CN110713977A - A method for culture expansion of CD8 T cells and K3EC cells - Google Patents
A method for culture expansion of CD8 T cells and K3EC cells Download PDFInfo
- Publication number
- CN110713977A CN110713977A CN201810765305.XA CN201810765305A CN110713977A CN 110713977 A CN110713977 A CN 110713977A CN 201810765305 A CN201810765305 A CN 201810765305A CN 110713977 A CN110713977 A CN 110713977A
- Authority
- CN
- China
- Prior art keywords
- cells
- k3ec
- cd8t
- cell
- culturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 210000004027 cell Anatomy 0.000 title claims description 173
- 210000001744 T-lymphocyte Anatomy 0.000 title claims description 128
- 239000000427 antigen Substances 0.000 claims abstract description 61
- 108091007433 antigens Proteins 0.000 claims abstract description 60
- 102000036639 antigens Human genes 0.000 claims abstract description 60
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 41
- 238000012258 culturing Methods 0.000 claims abstract description 30
- 102100032101 Tumor necrosis factor ligand superfamily member 9 Human genes 0.000 claims abstract description 28
- 101000638251 Homo sapiens Tumor necrosis factor ligand superfamily member 9 Proteins 0.000 claims abstract description 27
- 101001063392 Homo sapiens Lymphocyte function-associated antigen 3 Proteins 0.000 claims abstract description 21
- 102100030984 Lymphocyte function-associated antigen 3 Human genes 0.000 claims abstract description 21
- 239000003446 ligand Substances 0.000 claims abstract description 18
- 239000010445 mica Substances 0.000 claims abstract description 15
- 229910052618 mica group Inorganic materials 0.000 claims abstract description 15
- 108091008034 costimulatory receptors Proteins 0.000 claims abstract description 12
- 101001109501 Homo sapiens NKG2-D type II integral membrane protein Proteins 0.000 claims abstract description 10
- 102100022680 NKG2-D type II integral membrane protein Human genes 0.000 claims abstract description 10
- 230000003213 activating effect Effects 0.000 claims abstract description 9
- 230000003321 amplification Effects 0.000 claims abstract description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 claims description 43
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 claims description 19
- 108090000623 proteins and genes Proteins 0.000 claims description 18
- 102000003812 Interleukin-15 Human genes 0.000 claims description 16
- 108090000172 Interleukin-15 Proteins 0.000 claims description 16
- 102000004169 proteins and genes Human genes 0.000 claims description 16
- 230000035755 proliferation Effects 0.000 claims description 15
- 102000000588 Interleukin-2 Human genes 0.000 claims description 13
- 108010002350 Interleukin-2 Proteins 0.000 claims description 13
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 13
- 229920002866 paraformaldehyde Polymers 0.000 claims description 13
- 102000004127 Cytokines Human genes 0.000 claims description 12
- 108090000695 Cytokines Proteins 0.000 claims description 12
- 108010021994 cytomegalovirus matrix protein 65kDa Proteins 0.000 claims description 9
- 238000003501 co-culture Methods 0.000 claims description 8
- 238000007689 inspection Methods 0.000 claims description 6
- 239000002510 pyrogen Substances 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- 230000003833 cell viability Effects 0.000 claims description 4
- 244000052769 pathogen Species 0.000 claims description 4
- 210000005259 peripheral blood Anatomy 0.000 claims description 4
- 239000011886 peripheral blood Substances 0.000 claims description 4
- 230000006698 induction Effects 0.000 claims description 3
- 230000004663 cell proliferation Effects 0.000 claims description 2
- 230000001413 cellular effect Effects 0.000 claims description 2
- 230000001717 pathogenic effect Effects 0.000 claims 2
- 230000001502 supplementing effect Effects 0.000 claims 2
- 108010033276 Peptide Fragments Proteins 0.000 claims 1
- 102000007079 Peptide Fragments Human genes 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 108091008048 CMVpp65 Proteins 0.000 abstract description 15
- 206010028980 Neoplasm Diseases 0.000 abstract description 6
- 206010011831 Cytomegalovirus infection Diseases 0.000 abstract description 4
- 201000011510 cancer Diseases 0.000 abstract description 4
- 230000002265 prevention Effects 0.000 abstract description 3
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 33
- 238000001514 detection method Methods 0.000 description 31
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 17
- 101001018097 Homo sapiens L-selectin Proteins 0.000 description 14
- 102100033467 L-selectin Human genes 0.000 description 14
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 13
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 13
- 238000007898 magnetic cell sorting Methods 0.000 description 13
- 102000004196 processed proteins & peptides Human genes 0.000 description 13
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 11
- 101000924577 Homo sapiens Adenomatous polyposis coli protein Proteins 0.000 description 11
- 102100025237 T-cell surface antigen CD2 Human genes 0.000 description 11
- 230000004913 activation Effects 0.000 description 11
- 230000027455 binding Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 210000000130 stem cell Anatomy 0.000 description 11
- 101000611023 Homo sapiens Tumor necrosis factor receptor superfamily member 6 Proteins 0.000 description 10
- 230000014509 gene expression Effects 0.000 description 10
- 230000011664 signaling Effects 0.000 description 10
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 9
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 9
- 230000006052 T cell proliferation Effects 0.000 description 9
- 102100040403 Tumor necrosis factor receptor superfamily member 6 Human genes 0.000 description 9
- 239000005090 green fluorescent protein Substances 0.000 description 9
- 230000000890 antigenic effect Effects 0.000 description 8
- 230000000139 costimulatory effect Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 230000002062 proliferating effect Effects 0.000 description 8
- 239000000700 radioactive tracer Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 102100028976 HLA class I histocompatibility antigen, B alpha chain Human genes 0.000 description 6
- 108010058607 HLA-B Antigens Proteins 0.000 description 6
- 102100036856 Tumor necrosis factor receptor superfamily member 9 Human genes 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 239000012636 effector Substances 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 238000012216 screening Methods 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 102100028972 HLA class I histocompatibility antigen, A alpha chain Human genes 0.000 description 5
- 108010075704 HLA-A Antigens Proteins 0.000 description 5
- 102100020675 Krueppel-like factor 2 Human genes 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000002659 cell therapy Methods 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 102100036301 C-C chemokine receptor type 7 Human genes 0.000 description 4
- 102000025850 HLA-A2 Antigen Human genes 0.000 description 4
