CN110718648A - In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material - Google Patents
In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material Download PDFInfo
- Publication number
- CN110718648A CN110718648A CN201910994576.7A CN201910994576A CN110718648A CN 110718648 A CN110718648 A CN 110718648A CN 201910994576 A CN201910994576 A CN 201910994576A CN 110718648 A CN110718648 A CN 110718648A
- Authority
- CN
- China
- Prior art keywords
- spin
- ito glass
- solution
- rpm
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 33
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 18
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 17
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 17
- 230000005525 hole transport Effects 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000463 material Substances 0.000 title claims abstract description 12
- 239000011521 glass Substances 0.000 claims abstract description 69
- 239000010410 layer Substances 0.000 claims abstract description 40
- 229920000144 PEDOT:PSS Polymers 0.000 claims abstract description 24
- 239000002346 layers by function Substances 0.000 claims abstract description 14
- 238000004528 spin coating Methods 0.000 claims abstract description 10
- 238000001308 synthesis method Methods 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 52
- 238000000137 annealing Methods 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 26
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 26
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 26
- 238000003756 stirring Methods 0.000 claims description 20
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 16
- 229960001701 chloroform Drugs 0.000 claims description 15
- LYQFWZFBNBDLEO-UHFFFAOYSA-M caesium bromide Chemical compound [Br-].[Cs+] LYQFWZFBNBDLEO-UHFFFAOYSA-M 0.000 claims description 14
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 10
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 10
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 9
- 239000003599 detergent Substances 0.000 claims description 6
- 239000000428 dust Substances 0.000 claims description 6
- ZERULLAPCVRMCO-UHFFFAOYSA-N Dipropyl sulfide Chemical compound CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 claims description 5
- 238000003848 UV Light-Curing Methods 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 5
- 239000003292 glue Substances 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 18
- 239000011368 organic material Substances 0.000 abstract description 5
- 238000004090 dissolution Methods 0.000 abstract description 2
- 229910010272 inorganic material Inorganic materials 0.000 abstract description 2
- 239000011147 inorganic material Substances 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 238000000746 purification Methods 0.000 abstract description 2
- 238000002834 transmittance Methods 0.000 abstract description 2
- 230000007423 decrease Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000001226 reprecipitation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000695 excitation spectrum Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本发明专利公开了一种基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,其使用多步旋涂的方法,在依次涂有PEDOT:PSS、CuI的ITO玻璃基底上原位合成发光层CsPbBr3钙钛矿量子点。本发明的多步旋涂原位合成技术为制备高性能的、高稳定性的全无机钙钛矿提供了一种新的方法,避免了使用传统合成方法合成之后再提纯、再溶解以及暴露在空气环境中使量子点光学性能等急速下降的问题;且通过优化钙钛矿发光二极管的各个功能层,用透光率高、电荷传输性能良好的无机材料代替常用的有机材料作为空穴传输层制备了高效的发光器件,解决了有机材料稳定性差的问题;且工艺简单、生产难度小、实用性强。
The patent of the present invention discloses a method for in-situ synthesis of perovskite quantum dot light-emitting diodes based on inorganic hole transport materials, which uses a multi-step spin coating method on an ITO glass substrate coated with PEDOT: PSS and CuI in sequence. In situ synthesis of light-emitting layer CsPbBr3 perovskite quantum dots. The multi-step spin-coating in-situ synthesis technology of the present invention provides a new method for preparing high-performance, high-stability all-inorganic perovskites, which avoids purification, re-dissolution and exposure to conventional synthesis methods after synthesis. The problem of rapid decline in the optical properties of quantum dots in the air environment; and by optimizing the various functional layers of perovskite light-emitting diodes, inorganic materials with high light transmittance and good charge transport properties are used instead of commonly used organic materials as hole transport layers. The high-efficiency light-emitting device is prepared, and the problem of poor stability of organic materials is solved; the process is simple, the production difficulty is small, and the practicability is strong.
Description
技术领域technical field
本发明属于发光二极管材料合成以及发光二极管器件制备领域,具体涉及基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法。The invention belongs to the field of light-emitting diode material synthesis and light-emitting diode device preparation, in particular to an in-situ synthesis and production method of a light-emitting diode based on an inorganic hole transport material perovskite quantum dot.
背景技术Background technique
随着照明和显示行业的快速发展,钙钛矿量子点作为发光材料的优势逐渐被发掘,并被予以应用。与传统的发光材料相比,钙钛矿量子点拥有更多优良特征,比如,激发光谱宽,发射光谱窄且对称,颜色可调,电子-空穴迁移率高从而能制作较高能量转换效率的光学器件等。而且以钙钛矿量子点为发光体的LED可以达到接近连续的发光光谱,这是其他种类LED 和萤光灯无法比拟的。当前,钙钛矿量子点CsPbX3(X=Cl,I,Br)的制备方法主要包括高温热注射法和室温重沉淀法。高温热注射法可以获得高产率、高结晶度的CsPbX3(X=Cl,I,Br)量子点产品,但需要在高温(140~160 ℃)及惰性气体环境下合成。室温重沉淀法可以在室温大气环境下合成CsPbX3(X=Cl,I,Br),但是,由于反应过于激烈和迅速,很难在动力学上控制其生长过程和进一步调节其发光性能。而以上合成方法应用到发光二极管中的方法为合成之后通过将产物溶于溶液并旋涂于器件上作为发光层,其工艺复杂,不利于大规模、商业化生产。在功能层的选择上,Ploy-TFB、Ploy-TPD多作为空穴传输层应用到量子点发光二极管中,不过作为有机材料,其对水、空气的敏感性仍是在量子点发光二极管发展路程上急需解决的问题。With the rapid development of the lighting and display industries, the advantages of perovskite quantum dots as light-emitting materials have been gradually discovered and applied. Compared with traditional light-emitting materials, perovskite quantum dots have more excellent characteristics, such as wide excitation spectrum, narrow and symmetrical emission spectrum, tunable color, high electron-hole mobility, which can produce higher energy conversion efficiency. optics, etc. Moreover, LEDs using perovskite quantum dots as light-emitting bodies can achieve a nearly continuous emission spectrum, which is unmatched by other types of LEDs and fluorescent lamps. At present, the preparation methods of perovskite quantum dots CsPbX 3 (X=Cl, I, Br) mainly include high temperature thermal injection method and room temperature reprecipitation method. High-temperature hot injection method can obtain CsPbX3 (X=Cl, I, Br) quantum dot products with high yield and high crystallinity, but it needs to be synthesized at high temperature (140-160 °C) and inert gas environment. The room temperature reprecipitation method can synthesize CsPbX 3 (X=Cl, I, Br) in the atmospheric environment at room temperature. However, it is difficult to control its growth process kinetically and further adjust its luminescence properties due to the excessively intense and rapid reaction. The above synthesis method is applied to the light-emitting diode by dissolving the product in a solution and spin-coating it on the device as a light-emitting layer after synthesis, which is complicated in process and is not conducive to large-scale and commercial production. In the selection of functional layers, Ploy-TFB and Ploy-TPD are mostly used as hole transport layers in quantum dot light-emitting diodes, but as organic materials, their sensitivity to water and air is still in the development of quantum dot light-emitting diodes. problems that need to be solved urgently.
