased by 12.9% within 180 days. When the dosage ratio of sodium citrate and chloroauric acid was adjusted to 7:12, the prepared ro-GO/AuNPs composite SERS-enhancing substrate had the greatest SERS-enhancing effect on 2,3,7,8-TCDD.
值得注意的是,本发明实施例中未作详细描述的内容属于本领域专业技术人员公知的现有技术。It should be noted that the content not described in detail in the embodiments of the present invention belongs to the prior art known to those skilled in the art.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。The above description is only a preferred embodiment of the present invention, but the protection scope of the present invention is not limited to this. Substitutions should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911031331.0A CN110726709A (en) | 2019-10-28 | 2019-10-28 | Preparation method of secondary deep graphene oxide loaded nanogold composite SERS enhanced substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911031331.0A CN110726709A (en) | 2019-10-28 | 2019-10-28 | Preparation method of secondary deep graphene oxide loaded nanogold composite SERS enhanced substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110726709A true CN110726709A (en) | 2020-01-24 |
Family
ID=69222286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911031331.0A Pending CN110726709A (en) | 2019-10-28 | 2019-10-28 | Preparation method of secondary deep graphene oxide loaded nanogold composite SERS enhanced substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110726709A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102649089A (en) * | 2011-02-24 | 2012-08-29 | 中国科学院上海应用物理研究所 | Preparation method of nanogold-tannin-graphene oxide nano composites |
CN103521780A (en) * | 2013-11-04 | 2014-01-22 | 中国农业科学院农业质量标准与检测技术研究所 | Preparation method and application of oxidized graphene load gold nanoparticle sol with surface-enhanced Raman spectrum activity |
CN103926234A (en) * | 2014-04-17 | 2014-07-16 | 福建出入境检验检疫局检验检疫技术中心 | Single-layer nanogold surface-enhanced Raman activity substrate and preparation method thereof |
CN108459010A (en) * | 2018-05-17 | 2018-08-28 | 中国农业科学院农业质量标准与检测技术研究所 | The detection method of Clenbuterol in a kind of animals urine based on liquid-liquid extraction-Surface enhanced Raman spectroscopy |
CN108572167A (en) * | 2018-04-25 | 2018-09-25 | 中国农业科学院农业质量标准与检测技术研究所 | A method for preparing a SERS substrate for highly sensitive analysis of 2,3,7,8-TCDD |
CN109294234A (en) * | 2018-09-26 | 2019-02-01 | 北京市政建设集团有限责任公司 | It is a kind of reusable based on graphene-noble metal nano particles compound hybrid film and preparation method thereof |
-
2019
- 2019-10-28 CN CN201911031331.0A patent/CN110726709A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102649089A (en) * | 2011-02-24 | 2012-08-29 | 中国科学院上海应用物理研究所 | Preparation method of nanogold-tannin-graphene oxide nano composites |
CN103521780A (en) * | 2013-11-04 | 2014-01-22 | 中国农业科学院农业质量标准与检测技术研究所 | Preparation method and application of oxidized graphene load gold nanoparticle sol with surface-enhanced Raman spectrum activity |
CN103926234A (en) * | 2014-04-17 | 2014-07-16 | 福建出入境检验检疫局检验检疫技术中心 | Single-layer nanogold surface-enhanced Raman activity substrate and preparation method thereof |
CN108572167A (en) * | 2018-04-25 | 2018-09-25 | 中国农业科学院农业质量标准与检测技术研究所 | A method for preparing a SERS substrate for highly sensitive analysis of 2,3,7,8-TCDD |
CN108459010A (en) * | 2018-05-17 | 2018-08-28 | 中国农业科学院农业质量标准与检测技术研究所 | The detection method of Clenbuterol in a kind of animals urine based on liquid-liquid extraction-Surface enhanced Raman spectroscopy |
CN109294234A (en) * | 2018-09-26 | 2019-02-01 | 北京市政建设集团有限责任公司 | It is a kind of reusable based on graphene-noble metal nano particles compound hybrid film and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
施悦 等: "《环境氧化还原处理技术原理与应用》", 31 August 2013, 哈尔滨工业大学出版社 * |
王云海: "《环境有机化学》", 31 December 2015, 西安交通大学 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction | |
Gao et al. | Sub-nanometer sized Cu 6 (GSH) 3 clusters: one-step synthesis and electrochemical detection of glucose | |
Lu et al. | Charge state-dependent catalytic activity of [Au 25 (SC 12 H 25) 18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide | |
Abdullah et al. | Optimization of electrocatalyst performance of platinum–ruthenium induced with MXene by response surface methodology for clean energy application | |
Bai et al. | Direct preparation of well-dispersed graphene/gold nanorod composites and their application in electrochemical sensors for determination of ractopamine | |
Li et al. | Nitrogen doped carbon dots derived from natural seeds and their application for electrochemical sensing | |
Ensafi et al. | Graphene nanosheets functionalized with Nile blue as a stable support for the oxidation of glucose and reduction of oxygen based on redox replacement of Pd-nanoparticles via nickel oxide | |
Liu et al. | Facile one-pot preparation of Pd–Au/PEDOT/graphene nanocomposites and their high electrochemical sensing performance for caffeic acid detection | |
CN109108303B (en) | Preparation method of high-dispersity Pt-Cu alloy nanoparticles | |
Jiang et al. | Carbon nanodots as reductant and stabilizer for one-pot sonochemical synthesis of amorphous carbon-supported silver nanoparticles for electrochemical nonenzymatic H2O2 sensing | |
CN108441879B (en) | Preparation method and application of nanoporous nickel-molybdenum disulfide/graphene composite material | |
CN104368357B (en) | A kind of PdPtNi/C metal nano Catalysts and its preparation method and purposes | |
CN102088091A (en) | Carbon-carrying shell type copper-platinum catalyst for fuel cell and preparation method thereof | |
CN107598182A (en) | Gold nano grain molybdenum disulfide gold hypersensitive SERS base materials and preparation method | |
CN103933975A (en) | Preparation method of Pt-Ru alloy catalyst with high catalytic activity | |
Lin et al. | The effect of Sn content in Pt–SnO2/CNTs for methanol electro-oxidation | |
CN105277529A (en) | Preparation method of graphene oxide-Ag nano-particle Raman-enhanced substrate | |
CN103926234A (en) | Single-layer nanogold surface-enhanced Raman activity substrate and preparation method thereof | |
Wang et al. | A nanoflower shaped gold-palladium alloy on graphene oxide nanosheets with exceptional activity for electrochemical oxidation of ethanol | |
CN105327700A (en) | Method for preparing electrocatalysts through liquid-phase reduction of hydrogen at room temperature | |
CN105688763A (en) | Method for preparing platinum nano particle supported nitrogen-doped three-dimensional graphene aerogel via one-step method | |
CN114101665A (en) | Preparation method of silver-coated copper conductive powder | |
CN104733736B (en) | Supporting platinum-based copper nano particles catalyst of carbon and preparation method thereof | |
Li et al. | 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection | |
CN107243647A (en) | A kind of preparation method of Nanometer Copper colloidal sol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200124 |
|
RJ01 | Rejection of invention patent application after publication |