- 108010074032 HLA-A2 Antigen Proteins 0.000 description 4
- 101000716065 Homo sapiens C-C chemokine receptor type 7 Proteins 0.000 description 4
- 108091008611 Protein Kinase B Proteins 0.000 description 4
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 210000000234 capsid Anatomy 0.000 description 4
- 102000003675 cytokine receptors Human genes 0.000 description 4
- 108010057085 cytokine receptors Proteins 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000004043 responsiveness Effects 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 230000007730 Akt signaling Effects 0.000 description 3
- 108700028369 Alleles Proteins 0.000 description 3
- 102000009561 Forkhead Box Protein O1 Human genes 0.000 description 3
- 108010009306 Forkhead Box Protein O1 Proteins 0.000 description 3
- 101001139146 Homo sapiens Krueppel-like factor 2 Proteins 0.000 description 3
- 102000000704 Interleukin-7 Human genes 0.000 description 3
- 108010002586 Interleukin-7 Proteins 0.000 description 3
- 108010067902 Peptide Library Proteins 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 210000000612 antigen-presenting cell Anatomy 0.000 description 3
- 230000006907 apoptotic process Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000012637 gene transfection Methods 0.000 description 3
- 230000028993 immune response Effects 0.000 description 3
- 238000009169 immunotherapy Methods 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 210000000822 natural killer cell Anatomy 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 230000004083 survival effect Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- IETUUAHKCHOQHP-KZVJFYERSA-N Ala-Thr-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@H](C)N)[C@@H](C)O)C(O)=O IETUUAHKCHOQHP-KZVJFYERSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102100027207 CD27 antigen Human genes 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102210042925 HLA-A*02:01 Human genes 0.000 description 2
- 102220404671 HLA-A*11:01 Human genes 0.000 description 2
- 101000914511 Homo sapiens CD27 antigen Proteins 0.000 description 2
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 2
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 2
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 2
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 2
- 101710186679 Kruppel-like factor 2 Proteins 0.000 description 2
- 241000204031 Mycoplasma Species 0.000 description 2
- 102000003945 NF-kappa B Human genes 0.000 description 2
- 108010057466 NF-kappa B Proteins 0.000 description 2
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- 108091008874 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 2
- 230000006786 activation induced cell death Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 238000003113 dilution method Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000009675 homeostatic proliferation Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000003908 quality control method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 108010082808 4-1BB Ligand Proteins 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- HXNNRBHASOSVPG-GUBZILKMSA-N Ala-Glu-Leu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O HXNNRBHASOSVPG-GUBZILKMSA-N 0.000 description 1
- WQKAQKZRDIZYNV-VZFHVOOUSA-N Ala-Ser-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O WQKAQKZRDIZYNV-VZFHVOOUSA-N 0.000 description 1
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 1
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 1
- OFIYLHVAAJYRBC-HJWJTTGWSA-N Arg-Ile-Phe Chemical compound CC[C@H](C)[C@H](NC(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](Cc1ccccc1)C(O)=O OFIYLHVAAJYRBC-HJWJTTGWSA-N 0.000 description 1
- YVXRYLVELQYAEQ-SRVKXCTJSA-N Asn-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(=O)N)N YVXRYLVELQYAEQ-SRVKXCTJSA-N 0.000 description 1
- NCFJQJRLQJEECD-NHCYSSNCSA-N Asn-Leu-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O NCFJQJRLQJEECD-NHCYSSNCSA-N 0.000 description 1
- UFAQGGZUXVLONR-AVGNSLFASA-N Asp-Gln-Tyr Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)O)N)O UFAQGGZUXVLONR-AVGNSLFASA-N 0.000 description 1
- 102100026596 Bcl-2-like protein 1 Human genes 0.000 description 1
- VBPGTULCFGKGTF-ACZMJKKPSA-N Cys-Glu-Asp Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O VBPGTULCFGKGTF-ACZMJKKPSA-N 0.000 description 1
- 108010069621 Epstein-Barr virus EBV-associated membrane antigen Proteins 0.000 description 1
- 208000031637 Erythroblastic Acute Leukemia Diseases 0.000 description 1
- 208000036566 Erythroleukaemia Diseases 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 102000004315 Forkhead Transcription Factors Human genes 0.000 description 1
- 108090000852 Forkhead Transcription Factors Proteins 0.000 description 1
- CLPQUWHBWXFJOX-BQBZGAKWSA-N Gln-Gly-Gln Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O CLPQUWHBWXFJOX-BQBZGAKWSA-N 0.000 description 1
- HILMIYALTUQTRC-XVKPBYJWSA-N Glu-Gly-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O HILMIYALTUQTRC-XVKPBYJWSA-N 0.000 description 1
- CCQOOWAONKGYKQ-BYPYZUCNSA-N Gly-Gly-Ala Chemical compound OC(=O)[C@H](C)NC(=O)CNC(=O)CN CCQOOWAONKGYKQ-BYPYZUCNSA-N 0.000 description 1
- PTIIBFKSLCYQBO-NHCYSSNCSA-N Gly-Lys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)CN PTIIBFKSLCYQBO-NHCYSSNCSA-N 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- YOSQCYUFZGPIPC-PBCZWWQYSA-N His-Asp-Thr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O YOSQCYUFZGPIPC-PBCZWWQYSA-N 0.000 description 1
- QPSCMXDWVKWVOW-BZSNNMDCSA-N His-His-Tyr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O QPSCMXDWVKWVOW-BZSNNMDCSA-N 0.000 description 1
- 102000008949 Histocompatibility Antigens Class I Human genes 0.000 description 1
- 108010088652 Histocompatibility Antigens Class I Proteins 0.000 description 1
- 101001055157 Homo sapiens Interleukin-15 Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 101000625358 Homo sapiens Transcription initiation factor TFIID subunit 2 Proteins 0.000 description 1
- 101000818543 Homo sapiens Tyrosine-protein kinase ZAP-70 Proteins 0.000 description 1
- QIHJTGSVGIPHIW-QSFUFRPTSA-N Ile-Asn-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](C(C)C)C(=O)O)N QIHJTGSVGIPHIW-QSFUFRPTSA-N 0.000 description 1
- CAHCWMVNBZJVAW-NAKRPEOUSA-N Ile-Pro-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)O)N CAHCWMVNBZJVAW-NAKRPEOUSA-N 0.000 description 1
- 102000004556 Interleukin-15 Receptors Human genes 0.000 description 1
- 108010017535 Interleukin-15 Receptors Proteins 0.000 description 1
- 108010038498 Interleukin-7 Receptors Proteins 0.000 description 1
- 102000010782 Interleukin-7 Receptors Human genes 0.000 description 1
- UCBPDSYUVAAHCD-UWVGGRQHSA-N Leu-Pro-Gly Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)NCC(O)=O UCBPDSYUVAAHCD-UWVGGRQHSA-N 0.000 description 1
- 102000004882 Lipase Human genes 0.000 description 1
- 108090001060 Lipase Proteins 0.000 description 1
- 239000004367 Lipase Substances 0.000 description 1
- 102000036243 Lymphocyte Specific Protein Tyrosine Kinase p56(lck) Human genes 0.000 description 1
- 108010002481 Lymphocyte Specific Protein Tyrosine Kinase p56(lck) Proteins 0.000 description 1