发明内容SUMMARY OF THE INVENTION
为解决上述技术问题,本发明提供了一种基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,使用多步旋涂法原位合成全无机钙钛矿量子点,并在此基础上制备了以CuI作为空穴传输层的高效、稳定的钙钛矿量子点发光器件的方法。In order to solve the above technical problems, the present invention provides a method for in-situ synthesis of perovskite quantum dot light-emitting diodes based on inorganic hole transport materials. On this basis, a method for preparing high-efficiency and stable perovskite quantum dot light-emitting devices with CuI as the hole-transporting layer.
本发明技术方案是这样的,基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,其特征在于,其步骤如下:The technical solution of the present invention is as follows, based on the in-situ synthesis method of perovskite quantum dot light-emitting diodes based on inorganic hole transport materials, characterized in that the steps are as follows:
1) 取ITO玻璃依次放入装有去离子水+洗洁精、去离子水、丙酮、异丙醇的烧杯中,均使液面没过所有ITO玻璃,之后依次使用超声机超声15min。最后将清洗好的ITO玻璃浸入装有酒精的烧杯中保存备用。1) Take the ITO glass and put it into a beaker containing deionized water + detergent, deionized water, acetone, and isopropanol in turn, so that the liquid level does not cover all the ITO glass, and then use an ultrasonic machine to sonicate for 15 minutes. Finally, immerse the cleaned ITO glass in a beaker filled with alcohol and save it for later use.
2) 取出浸泡在酒精中的ITO玻璃,使用擦镜纸擦拭玻璃两面,直至无灰尘。擦拭好的ITO玻璃依次放入玻璃皿中,取下盖子置入紫外臭氧机中处理20min。2) Take out the ITO glass soaked in alcohol and wipe both sides of the glass with lens paper until there is no dust. The wiped ITO glass was placed in a glass dish in turn, and the lid was removed and placed in an ultraviolet ozone machine for 20 min.
3) 取1.25~2.5mmol PbBr溶解于10mL二甲基甲酰胺中,使用磁力搅拌器在800rpm的转速下加热至90℃,连续搅拌1~2.5h,制成PbBr-二甲基甲酰胺溶液。3) Dissolve 1.25-2.5 mmol of PbBr in 10 mL of dimethylformamide, use a magnetic stirrer to heat to 90°C at a speed of 800 rpm, and continuously stir for 1-2.5 h to prepare a PbBr-dimethylformamide solution.
4) 取0.35~0.7mmol CsBr溶解于10mL甲醇中,在25℃~35℃下,使用磁力搅拌器在600rpm的转速下连续搅拌30min,制成CsBr-甲醇溶液。4) Dissolve 0.35-0.7 mmol CsBr in 10 mL of methanol, and use a magnetic stirrer at 600 rpm to stir continuously for 30 min at 25 ℃ to 35 ℃ to prepare a CsBr-methanol solution.
5) 取0.2gCuI溶解于10mL二丙基硫醚中,在50℃下,使用磁力搅拌器以600rpm的转速下连续搅拌30min,制成CuI-二丙基硫醚溶液。5) Dissolve 0.2 g of CuI in 10 mL of dipropyl sulfide, and use a magnetic stirrer at 600 rpm for continuous stirring for 30 min at 50 °C to prepare a CuI-dipropyl sulfide solution.
6) 取0.125gZnO:Mg溶解于5mL乙醇中,震荡溶解20s,制成ZnO:Mg-乙醇溶液。6) Dissolve 0.125g ZnO:Mg in 5mL ethanol, shake to dissolve for 20s, and prepare a ZnO:Mg-ethanol solution.
7) 使用5 mL注射器吸取2 mL PEDOT:Pss水溶液,将过滤头安装在注射器上。7) Use a 5 mL syringe to draw 2 mL of PEDOT:Pss aqueous solution, and install the filter head on the syringe.
8) 将紫外臭氧机处理好的ITO玻璃放在旋涂仪上,滴加50μL~70μL PEDOT:PSS水溶液,使用旋涂仪以2000rpm的转速旋涂30s;之后将旋涂好PEDOT:PSS水溶液的ITO玻璃放在120℃加热台上退火30min。8) Put the ITO glass treated by the UV ozone machine on the spin coater, add 50 μL to 70 μL of the PEDOT:PSS aqueous solution dropwise, and use the spin coater to spin at 2000rpm for 30s; then spin-coat the PEDOT:PSS aqueous solution. The ITO glass was annealed on a heating table at 120 °C for 30 min.