- WKUXWMWQTOYTFI-SRVKXCTJSA-N Lys-Met-Gln Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N WKUXWMWQTOYTFI-SRVKXCTJSA-N 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 1
- GQLOZEMWEBDEAY-NAKRPEOUSA-N Pro-Cys-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O GQLOZEMWEBDEAY-NAKRPEOUSA-N 0.000 description 1
- AUYKOPJPKUCYHE-SRVKXCTJSA-N Pro-Met-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@@H]1CCCN1 AUYKOPJPKUCYHE-SRVKXCTJSA-N 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 1
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 102000001712 STAT5 Transcription Factor Human genes 0.000 description 1
- 108010029477 STAT5 Transcription Factor Proteins 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- MUAFDCVOHYAFNG-RCWTZXSCSA-N Thr-Pro-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(O)=O MUAFDCVOHYAFNG-RCWTZXSCSA-N 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102100025041 Transcription initiation factor TFIID subunit 2 Human genes 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 1
- UKEVLVBHRKWECS-LSJOCFKGSA-N Val-Ile-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](C(C)C)N UKEVLVBHRKWECS-LSJOCFKGSA-N 0.000 description 1
- SSYBNWFXCFNRFN-GUBZILKMSA-N Val-Pro-Ser Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O SSYBNWFXCFNRFN-GUBZILKMSA-N 0.000 description 1
- UVHFONIHVHLDDQ-IFFSRLJSSA-N Val-Thr-Glu Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N)O UVHFONIHVHLDDQ-IFFSRLJSSA-N 0.000 description 1
- YQYFYUSYEDNLSD-YEPSODPASA-N Val-Thr-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O YQYFYUSYEDNLSD-YEPSODPASA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 230000017488 activation-induced cell death of T cell Effects 0.000 description 1
- 208000021841 acute erythroid leukemia Diseases 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 230000002424 anti-apoptotic effect Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 108700010039 chimeric receptor Proteins 0.000 description 1
- 230000004940 costimulation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005138 cryopreservation Methods 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000003162 effector t lymphocyte Anatomy 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 1
- 108010077515 glycylproline Proteins 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 238000011134 hematopoietic stem cell transplantation Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 102000056003 human IL15 Human genes 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000019421 lipase Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011022 operating instruction Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000000276 sedentary effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 102000035025 signaling receptors Human genes 0.000 description 1
- 108091005475 signaling receptors Proteins 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000012256 transgenic experiment Methods 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000029812 viral genome replication Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0636—T lymphocytes
- C12N5/0638—Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70503—Immunoglobulin superfamily
- C07K14/70535—Fc-receptors, e.g. CD16, CD32, CD64 (CD2314/705F)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2302—Interleukin-2 (IL-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2307—Interleukin-7 (IL-7)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/20—Cytokines; Chemokines
- C12N2501/23—Interleukins [IL]
- C12N2501/2315—Interleukin-15 (IL-15)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/50—Cell markers; Cell surface determinants
- C12N2501/515—CD3, T-cell receptor complex
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2502/00—Coculture with; Conditioned medium produced by
- C12N2502/30—Coculture with; Conditioned medium produced by tumour cells
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Gastroenterology & Hepatology (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Hematology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
技术领域technical field
本发明属于生物医学技术领域,具体的涉及T细胞的培养扩增方法。The invention belongs to the technical field of biomedicine, and particularly relates to a method for culturing and expanding T cells.
背景技术Background technique
CD8 T细胞又称细胞毒T淋巴细胞(cytotoxic T lymphocytes,CTL),是适应性免疫系统 (adaptive immune system)构建抗原特异性免疫保护机制的一条重要防线。CD8 T细胞通过T 细胞受体(T cell receptor,TCR)特异性识别抗原,这种抗原以具有免疫原性的肽段表位(peptide epitope)嵌入MHC-I类分子的方式(简称pMHCI)表达在细胞表面。CD8 T cells, also known as cytotoxic T lymphocytes (CTL), are an important line of defense for the adaptive immune system to construct antigen-specific immune protection mechanisms. CD8 T cells specifically recognize antigens through T cell receptors (TCRs), which are expressed in the form of immunogenic peptide epitopes embedded in MHC-I molecules (pMHCI for short) on the cell surface.
采用现代细胞工程技术从体液(如血液)或组织(如肿瘤病灶)中富集(enrichment)并规模化扩增(expansion)抗原特异性CD8 T细胞,然后输注给需要治疗的患者,这种治疗选项称为过继性T细胞治疗(adoptive T cell therapy)或称T细胞治疗(Tcell therapy)。临床资料揭示,这种T细胞治疗可以使难治性(refractory)的病毒感染(如CMV和EB病毒等) 和恶性肿瘤(如黑色素瘤等)得到控制,取得明显的临床疗效。而采用基因工程技术构建TCR 表达载体后制备遗传改造的表位特异性TCR-T细胞,目前也正在临床试验,这种新颖的T细胞治疗被誉为是引领肿瘤治疗发展的一个前沿领域,受到了肿瘤医药界的高度关注。Using modern cell engineering techniques to enrich and expand antigen-specific CD8 T cells from bodily fluids (such as blood) or tissues (such as tumor lesions) on a large scale, and then infuse them into patients in need of treatment, this The treatment option is called adoptive T cell therapy or Tcell therapy. Clinical data reveal that this T cell therapy can control refractory viral infections (such as CMV and EB virus) and malignant tumors (such as melanoma, etc.), and achieve significant clinical efficacy. The use of genetic engineering technology to construct TCR expression vectors to prepare genetically modified epitope-specific TCR-T cells is currently under clinical trials. This novel T cell therapy is known as a frontier field leading the development of tumor therapy. attracted the attention of the oncology medical community.
无论是富集体内的原代(primary)TCR+T细胞还是构建遗传改造的TCR-T细胞,都需要通过一个高效的扩增平台(expansion platform)才能获得足够的T细胞用于临床治疗。这个平台主要提供二项技术支撑,一是按照GMP标准实现T细胞的规模化培养扩增;二是避免T 细胞在快速增殖的同时发生终未分化而成为效应T细胞(effector T cells,TEFF)。在这二项技术支撑中,控制细胞分化显得更为重要,因为T细胞输注后植入体内长期生存并在遭遇相应抗原时高效扩增及分化形成具有特异性杀伤功能的TEFF,是发挥临床疗效的2个前提条件。Whether it is primary TCR + T cells in the enrichment or the construction of genetically engineered TCR-T cells, an efficient expansion platform is required to obtain sufficient T cells for clinical treatment. This platform mainly provides two technical supports, one is to realize large-scale culture and expansion of T cells in accordance with GMP standards; the other is to prevent T cells from undifferentiated and become effector T cells (T EFF ) while rapidly proliferating. ). Among these two technical supports, the control of cell differentiation is more important, because T cells are implanted into the body for long-term survival after infusion and efficiently expand and differentiate to form TEFF with specific killing function when they encounter corresponding antigens. 2 prerequisites for clinical efficacy.
通常将CD8 T细胞分为初始细胞(TN),记忆细胞(memory,TM)和效应细胞(TEFF) 等亚群,其中TM又分为干细胞型(stem cell,TSCM)、中央型(central,TCM)和效应型(effector, TEM)等组份。这些CD8 T细胞亚群及组份具有不同的表型标志,其中TSCM和TCM同时表达趋化因子受体CCR7、黏附分子CD62L、共刺激受体(costimulatory receptor)CD27和CD28、 IL7受体α链CD127以及凋亡受体CD95,区别在于TSCM表达CD45RA而TCM表达CD45RO (图1)。CD8 T cells are usually divided into naive cells ( T N ), memory cells (memory, T M ) and effector cells (T EFF ) and other subgroups, among which T M is further divided into stem cell (stem cell, T SCM ), central (central, T CM ) and effector cells (effector, TEM ) and other components. These CD8 T cell subsets and components have different phenotypic markers, wherein T SCM and T CM simultaneously express chemokine receptor CCR7, adhesion molecule CD62L, costimulatory receptors CD27 and CD28, IL7 receptors Alpha chain CD127 and apoptosis receptor CD95, differing in that T SCM expresses CD45RA and T CM expresses CD45RO (Figure 1).
TN是从胸腺释放并且未曾遭遇过抗原的T细胞。抗原激发免疫应答时,TN增殖后依次分化形成TSCM、TCM、TEM和TEFF(其中表达CD45RA的TEFF又称TEMRA)。当抗原清除后, TEFF迅速凋亡从体内消失,而TM则保存下来,其中TSCM和TCM定居在淋巴造血器官如骨髓内,TEM分布在外周组织如血循环中。通常TSCM和TCM能够在体内生存数十年甚至伴随终身,这些TM亚群具有干细胞样特性(如自我更新等)、再次遭遇相应抗原时能够被迅速激活并引起效应程度更强的保护性免疫应答。因而抗原特异性TCR+CD8 T细胞经培养扩增后只有保持 TSCM和TCM的表型和生物学特性,才能胜任治疗功能。确实,上述TM组份的占比与T细胞输注后的临床疗效密切相关,而在基因表达水平,CD27和CD127表达是T细胞输注后能够长期生存的重要标志。 TNs are T cells that are released from the thymus and have not encountered antigen. When an antigen stimulates an immune response, TN differentiates into T SCM , T CM , T EM and T EFF in turn after proliferation (T EFF expressing CD45RA is also called T EMRA ). When the antigen is cleared, TEFF rapidly disappears from the body by apoptosis, while TM is preserved, in which TSCM and TCM settle in lymphoid hematopoietic organs such as bone marrow, and TEM distributes in peripheral tissues such as blood circulation. Usually T SCM and T CM can survive in the body for decades or even life. These TM subpopulations have stem cell-like properties (such as self-renewal, etc.), and can be rapidly activated when they encounter the corresponding antigen again and cause a stronger degree of protection. Sexual immune response. Therefore, antigen-specific TCR + CD8 T cells can be competent for therapeutic function only if they maintain the phenotype and biological characteristics of T SCM and T CM after culture and expansion. Indeed, the proportion of the above-mentioned TM components is closely related to the clinical efficacy after T cell infusion, and at the level of gene expression, CD27 and CD127 expression are important markers for long-term survival of T cells after infusion.
抗原引起CD8 TN激活并增殖需要3个信号,即TCR第1信号、共刺激受体第2信号和细胞因子受体第3信号。这些信号需要抗原递呈细胞(antigen-presenting cells,APC)如树突状细胞(dendritic cells,DC)提供,其中CD28和IL2受体是功能最强的第2和第3信号,但这些信号的主要作用是诱导TN增殖并分化形成TEFF。当抗原清除后,抗原特异性TM在体内生存是一个增殖与凋亡的动态平衡,其增殖受到自稳增殖(homeostatic proliferation)机制的精细调控。这种自稳增殖无需抗原特异性TCR信号,细胞因子受体第3信号起着关键作用。Three signals are required for antigen-induced activation and proliferation of CD8 TN , namely the first signal of TCR, the second signal of costimulatory receptor and the third signal of cytokine receptor. These signals require antigen-presenting cells (antigen-presenting cells, APC) such as dendritic cells (dendritic cells, DC) to provide, of which CD28 and IL2 receptors are the most functional second and third signals, but the The main role is to induce TN to proliferate and differentiate to form TEFF . After the antigen is cleared, the survival of antigen-specific TM in vivo is a dynamic balance between proliferation and apoptosis, and its proliferation is finely regulated by the mechanism of homeostatic proliferation. This homeostatic proliferation does not require antigen-specific TCR signaling, and
从体液或组织中规模化制备抗原特异性CD8 T细胞的一个主要技术障碍是获得足够数量的APC尤其是DC,如从1x 108外周血单个核细胞(PBMC)(相当于100ml血液)中通常只能获得不足107的DC,因而制备一份T细胞治疗制剂(细胞数量≥108)需要采血3次或以上(或一次性采血300–600ml)才能满足DC制备的需求。显然,如此规模的采血量在临床上难度较大,患者也不易接受。因而寻找适当的APC(DC)替代方案高效扩增抗原特异性 T细胞,是当前国际上普遍关注的一个研究课题。A major technical hurdle in the large-scale production of antigen-specific CD8 T cells from body fluids or tissues is obtaining sufficient numbers of APCs, especially DCs, as typically obtained from 1 x 10 8 peripheral blood mononuclear cells (PBMCs) (equivalent to 100 ml of blood). Only less than 10 7 DCs can be obtained, so to prepare a T cell therapy preparation (number of cells ≥ 10 8 ), three or more blood collections (or 300–600 ml of blood at one time) are required to meet the needs of DC preparation. Obviously, such a large amount of blood collection is clinically difficult and difficult for patients to accept. Therefore, finding an appropriate alternative to APC (DC) to efficiently expand antigen-specific T cells is a research topic that is generally concerned internationally.
因此,本领域迫切需要开发出新的更为有效的抗原特异性CD8 T细胞的扩增培养方法。Therefore, there is an urgent need in the art to develop new and more effective methods for expanding and culturing antigen-specific CD8 T cells.