9) 第8)步退火结束后,待ITO玻璃冷却至25℃~35℃,取20μL CuI-二丙基硫醚溶液滴加在PEDOT:PSS层上,使用旋涂仪以2000rpm的转速旋涂30s,然后将其放在120 ℃加热台上退火20min;9) After the annealing in step 8), after the ITO glass was cooled to 25°C to 35°C, 20 μL of CuI-dipropyl sulfide solution was added dropwise onto the PEDOT:PSS layer, and the spin coater was used for spin coating at 2000 rpm. 30s, then annealed on a heating table at 120 °C for 20min;
10)第9)步退火结束后,待ITO玻璃冷却至25℃~35℃,取20~30μL PbBr-二甲基甲酰胺溶液滴加在CuI层上,使用旋涂仪以2500rpm的转速旋涂30s,然后将其放在90℃加热台上退火30min。10) After the annealing in step 9), after the ITO glass is cooled to 25℃~35℃, take 20~30μL of PbBr-dimethylformamide solution dropwise onto the CuI layer, and spin coat at 2500rpm using a spin coater 30 s, and then annealed on a heating table at 90 °C for 30 min.
11)第10)步退火结束后,待ITO玻璃冷却至25℃~35℃,取20μL CsBr-甲醇溶液滴加在PbBr层上,使用旋涂仪以3500rpm的转速旋涂30s,然后将其放在250℃加热台上退火5min。11) After the annealing in step 10), after the ITO glass was cooled to 25°C to 35°C, 20 μL of CsBr-methanol solution was added dropwise onto the PbBr layer, and spin-coated at 3500 rpm for 30 s using a spin coater, and then placed on the PbBr layer. Annealed on a heating table at 250 °C for 5 min.
12)第11)步退火结束后,重复第11)步四次,原位合成制得CsPbBr3钙钛矿量子点;12) After the annealing in step 11), repeat step 11) four times to obtain CsPbBr3 perovskite quantum dots by in-situ synthesis;
13)取5mgPMMA溶于10mL三氯甲烷中,在50℃下,使用磁力搅拌器以500rpm的转速连续搅拌6h,制成PMMA-三氯甲烷溶液。13) Dissolve 5 mg of PMMA in 10 mL of chloroform, and use a magnetic stirrer to continuously stir at 500 rpm for 6 hours at 50°C to prepare a PMMA-chloroform solution.
14)滴加50μLPMMA-三氯甲烷溶液至12)步的量子点层,使用旋涂仪以4000rpm的转速旋涂60s,然后将其放在90℃的加热台上退火30min。14) Add 50 μL of PMMA-chloroform solution dropwise to the quantum dot layer of step 12), spin-coat at 4000 rpm for 60 s using a spin coater, and then place it on a heating table at 90 °C for 30 min.
15)第14)步退火结束后,取60μL ZnO:Mg滴加在PMMA层上,使用旋涂仪以2000rpm的转速旋涂40s,然后将其放在70℃的加热台上退火30min。15) After the annealing in step 14), 60 μL of ZnO:Mg was added dropwise onto the PMMA layer, spin-coated at 2000 rpm for 40 s using a spin coater, and then placed on a heating table at 70 °C for 30 min.
16)将15)步旋涂好各功能层的ITO玻璃放入蒸镀箱中蒸镀铝负极,取出后在旋有功能层的一面使用紫外固化胶进行封装,完成制作。16) Put the ITO glass spin-coated with each functional layer in step 15) into the evaporation box to evaporate the aluminum negative electrode, take it out and encapsulate it with UV curing glue on the side where the functional layer is spun to complete the production.
首先,我们将具有特殊图案的ITO玻璃进行多步骤的严格清洗、依次将它们放入装有去离子水+洗洁精、去离子水、丙酮、异丙醇的容器中,并使用超声机清洗仪将其充分超声震荡以致其表面无污渍。之后,我们使用擦镜纸轻轻擦拭ITO玻璃表面,去除其上面可能残留的灰尘等,更通过紫外臭氧机照射来提高其表面功函数,改善电荷传输性能。然后,我们依次配置好一定浓度的各功能层溶液:PEDOT:Pss水溶液、CuI-二丙基硫醚溶液、CsBr-甲醇溶液、PbBr-二甲基甲酰胺溶液、ZnO:Mg-乙醇溶液,并将它们依次以特定的旋涂转速、剂量以及退火温度来形成一层层均匀厚度的薄膜。其中,PEDOT:Pss作为空穴注入层、CuI作为空穴传输层、CsBr以及PbBr参与反应合成CsPbBr3钙钛矿量子点作为发光层,ZnO:Mg作为电子传输层,Al作为负极。所制得的钙钛矿量子点发光二极管为波长在600 nm左右的明亮绿色发光。First, we carry out multi-step strict cleaning of the ITO glass with special patterns, put them in a container with deionized water + detergent, deionized water, acetone, isopropyl alcohol in turn, and use an ultrasonic machine to clean The instrument will ultrasonically vibrate it sufficiently so that its surface is free of stains. Afterwards, we gently wiped the surface of the ITO glass with lens tissue to remove possible residual dust, etc., and irradiated with an ultraviolet ozone machine to improve its surface work function and improve the charge transfer performance. Then, we sequentially prepared a certain concentration of each functional layer solution: PEDOT: Pss aqueous solution, CuI-dipropyl sulfide solution, CsBr-methanol solution, PbBr-dimethylformamide solution, ZnO: Mg-ethanol solution, and They are sequentially applied with a specific spin coating speed, dosage and annealing temperature to form a film of uniform thickness layer by layer. Among them, PEDOT:Pss is used as hole injection layer, CuI is used as hole transport layer, CsBr and PbBr are involved in the reaction to synthesize CsPbBr3 perovskite quantum dots as light-emitting layer, ZnO:Mg is used as electron transport layer, and Al is used as negative electrode. The prepared perovskite quantum dot light-emitting diodes emit bright green light with a wavelength of about 600 nm.
本发明的有益效果是:1、本发明的多步旋涂原位合成技术为制备高性能的、高稳定性的全无机钙钛矿提供了一种新的方法,避免了使用传统合成方法合成之后再提纯、再溶解以及暴露在空气环境中使量子点光学性能等急速下降的问题。2、通过优化钙钛矿发光二极管的各个功能层,使用透光率高、电荷传输性能良好的无机材料CuI代替通常使用的Ploy-TFB、Ploy-TPD等有机材料作为空穴传输层制备了高效的发光器件,解决了有机材料稳定性差影响器件性能的问题。3、本发明工艺简单、生产难度小、实用性强,性能稳定,可进一步进行商业化生产,为人类生活提供高质量的照明以及显示器材。The beneficial effects of the present invention are: 1. The multi-step spin-coating in-situ synthesis technology of the present invention provides a new method for preparing high-performance, high-stability all-inorganic perovskites, avoiding the use of traditional synthesis methods to synthesize After purification, re-dissolution, and exposure to air environment, the optical properties of quantum dots are rapidly degraded. 2. By optimizing each functional layer of the perovskite light-emitting diode, the inorganic material CuI with high light transmittance and good charge transport performance is used to replace the commonly used organic materials such as Ploy-TFB and Ploy-TPD as the hole transport layer. The light-emitting device solves the problem that the poor stability of organic materials affects the performance of the device. 3. The present invention has the advantages of simple process, low production difficulty, strong practicability and stable performance, and can be further commercialized to provide high-quality lighting and display equipment for human life.
附图说明Description of drawings
图1为ITO玻璃及各功能涂层的结构示意图。FIG. 1 is a schematic structural diagram of ITO glass and various functional coatings.
具体实施方式Detailed ways
以下结合实施例,通过控制PbBr、CsBr的量来控制钙钛矿量子点发光层的膜的厚度,从而达到对器件电荷传输调控的效果,对本发明作进一步说明。The present invention is further described below with reference to the examples, by controlling the amount of PbBr and CsBr to control the thickness of the film of the perovskite quantum dot light-emitting layer, so as to achieve the effect of regulating the charge transport of the device.
实施例一:作为本发明的一个较佳的具体实施案例,基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,其步骤如下(涂层排列顺序如图1所示):Embodiment 1: As a preferred specific implementation case of the present invention, an in-situ synthesis and fabrication method of a perovskite quantum dot light-emitting diode based on an inorganic hole transport material, the steps are as follows (the coating sequence is shown in Figure 1) :
1) 取ITO玻璃依次放入装有去离子水+洗洁精、去离子水、丙酮、异丙醇的烧杯中,均使液面没过所有ITO玻璃,之后依次使用超声机超声15min。最后将清洗好的ITO玻璃浸入装有酒精的烧杯中保存备用。1) Take the ITO glass and put it into a beaker containing deionized water + detergent, deionized water, acetone, and isopropanol in turn, so that the liquid level does not cover all the ITO glass, and then use an ultrasonic machine to sonicate for 15 minutes. Finally, immerse the cleaned ITO glass in a beaker filled with alcohol and save it for later use.
2) 取出浸泡在酒精中的ITO玻璃,使用擦镜纸擦拭玻璃两面,直至无灰尘。擦拭好的ITO玻璃依次放入玻璃皿中,取下盖子置入紫外臭氧机中处理20min。2) Take out the ITO glass soaked in alcohol and wipe both sides of the glass with lens paper until there is no dust. The wiped ITO glass was placed in a glass dish in turn, and the lid was removed and placed in an ultraviolet ozone machine for 20 min.
3) 取1.25mmol PbBr溶解于10mL二甲基甲酰胺中,使用磁力搅拌器在800rpm的转速下加热至90℃,连续搅拌1h,制成PbBr-二甲基甲酰胺溶液。3) Dissolve 1.25 mmol of PbBr in 10 mL of dimethylformamide, use a magnetic stirrer to heat to 90°C at 800 rpm, and continuously stir for 1 h to prepare a PbBr-dimethylformamide solution.
4) 取0.35mmol CsBr溶解于5mL甲醇中,在30℃下,使用磁力搅拌器在600rpm的转速下连续搅拌30min,制成CsBr-甲醇溶液。4) Dissolve 0.35 mmol of CsBr in 5 mL of methanol, and use a magnetic stirrer at 600 rpm for continuous stirring for 30 min at 30 °C to prepare a CsBr-methanol solution.
5) 取0.2gCuI溶解于10mL二丙基硫醚中,在50℃下,使用磁力搅拌器以600rpm的转速下连续搅拌30min,制成CuI-二丙基硫醚溶液。5) Dissolve 0.2 g of CuI in 10 mL of dipropyl sulfide, and use a magnetic stirrer at 600 rpm for continuous stirring for 30 min at 50 °C to prepare a CuI-dipropyl sulfide solution.
6) 取0.125g ZnO:Mg溶解于5mL乙醇中,震荡溶解20s,制成ZnO:Mg-乙醇溶液。6) Dissolve 0.125g of ZnO:Mg in 5mL of ethanol, shake to dissolve for 20s, and prepare a ZnO:Mg-ethanol solution.
7) 使用5mL注射器吸取2mL PEDOT:PSS水溶液,将过滤头安装在注射器上。7) Use a 5mL syringe to draw 2mL of PEDOT:PSS aqueous solution, and install the filter head on the syringe.
8) 将紫外臭氧机处理好的ITO玻璃放在旋涂仪上,滴加60μL PEDOT:PSS水溶液,使用旋涂仪以2000rpm的转速旋涂30s;之后将旋涂好PEDOT:PSS水溶液的ITO玻璃放在120℃加热台上退火30min。8) Put the ITO glass treated with the UV ozone machine on the spin coater, add 60 μL of PEDOT:PSS aqueous solution dropwise, and use the spin coater to spin at 2000rpm for 30s; then spin the ITO glass with the PEDOT:PSS aqueous solution. Placed on a heating table at 120°C for 30min annealing.