发明内容SUMMARY OF THE INVENTION
本发明提供一种抗原特异性CD8 T细胞的扩增培养方法,同时提供一种K3EC细胞。The present invention provides a method for expanding and culturing antigen-specific CD8 T cells, as well as a K3EC cell.
本发明第一发明,提供一种抗原特异性CD8 T细胞的扩增培养方法,即在下列物质的存在下,诱导扩增培养抗原特异性CD8 T细胞:The first invention of the present invention provides a method for expanding and culturing antigen-specific CD8 T cells, that is, in the presence of the following substances, inducing, expanding and culturing antigen-specific CD8 T cells:
(1)K3EC细胞;所述K3EC细胞为表达CD2配体CD58、NKG2D配体MICA/B和CD137 配体CD137L的K562工程细胞,用于提供激活CD8 T细胞的共刺激受体第2信号;(1) K3EC cells; the K3EC cells are K562 engineered cells expressing CD2 ligand CD58, NKG2D ligand MICA/B and CD137 ligand CD137L, which are used to provide the second signal of the costimulatory receptor for activating CD8 T cells;
(2)靶标抗原的肽段重叠文库,用于提供激活CD8T细胞的TCR第1信号。(2) The peptide overlapping library of target antigens is used to provide the first signal of TCR to activate CD8 T cells.
上述靶标抗原为巨细胞病毒-pp65蛋白。The above target antigen is cytomegalovirus-pp65 protein.
上述培养方法中,将K3EC细胞与外周血单个核细胞共培养。In the above culture method, K3EC cells are co-cultured with peripheral blood mononuclear cells.
具体的,所述PBMC与K3EC细胞共培养的比例在20:1到5:1之间。Specifically, the co-culture ratio of the PBMC and K3EC cells is between 20:1 and 5:1.
优选的,在扩增培养抗原特异性CD8 T细胞时,补充细胞因子作为CD8 T细胞增殖的第 3信号。Preferably, when the antigen-specific CD8 T cells are expanded and cultured, cytokines are supplemented as the third signal for the proliferation of CD8 T cells.
上述细胞因子为IL15及IL2或IL15及IL7。上述细胞因子为IL15及IL2。The aforementioned cytokines are IL15 and IL2 or IL15 and IL7. The aforementioned cytokines are IL15 and IL2.
上述方法还包括以下步骤,采用多聚甲醛固定K3EC细胞;然后分选富集均质性CD8T 细胞,再培养扩增CD8 T细胞至需要的数量。The above method further includes the following steps: using paraformaldehyde to fix the K3EC cells; then sorting and enriching the homogeneous CD8 T cells, and then culturing and expanding the CD8 T cells to the required number.
本发明第二发明提供一种抗原特异性CD8 T细胞的扩增培养方法,所述培养方法包括步骤:The second invention of the present invention provides a method for expanding and culturing antigen-specific CD8 T cells, which comprises the steps of:
(1)收集外周血,离心分离获得外周血单个核细胞;(1) Collect peripheral blood and centrifuge to obtain peripheral blood mononuclear cells;
(2)将K3EC细胞与外周血单个核细胞共培养;所述K3EC细胞为表达CD2配体CD58、NKG2D配体MICA/B和CD137配体CD137L的K562工程细胞,用于提供激活CD8 T细胞的共刺激受体第2信号;(2) Co-culturing K3EC cells with peripheral blood mononuclear cells; the K3EC cells are K562 engineered cells expressing CD2 ligand CD58, NKG2D ligand MICA/B, and CD137 ligand CD137L, which are used to provide the ability to activate CD8 T cells.
(3)步骤(2)共培养同时,采用巨细胞病毒-pp65蛋白的全蛋白肽段重叠文库激活CD8T 细胞的TCR第1信号;(3) step (2) at the same time of co-cultivation, using the whole protein peptide overlapping library of cytomegalovirus-pp65 protein to activate the first signal of TCR of CD8 T cells;
(4)T细胞通过步骤(2)和步骤(3)扩增培养后,补充细胞因子作为CD8 T细胞增殖的第3信号;(4) After the T cells are expanded and cultured through steps (2) and (3), cytokines are supplemented as the third signal for CD8 T cell proliferation;
(5)采用多聚甲醛固定K3EC细胞,然后组织分选富集均质性CD8 T细胞;(5) Using paraformaldehyde to fix K3EC cells, and then tissue sorting to enrich homogeneous CD8 T cells;
(6)培养扩增均质性CD8 T细胞至需要的数量。(6) Culture and expand homogeneous CD8 T cells to the required number.
上述细胞因子为IL15及IL2或IL15及IL7。The aforementioned cytokines are IL15 and IL2 or IL15 and IL7.
上述PBMC与K3EC细胞共培养的比例在20:1到5:1之间。The ratio of PBMC and K3EC cells co-cultured above was between 20:1 and 5:1.
较佳的,上述PBMC与K3EC细胞共培养的比例为5:1。Preferably, the co-culture ratio of the above PBMC and K3EC cells is 5:1.
上述培养方法还包括以下步骤:The above-mentioned cultivation method also comprises the following steps:
(7)对步骤(6)获得的均质性CD8 T细胞进行质量检验。(7) Perform quality inspection on the homogeneous CD8 T cells obtained in step (6).
上述质量检验为:The above quality inspections are:
检测所述CD8 T细胞特性,包括检测细胞组份(TSCM/CM)、抗原特异性应答能力(TSR) 和TCR识别的反应性肽段。The characteristics of the CD8 T cells were detected, including the detection of cellular components (TSCM/CM), antigen-specific responsiveness (TSR) and reactive peptides recognized by TCR.
上述质量检验还包括检测生物安全性指标,包括细胞存活率、致热源、病原体和K3EC细胞残留。The above quality inspection also includes the detection of biosafety indicators, including cell viability, pyrogens, pathogens, and K3EC cell residues.
本发明第三方面,提供上述抗原特异性CD8 T细胞的扩增培养方法获得的抗原特异性CD8 T细胞。The third aspect of the present invention provides antigen-specific CD8 T cells obtained by the above-mentioned method for expanding and culturing antigen-specific CD8 T cells.
本发明第四方面,提供一种K3EC细胞,其特征在于,所述K3EC细胞为K562工程细胞,可以均质性表达CD58、MICA/B和CD137L。The fourth aspect of the present invention provides a K3EC cell, characterized in that the K3EC cell is a K562 engineered cell, which can homogeneously express CD58, MICA/B and CD137L.
上述K3EC细胞中导入CD137L和CD64基因。CD137L and CD64 genes were introduced into the above K3EC cells.
本发明专利介绍了一种基于MLPC-plus的快速扩增平台,具有以下特征:The patent of the present invention introduces a rapid amplification platform based on MLPC-plus, which has the following characteristics:
1.绕过APC加工递呈肽段表位这个环节,直接激活PBMC中的抗原特异性CD8 T细胞。混合淋巴细胞-肽段培养(mixed lymphocyte peptide cultures,MLPC)是目前较常用的一种APC 替代方案。在MLPC过程中,肽段表位嵌入PBMC表面相应MHCI中形成pMHC,后者即可被CD8 T表面的特异性TCR识别并转导激活信号。这种抗原递呈方式称为交叉递呈(crosspresentation),其特征是无需APC进行细胞内抗原加工过程而直接激活相应TCR。但由于绕过了APC加工递呈肽段表位这个环节,MLPC激活CD8 T细胞时通常缺乏足够的共刺激信号,此类T细胞的增殖能力较弱并且容易发生激活诱导的细胞死亡(activation-induced celldeath, AICD)。为了补充在MLPC中CD8 T细胞激活所需要的共刺激信号,本专利采用基因工程技术使K562细胞表达CD2配体CD58、NKG2D配体MICA/B和CD137配体CD137L,作为人工APC(artificial APC,aAPC)与PBMC共培养。这种改良的MLPC称为MLPC-plus。1. Bypassing the link of APC processing and presenting peptide epitopes and directly activating antigen-specific CD8 T cells in PBMC. Mixed lymphocyte peptide cultures (MLPC) is a commonly used alternative to APC. During the MLPC process, the peptide epitopes are embedded in the corresponding MHCI on the surface of PBMC to form pMHC, which can be recognized by the specific TCR on the surface of CD8 T and transduce activation signals. This method of antigen presentation is called cross-presentation, which is characterized by direct activation of the corresponding TCR without the need for intracellular antigen processing by APC. However, due to bypassing the process of APC's processing of presenting peptide epitopes, MLPC usually lacks sufficient co-stimulatory signals to activate CD8 T cells, and such T cells have weak proliferation and are prone to activation-induced cell death (activation- induced celldeath, AICD). In order to supplement the costimulatory signal required for CD8 T cell activation in MLPC, this patent uses genetic engineering technology to make K562 cells express CD2 ligand CD58, NKG2D ligand MICA/B and CD137 ligand CD137L, as artificial APC (artificial APC, aAPCs) were co-cultured with PBMCs. This modified MLPC is called MLPC-plus.
2.具备快速形成均质性CD8 T细胞群的能力。通过MLPC-plus技术激活T细胞后,进一步从增殖细胞中富集目标细胞群,能够在3周内从20ml外周血样中获得108量级、均质性的 CD8 T细胞,具有快速、高效制备的特征。2. Has the ability to rapidly form a homogeneous CD8 T cell population. After T cells are activated by MLPC-plus technology, the target cell population is further enriched from proliferating cells, and 108-order, homogeneous CD8 T cells can be obtained from a 20ml peripheral blood sample within 3 weeks. feature.
3.添加IL15及低剂量IL2提供第3信号促使TSCM/CM形成。抗原激活CD8 T细胞后需要提供IL15和IL2第3信号才能高效扩增。上述细胞因子分别通过特异性受体激活JAK-STAT5 信号通路发挥作用,但IL15受体和IL2受体信号产生的免疫学效应不一样,IL2与其受体结合促使CD8 T细胞增殖并分化成为TEFF,而IL15与其受体结合主要是维持TM的自稳增殖。 IL2和IL15的作用差异在于IL2对PI3K-AKT信号通路的刺激活性明显高于IL15,其中AKT (蛋白激酶B)是CCR7和CD62L的负调控因子。CCR7和CD62L的编码基因Ccr7和Cd62l 表达受Kruppel样因子2(KLF2,Kruppel-like factor 2)调控,而后者又受Forkhead转录因子(如FOXO1和FOXO3a)调控。在TN和TSCM/CM中,FOXO1和FOXO3a位于核内并诱导KLF2表达。当AKT激活时,FOXO1和FOXO3a被磷酸化修饰后从核内转位到胞浆内并被蛋白酶体(proteasome)降解,于是KLF2表达下降,因而AKT高活性的T细胞通常不表达CCR7和CD62L。据此,本专利选择高浓度IL15(10ng/ml)及低浓度IL2(50U/ml)组合进行培养,使得CD8 T细胞扩增后TSCM和TCM分别占比23.5%和45.3%,上述干细胞组份(stem cell compartment)的占比达到68.8%。类似的,还可以添加IL15及IL7作为第3信号。3. The addition of IL15 and low-dose IL2 provides the third signal to promote the formation of TSCM/CM. After antigen activation of CD8 T cells, IL15 and IL2 3rd signals are required for efficient expansion. The above cytokines play their roles by activating the JAK-STAT5 signaling pathway through specific receptors, but the immunological effects of IL15 receptor and IL2 receptor signaling are different. The binding of IL2 to its receptor promotes the proliferation and differentiation of CD8 T cells into TEFF. The binding of IL15 to its receptor is mainly to maintain the self-stable proliferation of TM. The difference between IL2 and IL15 is that the stimulatory activity of IL2 on the PI3K-AKT signaling pathway is significantly higher than that of IL15, of which AKT (protein kinase B) is a negative regulator of CCR7 and CD62L. The expression of Ccr7 and Cd62l encoding genes of CCR7 and CD62L is regulated by Kruppel-like factor 2 (KLF2, Kruppel-like factor 2), which in turn is regulated by Forkhead transcription factors (such as FOXO1 and FOXO3a). In TN and TSCM/CM, FOXO1 and FOXO3a localize in the nucleus and induce KLF2 expression. When AKT is activated, FOXO1 and FOXO3a are phosphorylated and then translocated from the nucleus to the cytoplasm and degraded by the proteasome, so the expression of KLF2 decreases, so T cells with high AKT activity usually do not express CCR7 and CD62L. Accordingly, this patent selects a combination of high-concentration IL15 (10ng/ml) and low-concentration IL2 (50U/ml) for culture, so that after CD8 T cell expansion, TSCM and TCM account for 23.5% and 45.3%, respectively. The above stem cell components (stem cell compartment) accounted for 68.8%. Similarly, IL15 and IL7 can also be added as the third signal.