9) 第8)步退火结束后,待ITO玻璃冷却至30℃,取20μL CuI-二丙基硫醚溶液滴加在PEDOT:PSS层上,使用旋涂仪以2000rpm的转速旋涂30s,然后将其放在120 ℃加热台上退火20 min;9) After the annealing in step 8), after the ITO glass was cooled to 30°C, 20 μL of CuI-dipropyl sulfide solution was added dropwise onto the PEDOT:PSS layer, and the spin coater was used for spin coating at 2000 rpm for 30 s, and then It was annealed on a heating table at 120 °C for 20 min;
10)第9)步退火结束后,待ITO玻璃冷却至30℃,取30μL PbBr-二甲基甲酰胺溶液滴加在CuI层上,使用旋涂仪以2500rpm的转速旋涂30s,然后将其放在90℃加热台上退火30min。10) After the annealing in step 9), after the ITO glass was cooled to 30 °C, 30 μL of PbBr-dimethylformamide solution was added dropwise onto the CuI layer, and spin-coated at 2500 rpm for 30 s using a spin coater, and then the It was annealed on a heating table at 90°C for 30min.
11)第10)步退火结束后,待ITO玻璃冷却至30℃,取40μL CsBr-甲醇溶液滴加在PbBr层上,使用旋涂仪以3500rpm的转速旋涂30s,然后将其放在250℃加热台上退火5min。11) After the annealing in step 10), after the ITO glass was cooled to 30°C, 40 μL of CsBr-methanol solution was added dropwise onto the PbBr layer, spin-coated at 3500rpm for 30s using a spin coater, and then placed at 250°C Annealed on a heating table for 5 min.
12)第11)步退火结束后,重复第11)步四次,原位合成制得CsPbBr3钙钛矿量子点12) After the annealing in step 11), repeat step 11) four times to obtain CsPbBr3 perovskite quantum dots by in-situ synthesis
13)取5mg PMMA溶于10mL三氯甲烷中,在50℃下,使用磁力搅拌器以500rpm的转速连续搅拌6h,制成PMMA-三氯甲烷溶液。13) Dissolve 5 mg of PMMA in 10 mL of chloroform, and use a magnetic stirrer to continuously stir at 500 rpm for 6 hours at 50°C to prepare a PMMA-chloroform solution.
14)滴加50μL PMMA-三氯甲烷溶液至12)步的量子点层,使用旋涂仪以4000rpm的转速旋涂60s,然后将其放在90℃的加热台上退火30min。14) Add 50 μL of PMMA-trichloromethane solution dropwise to the quantum dot layer of step 12), use a spin coater at 4000 rpm for 60 s, and then place it on a heating table at 90 °C for 30 min.
15)第14)步退火结束后,取60μL ZnO:Mg滴加在PMMA层上,使用旋涂仪以2000rpm的转速旋40s,然后将其放在70℃的加热台上退火30min。15) After the annealing in step 14), drop 60 μL of ZnO:Mg onto the PMMA layer, spin it with a spin coater at 2000 rpm for 40 s, and then place it on a heating table at 70 °C for 30 min.
16)将15)步旋涂好各功能层的ITO玻璃放入蒸镀箱中蒸镀铝负极,取出后在旋有功能层的一面使用紫外固化胶进行封装,完成制作。16) Put the ITO glass spin-coated with each functional layer in step 15) into the evaporation box to evaporate the aluminum negative electrode, take it out and encapsulate it with UV curing glue on the side where the functional layer is spun to complete the production.
实施例二:作为本发明的另一个具体实施案例,基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,其步骤如下(涂层排列顺序如图1所示):Embodiment 2: As another specific implementation case of the present invention, an in-situ synthesis and fabrication method of a perovskite quantum dot light-emitting diode based on an inorganic hole transport material, the steps are as follows (the coating sequence is shown in Figure 1):
1) 取ITO玻璃依次放入装有去离子水+洗洁精、去离子水、丙酮、异丙醇的烧杯中,均使液面没过所有ITO玻璃,之后依次使用超声机超声15min。最后将清洗好的ITO玻璃浸入装有酒精的烧杯中保存备用。1) Take the ITO glass and put it into a beaker containing deionized water + detergent, deionized water, acetone, and isopropanol in turn, so that the liquid level does not cover all the ITO glass, and then use an ultrasonic machine to sonicate for 15 minutes. Finally, immerse the cleaned ITO glass in a beaker filled with alcohol and save it for later use.
2) 取出浸泡在酒精中的ITO玻璃,使用擦镜纸擦拭玻璃两面,直至无灰尘。擦拭好的ITO玻璃依次放入玻璃皿中,取下盖子置入紫外臭氧机中处理20min。2) Take out the ITO glass soaked in alcohol and wipe both sides of the glass with lens paper until there is no dust. The wiped ITO glass was placed in a glass dish in turn, and the lid was removed and placed in an ultraviolet ozone machine for 20 min.
3) 取5mmolPbBr溶解于10mL二甲基甲酰胺中,使用磁力搅拌器在800rpm的转速下加热至90℃,连续搅拌2h,制成PbBr-二甲基甲酰胺溶液。3) Dissolve 5 mmol of PbBr in 10 mL of dimethylformamide, use a magnetic stirrer to heat to 90°C at 800 rpm, and continue stirring for 2 h to prepare a PbBr-dimethylformamide solution.
4) 取0.7mmolCsBr溶解于10mL甲醇中,在25℃℃下,使用磁力搅拌器在600rpm的转速下连续搅拌30min,制成CsBr-甲醇溶液。4) Dissolve 0.7 mmol of CsBr in 10 mL of methanol, and use a magnetic stirrer to continuously stir for 30 min at 600 rpm at 25 °C to prepare a CsBr-methanol solution.
5) 取0.25gCuI溶解于10mL二丙基硫醚中,在50℃下,使用磁力搅拌器以600rpm的转速下连续搅拌30min,制成CuI-二丙基硫醚溶液。5) Dissolve 0.25 g of CuI in 10 mL of dipropyl sulfide, and use a magnetic stirrer at 600 rpm for continuous stirring for 30 min at 50 °C to prepare a CuI-dipropyl sulfide solution.
6) 取0.125gZnO:Mg溶解于5mL乙醇中,震荡溶解20s,制成ZnO:Mg-乙醇溶液。6) Dissolve 0.125g ZnO:Mg in 5mL ethanol, shake to dissolve for 20s, and prepare a ZnO:Mg-ethanol solution.