4.抗原特异性免疫应答能力强。CD8 TSCM/CM的特征是在相应抗原表位激活后能够分泌 IFN等细胞因子并通过快速增殖分化形成TEFF发挥效应功能。采用IFN俘获试验进行检测,证明CMV-pp65抗原刺激后的IFN分泌量与多克隆的CD3抗体刺激相等(按ASR计算平均达到101%)。进一步应用表位筛查(epitope screening)技术进行鉴定,发现扩增的 CD8T细胞中存在1个或多个细胞克隆,这些T细胞克隆能够识别不同的HLA-A和/或HLA-B 位点所递呈的抗原表位。鉴定这些特异性T细胞识别的抗原表位及其HLA递呈位点有助于选择具备上述位点的疾病(如白血病)患者进行有针对性的输注治疗,从而为实施精准免疫治疗(precision immunotherapy)奠定科学基础。4. Antigen-specific immune response ability. CD8 TSCM/CM is characterized by the ability to secrete cytokines such as IFN after the activation of the corresponding antigenic epitope, and to exert effector function through rapid proliferation and differentiation to form TEFF. Detected by IFN capture assay, it was proved that the amount of IFN secretion stimulated by CMV-pp65 antigen was equal to that stimulated by polyclonal CD3 antibody (average 101% calculated by ASR). Further identification by epitope screening (epitope screening) technology, it was found that there were one or more cell clones in the expanded CD8 T cells, and these T cell clones could recognize different HLA-A and/or HLA-B sites. presented antigenic epitopes. Identifying the antigenic epitopes recognized by these specific T cells and their HLA presentation sites will help to select patients with diseases (such as leukemia) with the above sites for targeted infusion therapy, so as to implement precision immunotherapy (precision immunotherapy). immunotherapy) to lay the scientific foundation.
附图说明Description of drawings
图1.CD8 T细胞亚群表型特征Figure 1. Phenotypic characterization of CD8 T cell subsets
T细胞分为初始型(TN)、记忆型(TM)和效应型(TEFF)等亚群,其中TM又细分为干细胞型(TSCM)、中央型(TCM)、组织定居型(TRM)和效应型(TEM)等组份。采用10个表型标志可以鉴定上述细胞亚群或组份。T cells are divided into naive ( TN ), memory ( TM ), and effector ( TEFF ) subgroups, of which TM is further subdivided into stem cell ( TSCM ), central ( TCM ), tissue Sedentary (T RM ) and effector ( TEM ) components. The above cell subsets or components can be identified using 10 phenotypic markers.
图2.抗原特异性CD8 T细胞的制备工艺Figure 2. Preparation process of antigen-specific CD8 T cells
T细胞制备过程分为诱导扩增、分选富集和质控检验三个环节,诱导扩增通过MLPC-plus (MLPC+K3EC)和MLPC(这时候还是有K3EC细胞的吧,没看到有去除的步骤)实现。分选富集采用磁性细胞分选(MACS)获得CD8 T细胞,后者扩增达到108量级时检测抗原特异性应答(ASR)和干细胞组份(TSCM及TCM)占比作为主要放行标准,某些HLA基因型也可以采用相应的四聚体(tetramer)检测TCR+细胞占比。The T cell preparation process is divided into three steps: induction and expansion, sorting and enrichment, and quality control inspection. The induction and expansion are carried out through MLPC-plus (MLPC+K3EC) and MLPC (there are still K3EC cells at this time, I don’t see any removal step) is implemented. Magnetic cell sorting (MACS) was used for sorting and enrichment to obtain CD8 T cells. When the latter expanded to the order of 10 8 , the antigen-specific response (ASR) and the proportion of stem cell components ( TSCM and TCM ) were detected as the main According to the release criteria, some HLA genotypes can also use the corresponding tetramer to detect the proportion of TCR + cells.
图3.K3EC表型分析Figure 3. K3EC phenotypic analysis
FCM检测K3EC细胞表面经慢病毒转染导入的CD64(上排中)和CD137L(上排右),并以同型对照抗体染色(上排左)作为对照。该细胞表面也检测到MICA/B(下排中)和CD58 (下排右),而HLA‐ABC微量表达(下排左)。横坐标系导入的GFP示踪蛋白,纵坐标为待检抗体的荧光信号,阳性细胞占比见图右上角。CD64 (top row, middle) and CD137L (top row, right) introduced by lentiviral transfection on the surface of K3EC cells were detected by FCM, and stained with isotype control antibody (top row left) as a control. MICA/B (bottom row middle) and CD58 (bottom row right) were also detected on the cell surface, while HLA-ABC was slightly expressed (bottom row left). The abscissa is the introduced GFP tracer protein, the ordinate is the fluorescence signal of the antibody to be tested, and the proportion of positive cells is shown in the upper right corner of the figure.
图4.CD64的人源IgG抗体结合能力检测Figure 4. Detection of human IgG antibody binding ability of CD64
采用竞争结合试验法检测人源化的CD3抗体(IgG1)对鼠源CD154荧光抗体(IgG2a)、 CD58荧光抗体(IgG2a)、CD137L荧光抗体(IgG1)染色信号的影响。与对照组(上排左) 比较,K3EC表达CD64(上排右)。在缺乏CD3抗体时,CD154(中排左)、CD58(中排中)和CD137L(中排右)均呈检测阳性。当加入10倍过量的CD3抗体时,CD154(下排左) 检测阳性率显著降低,但不影响CD58(下排中)和CD137L(下排右)检测结果。横坐标系导入的GFP示踪蛋白,纵坐标为待检抗体的荧光信号,阳性细胞占比见图右上角。The effect of humanized CD3 antibody (IgG1) on the staining signals of mouse CD154 fluorescent antibody (IgG2a), CD58 fluorescent antibody (IgG2a) and CD137L fluorescent antibody (IgG1) was detected by competitive binding assay. K3EC expressed CD64 (upper row right) compared to control group (upper row left). In the absence of CD3 antibodies, CD154 (middle row left), CD58 (middle row middle) and CD137L (middle row right) all tested positive. When a 10-fold excess of CD3 antibody was added, the positive rate of CD154 (bottom row left) detection was significantly reduced, but the detection results of CD58 (bottom row middle) and CD137L (bottom row right) were not affected. The abscissa is the introduced GFP tracer protein, the ordinate is the fluorescence signal of the antibody to be tested, and the proportion of positive cells is shown in the upper right corner of the figure.
图5.CFSE稀释法检测T细胞增殖Figure 5. CFSE dilution assay to detect T cell proliferation
PBMC经CFSE荧光染色后加入CD3抗体作为TCR第1信号,然后添加不同比例K3EC 提供共刺激第2信号(PBMC:K3EC比例分别为5:1、10:1和20:1),培养2天及5天时收集细胞,其中检测组加入CD3荧光抗体染色T细胞,对照组不加荧光抗体。横坐标系CFSE 信号,纵坐标为CD3抗体荧光信号,T细胞增殖后CD3检测阳性但CFSE信号减弱,此类增殖细胞占比见图左上角。PBMCs were stained with CFSE and then added with CD3 antibody as the first signal of TCR, and then added with different ratios of K3EC to provide the second signal of co-stimulation (PBMC:K3EC ratios were 5:1, 10:1 and 20:1), cultured for 2 days and Cells were collected at 5 days, and CD3 fluorescent antibody was added to stain T cells in the test group, and no fluorescent antibody was added in the control group. The abscissa is the CFSE signal, and the ordinate is the CD3 antibody fluorescence signal. After T cell proliferation, CD3 is positive but the CFSE signal is weakened. The proportion of such proliferating cells is shown in the upper left corner.