7) 使用5mL注射器吸取2mL PEDOT:PSS水溶液,将过滤头安装在注射器上。7) Use a 5mL syringe to draw 2mL of PEDOT:PSS aqueous solution, and install the filter head on the syringe.
8)将紫外臭氧机处理好的ITO玻璃放在旋涂仪上,滴加50μL PEDOT:PSS水溶液,使用旋涂仪以2000rpm的转速旋涂30s。之后将旋涂好PEDOT:PSS水溶液的ITO玻璃放在120℃加热台上退火30min。8) Put the ITO glass treated by the UV-ozone machine on the spin coater, drop 50 μL of PEDOT:PSS aqueous solution, and use the spin coater to spin at 2000 rpm for 30 s. Then, the ITO glass spin-coated with the PEDOT:PSS aqueous solution was annealed on a heating table at 120 °C for 30 min.
9) 第8)步退火结束后,待ITO玻璃冷却至25℃,取20μL CuI-二丙基硫醚溶液滴加在PEDOT:PSS层上,使用旋涂仪以2000 rpm的转速旋涂30s,然后将其放在120 ℃加热台上退火20 min。9) After the annealing in step 8), after the ITO glass was cooled to 25°C, 20 μL of CuI-dipropyl sulfide solution was added dropwise onto the PEDOT:PSS layer, and spin-coated at 2000 rpm for 30 s using a spin coater. It was then annealed on a heating table at 120 °C for 20 min.
10)第9)步退火结束后,待ITO玻璃冷却至25℃,取20μL PbBr-二甲基甲酰胺溶液滴加在CuI层上,使用旋涂仪以2500rpm的转速旋涂30s,然后将其放在90℃加热台上退火30min。10) After the annealing in step 9), after the ITO glass was cooled to 25°C, 20 μL of PbBr-dimethylformamide solution was added dropwise onto the CuI layer, spin-coated at 2500 rpm for 30 s using a spin coater, and then the It was annealed on a heating table at 90°C for 30min.
11)第10)步退火结束后,待ITO玻璃冷却至25℃,取20μL CsBr-甲醇溶液滴加在PbBr层上,使用旋涂仪以3500rpm的转速旋涂30s,然后将其放在250℃加热台上退火5min。11) After the annealing in step 10), after the ITO glass was cooled to 25°C, 20 μL of CsBr-methanol solution was added dropwise onto the PbBr layer, spin-coated at 3500rpm for 30s using a spin coater, and then placed at 250°C Annealed on a heating table for 5 min.
12)第11)步退火结束后,重复第11)步四次,原位合成制得CsPbBr3钙钛矿量子点12) After the annealing in step 11), repeat step 11) four times to obtain CsPbBr3 perovskite quantum dots by in-situ synthesis
13) 取5mg PMMA溶于10mL三氯甲烷中,在50℃下,使用磁力搅拌器以500rpm的转速连续搅拌6h,制成PMMA-三氯甲烷溶液。13) Dissolve 5 mg of PMMA in 10 mL of chloroform, and use a magnetic stirrer to continuously stir at 500 rpm for 6 hours at 50°C to prepare a PMMA-chloroform solution.
14)滴加50μL PMMA-三氯甲烷溶液至12)步的量子点层,使用旋涂仪以4000rpm的转速旋涂60s,然后将其放在90℃的加热台上退火30min。14) Add 50 μL of PMMA-trichloromethane solution dropwise to the quantum dot layer of step 12), use a spin coater at 4000 rpm for 60 s, and then place it on a heating table at 90 °C for 30 min.
15)第14)步退火结束后,取60μL ZnO:Mg滴加在PMMA层上,使用旋涂仪以2000rpm的转速旋涂40s,然后将其放在70℃的加热台上退火30min。15) After the annealing in step 14), 60 μL of ZnO:Mg was added dropwise onto the PMMA layer, spin-coated at 2000 rpm for 40 s using a spin coater, and then placed on a heating table at 70 °C for 30 min.
16)将15)步旋涂好各功能层的ITO玻璃放入蒸镀箱中蒸镀铝负极,取出后在旋有功能层的一面使用紫外固化胶进行封装,完成制作。16) Put the ITO glass spin-coated with each functional layer in step 15) into the evaporation box to evaporate the aluminum negative electrode, take it out and encapsulate it with UV curing glue on the side where the functional layer is spun to complete the production.
实施例三:作为本发明的另一个具体实施案例,基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法,其步骤如下(涂层排列顺序如图1所示):Embodiment 3: As another specific implementation case of the present invention, an in-situ synthesis and fabrication method of a perovskite quantum dot light-emitting diode based on an inorganic hole transport material, the steps are as follows (the coating sequence is shown in Figure 1):
1) 取ITO玻璃依次放入装有去离子水+洗洁精、去离子水、丙酮、异丙醇的烧杯中,均使液面没过所有ITO玻璃,之后依次使用超声机超声15min。最后将清洗好的ITO玻璃浸入装有酒精的烧杯中保存备用。1) Take the ITO glass and put it into a beaker containing deionized water + detergent, deionized water, acetone, and isopropanol in turn, so that the liquid level does not cover all the ITO glass, and then use an ultrasonic machine to sonicate for 15 minutes. Finally, immerse the cleaned ITO glass in a beaker filled with alcohol and save it for later use.
2) 取出浸泡在酒精中的ITO玻璃,使用擦镜纸擦拭玻璃两面,直至无灰尘。擦拭好的ITO玻璃依次放入玻璃皿中,取下盖子置入紫外臭氧机中处理20min。2) Take out the ITO glass soaked in alcohol and wipe both sides of the glass with lens paper until there is no dust. The wiped ITO glass was placed in a glass dish in turn, and the lid was removed and placed in an ultraviolet ozone machine for 20 min.
3) 取10mmolPbBr溶解于10mL二甲基甲酰胺中,使用磁力搅拌器在800rpm的转速下加热至90℃,连续搅拌2.5h,制成PbBr-二甲基甲酰胺溶液。3) Dissolve 10 mmol of PbBr in 10 mL of dimethylformamide, use a magnetic stirrer to heat to 90°C at 800 rpm, and continuously stir for 2.5 h to prepare a PbBr-dimethylformamide solution.
4) 取0.7mmolCsBr溶解于10mL甲醇中,在35℃下,使用磁力搅拌器在600rpm的转速下连续搅拌30min,制成CsBr-甲醇溶液。4) Dissolve 0.7 mmol of CsBr in 10 mL of methanol, and use a magnetic stirrer to continuously stir for 30 min at 600 rpm at 35 °C to prepare a CsBr-methanol solution.
5) 取0.2gCuI溶解于10mL二丙基硫醚中,在50℃下,使用磁力搅拌器以600rpm的转速下连续搅拌30min,制成CuI-二丙基硫醚溶液。5) Dissolve 0.2 g of CuI in 10 mL of dipropyl sulfide, and use a magnetic stirrer at 600 rpm for continuous stirring for 30 min at 50 °C to prepare a CuI-dipropyl sulfide solution.
6) 取0.25gZnO:Mg溶解于5mL乙醇中,震荡溶解20s,制成ZnO:Mg-乙醇溶液。6) Dissolve 0.25g ZnO:Mg in 5mL ethanol, shake to dissolve for 20s, and prepare a ZnO:Mg-ethanol solution.
7) 使用5mL注射器吸取2mL PEDOT:PSS水溶液,将过滤头安装在注射器上。7) Use a 5mL syringe to draw 2mL of PEDOT:PSS aqueous solution, and install the filter head on the syringe.
8) 将紫外臭氧机处理好的ITO玻璃放在旋涂仪上,滴加70μLPEDOT:PSS水溶液,使用旋涂仪以2000rpm的转速旋涂30s。之后将旋涂好PEDOT:PSS水溶液的ITO玻璃放在120℃加热台上退火30min。8) Put the ITO glass treated with the UV-ozone machine on the spin coater, add 70 μL PEDOT:PSS aqueous solution dropwise, and use the spin coater to spin at 2000rpm for 30s. Then, the ITO glass spin-coated with the PEDOT:PSS aqueous solution was annealed on a heating table at 120 °C for 30 min.
9) 第8)步退火结束后,待ITO玻璃冷却至35℃,取20μL CuI-二丙基硫醚溶液滴加在PEDOT:PSS层上,使用旋涂仪以2000 rpm的转速旋涂30s,然后将其放在120 ℃加热台上退火20 min9) After the annealing in step 8), after the ITO glass was cooled to 35°C, 20 μL of CuI-dipropyl sulfide solution was added dropwise onto the PEDOT:PSS layer, and the spin coater was used for spin coating at 2000 rpm for 30 s. It was then annealed on a heating table at 120 °C for 20 min
10)第9)步退火结束后,待ITO玻璃冷却至35℃,取30μL PbBr-二甲基甲酰胺溶液滴加在PEDOT:PSS层上,使用旋涂仪以3000rpm的转速旋涂30s,然后将其放在90℃加热台上退火30min。10) After the annealing in step 9), after the ITO glass was cooled to 35°C, 30 μL of PbBr-dimethylformamide solution was added dropwise onto the PEDOT:PSS layer, and the spin coater was used for spin coating at 3000 rpm for 30 s, and then It was annealed on a heating table at 90 °C for 30 min.
11)第10)步退火结束后,待ITO玻璃冷却至35℃,取20μL CsBr-甲醇溶液滴加在PbBr层上,使用旋涂仪以3500rpm的转速旋涂30s,然后将其放在250℃加热台上退火5min。11) After the annealing in step 10), after the ITO glass was cooled to 35°C, 20 μL of CsBr-methanol solution was added dropwise onto the PbBr layer, spin-coated at 3500rpm for 30s using a spin coater, and then placed at 250°C Annealed on a heating table for 5 min.
112)第11)步退火结束后,重复第11)步四次,原位合成制得CsPbBr3钙钛矿量子点112) After the annealing in step 11), repeat step 11) four times to obtain CsPbBr3 perovskite quantum dots by in-situ synthesis
13)取5mgPMMA溶于10mL三氯甲烷中,在50℃下,使用磁力搅拌器以500rpm的转速连续搅拌6h,制成PMMA-三氯甲烷溶液。13) Dissolve 5 mg of PMMA in 10 mL of chloroform, and use a magnetic stirrer to continuously stir at 500 rpm for 6 hours at 50°C to prepare a PMMA-chloroform solution.
14)滴加50μ LPMMA-三氯甲烷溶液至12)步的量子点层,使用旋涂仪以4000rpm的转速旋涂60s,然后将其放在90℃的加热台上退火30min。14) Add 50 μL LPMMA-trichloromethane solution dropwise to the quantum dot layer of step 12), spin-coat at 4000rpm for 60s using a spin coater, and then place it on a heating table at 90°C for 30min annealing.
15)第14)步退火结束后,取60μL ZnO:Mg滴加在PMMA层上,使用旋涂仪以2500rpm的转速旋涂40s,然后将其放在70℃的加热台上退火30min。15) After the annealing in step 14), 60 μL of ZnO:Mg was dropped onto the PMMA layer, spin-coated at 2500 rpm for 40 s using a spin coater, and then placed on a heating table at 70 °C for 30 min.
16)将15)步旋涂好各功能层的ITO玻璃放入蒸镀箱中蒸镀铝负极,取出后在旋有功能层的一面使用紫外固化胶进行封装,完成制作。16) Put the ITO glass spin-coated with each functional layer in step 15) into the evaporation box to evaporate the aluminum negative electrode, take it out and encapsulate it with UV curing glue on the side where the functional layer is spun to complete the production.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910994576.7A CN110718648A (en) | 2019-10-18 | 2019-10-18 | In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910994576.7A CN110718648A (en) | 2019-10-18 | 2019-10-18 | In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110718648A true CN110718648A (en) | 2020-01-21 |
Family
ID=69212907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910994576.7A Pending CN110718648A (en) | 2019-10-18 | 2019-10-18 | In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110718648A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900239A (en) * | 2020-08-10 | 2020-11-06 | 苏州大学 | All-inorganic perovskite red light-emitting diode based on cuprous iodide addition |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105552185A (en) * | 2016-02-01 | 2016-05-04 | 南京理工大学 | Full-inorganic quantum dot light emitting diode based on inorganic perovskite material and preparation method of full-inorganic quantum dot light emitting diode |
CN106784391A (en) * | 2016-12-06 | 2017-05-31 | 广东昭信光电科技有限公司 | Quantum dot light emitting device and preparation method thereof, liquid crystal display device |
CN108054295A (en) * | 2017-10-26 | 2018-05-18 | 南昌航空大学 | Transition metal oxide/quantum dot bulk heterojunction method is prepared with in-situ synthesized and is applied in the light emitting diode |
US20180208840A1 (en) * | 2015-07-31 | 2018-07-26 | Avantama Ag | Luminescent crystals and manufacturing thereof |
US20180233688A1 (en) * | 2016-06-06 | 2018-08-16 | Boe Technology Group Co., Ltd. | Light-Emitting Diode and Manufacturing Method Thereof, Light-Emitting Device |
CN109328402A (en) * | 2016-06-28 | 2019-02-12 | 陶氏环球技术有限责任公司 | Quantum dot light-emitting device |
CN110041915A (en) * | 2019-04-24 | 2019-07-23 | 深圳大学 | The preparation method of perovskite quantum dot and metal organic frame composite luminescent material |
CN110224074A (en) * | 2018-12-29 | 2019-09-10 | 华南理工大学 | A kind of quanta point electroluminescent device and preparation method thereof |
-
2019
- 2019-10-18 CN CN201910994576.7A patent/CN110718648A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180208840A1 (en) * | 2015-07-31 | 2018-07-26 | Avantama Ag | Luminescent crystals and manufacturing thereof |
CN105552185A (en) * | 2016-02-01 | 2016-05-04 | 南京理工大学 | Full-inorganic quantum dot light emitting diode based on inorganic perovskite material and preparation method of full-inorganic quantum dot light emitting diode |
US20180233688A1 (en) * | 2016-06-06 | 2018-08-16 | Boe Technology Group Co., Ltd. | Light-Emitting Diode and Manufacturing Method Thereof, Light-Emitting Device |
CN109328402A (en) * | 2016-06-28 | 2019-02-12 | 陶氏环球技术有限责任公司 | Quantum dot light-emitting device |
CN106784391A (en) * | 2016-12-06 | 2017-05-31 | 广东昭信光电科技有限公司 | Quantum dot light emitting device and preparation method thereof, liquid crystal display device |
CN108054295A (en) * | 2017-10-26 | 2018-05-18 | 南昌航空大学 | Transition metal oxide/quantum dot bulk heterojunction method is prepared with in-situ synthesized and is applied in the light emitting diode |
CN110224074A (en) * | 2018-12-29 | 2019-09-10 | 华南理工大学 | A kind of quanta point electroluminescent device and preparation method thereof |
CN110041915A (en) * | 2019-04-24 | 2019-07-23 | 深圳大学 | The preparation method of perovskite quantum dot and metal organic frame composite luminescent material |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111900239A (en) * | 2020-08-10 | 2020-11-06 | 苏州大学 | All-inorganic perovskite red light-emitting diode based on cuprous iodide addition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107316940B (en) | preparation method of perovskite thin film with light regulation structure and preparation method of optical device | |
CN112080276B (en) | Preparation method of cesium-lead halogen perovskite nanocrystalline thin film with high luminous efficiency | |
CN110611014B (en) | A kind of Cs3Cu2I5 ultraviolet detector and thin film preparation method thereof | |
CN112540508B (en) | Wavelength conversion adhesive film material and preparation method thereof | |
CN107195710A (en) | A kind of method that the inorganic perovskite thin film of high-luminous-efficiency is prepared based on one-step method | |
CN107275523A (en) | Preparation method of pure inorganic perovskite light-emitting diode device | |
CN106960883B (en) | A kind of full-inorganic perovskite solar battery and preparation method thereof | |
CN110484233B (en) | Zinc oxide nanocrystal, zinc oxide nanocrystal composition, preparation method of zinc oxide nanocrystal composition and electroluminescent device | |
CN109560204B (en) | Perovskite thin film and preparation method and application thereof | |
CN106938854A (en) | A kind of preparation method of large scale lead halide caesium perovskite crystal | |
CN112117386A (en) | PEACl-based modified CsPb (Cl/Br)3Quantum dot electroluminescent LED and preparation method thereof | |
CN110776906A (en) | Perovskite thin film with stable photoluminescence efficiency and preparation method thereof | |
CN110739411A (en) | preparation method of perovskite light-emitting diode capable of improving performance | |
CN110718648A (en) | In-situ synthesis manufacturing method of perovskite quantum dot light-emitting diode based on inorganic hole transport material | |
CN114874764B (en) | A preparation method of perovskite thin film with enhanced luminescence performance | |
CN111785839B (en) | LED device with submicron concave-convex structure carrier transmission layer and preparation method thereof | |
TWI753551B (en) | Perovskite film and manufacturing method thereof | |
CN105097989A (en) | Method for preparing zinc sulfide photoelectric film | |
CN112010258B (en) | Preparation method of composite film with micro-nano structure array | |
CN110797435B (en) | Component-adjustable inorganic perovskite photoelectric film, low-temperature preparation method thereof and device application | |
CN106927688A (en) | A kind of halogen doping ZnMgO films and preparation method thereof | |
CN109534285A (en) | A kind of ZnO nano column and preparation method based on photon structure seed layer | |
CN107502352A (en) | A kind of preparation method of InP/ZnS nuclear shell structure quantum points | |
WO2020043147A1 (en) | Led and method for preparing thin film | |
CN110878202A (en) | In-situ synthesis method of PbS/ZnS core-shell structure quantum dots |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200121 |