图6.CMV结构示意图Figure 6. Schematic diagram of CMV structure
CMV呈二十面体蛋白衣壳结构,内含双链DNA病毒基因组。衣壳由球状的脂质膜包裹,体被蛋白表达在膜表面。CMV has an icosahedral protein capsid structure and contains a double-stranded DNA viral genome. The capsid is surrounded by a spherical lipid membrane, and the body is expressed on the surface of the membrane.
图7.CMV-pp65全蛋白重叠肽段文库Figure 7. CMV-pp65 whole protein overlapping peptide library
pp65是CMV最主要的结构蛋白,也是病毒颗粒中含量最高的一种体被蛋白。pp65全蛋白的肽段重叠文库含138个肽段,每个肽段长度15个氨基酸,相邻肽段之间11个氨基酸序列重叠。pp65 is the most important structural protein of CMV, and it is also the most abundant integument protein in virus particles. The peptide overlapping library of pp65 whole protein contains 138 peptides, each peptide is 15 amino acids in length, and 11 amino acid sequences overlap between adjacent peptides.
图8.ASR检测结果Figure 8. ASR detection results
PBMC中加入20%K3EC(提供共刺激第2信号)后分组,阳性对照组(P)添加CD3抗体,实验组(E)添加CMV-pp65肽段,阴性对照组(N)不添加TCR第1信号。培养24hr 后用IFNγ俘获抗体将分泌在上清中的IFNγ锚定到细胞表面,PBS淋洗后用IFNγ荧光抗体检测阳性细胞(包括GFP+K3EC和GFP-PBMC)。横坐标系GFP荧光信号,纵坐标为IFNγ荧光信号,阳性细胞占比分别见图左及右上角。抗原特异性应答(ASR)按所列公式计算。After adding 20% K3EC to the PBMC (providing the second signal of costimulation), the groups were divided into groups. The positive control group (P) was added with CD3 antibody, the experimental group (E) was added with CMV-pp65 peptide, and the negative control group (N) was not added with TCR No. 1 Signal. After culturing for 24 hrs, the IFNγ secreted in the supernatant was anchored to the cell surface with IFNγ capture antibody, and positive cells (including GFP + K3EC and GFP - PBMC) were detected with IFNγ fluorescent antibody after washing with PBS. The abscissa is the GFP fluorescence signal, the ordinate is the IFNγ fluorescence signal, and the proportion of positive cells is shown in the left and upper right corners, respectively. Antigen-specific response (ASR) was calculated according to the formula listed.
图9.MLPC-plus培养HLA-A2+CD86+细胞检测Figure 9. Detection of HLA-A2 + CD86 + cells in MLPC-plus culture
PBMC经MLPC-plus培养7天后取样,分别用HLA-A2及CD86荧光抗体染色,FCM检测到上述标志双阳性细胞(见图右上角),此类细胞负载肽段表位后具有APC功能。PBMCs were sampled after 7 days of MLPC-plus culture, and stained with HLA-A2 and CD86 fluorescent antibodies respectively. FCM detected double-positive cells with the above markers (see the upper right corner of the figure), and these cells have APC function after loading peptide epitopes.
图10.CD8 T细胞中的干细胞组份检测Figure 10. Detection of stem cell components in CD8 T cells
PBMC培养前后分别取样,采用CD8、CD95、CD45RA和CD62L荧光抗体染色,FCM 检测首先选取淋巴细胞组份(图左)检测CD8+CD95+细胞(图中),选取该群细胞后检测 CD45RA和CD62L表达(图右),其中TSCM为CD45RA+CD62L+,TCM为CD45RA-CD62L+。图中上排为培养前PBMC的检测结果,中排为MLPC-plus培养后的检测结果,下排为MACS 富集CD8 T细胞后的检测结果。PBMC were sampled before and after culture, and stained with CD8, CD95, CD45RA and CD62L fluorescent antibodies. For FCM detection, the lymphocyte fraction (the left of the figure) was firstly selected to detect CD8 + CD95 + cells (in the figure), and then CD45RA and CD62L were detected after selecting this group of cells Expression (right of the figure), where TSCM is CD45RA + CD62L + , and T CM is CD45RA - CD62L + . The upper row in the figure is the detection result of PBMC before culture, the middle row is the detection result after MLPC-plus culture, and the lower row is the detection result after MACS enrichment of CD8 T cells.
图11.CD8 T细胞的肽段表位筛查Figure 11. Peptide epitope screening of CD8 T cells
MACS富集的CD8 T细胞中加入20%K3EC(提供共刺激第2信号)后分组,阳性对照组(P)添加CD3抗体,实验组(E)分别添加CMV-pp65肽段文库以及10个HLA位点特异性肽段表位,阴性对照组(N)不添加TCR第1信号。培养24hr后FCM检测IFNγ+细胞(与 ASR检测方法相同)。MACS-enriched CD8 T cells were added with 20% K3EC (providing the second signal of co-stimulation) and grouped into groups. CD3 antibody was added to the positive control group (P), and the CMV-pp65 peptide library and 10 HLA were added to the experimental group (E), respectively. Site-specific peptide epitopes, the negative control group (N) does not add the first signal of TCR. IFNγ + cells were detected by FCM after 24hr of culture (same as ASR detection method).
具体实施方式Detailed ways
下面结合附图并通过具体的实施方式来进一步说明本发明的技术方案。本发明的技术方案都将会描述的更加清楚。实施例中所用的生化试剂均为市售。The technical solutions of the present invention will be further described below with reference to the accompanying drawings and through specific embodiments. The technical solutions of the present invention will be described more clearly. The biochemical reagents used in the examples are all commercially available.
实施例1本发明的抗原特异性CD8 T细胞制备工艺流程(图2)Example 1 The production process of the antigen-specific CD8 T cells of the present invention (Fig. 2)
1.MLPC-plus激活并扩增抗原(CMV-pp65)特异性CD8 T细胞1. MLPC-plus activates and expands antigen (CMV-pp65) specific CD8 T cells
1)采集20ml外周血,肝素抗凝1) Collect 20ml of peripheral blood, heparin anticoagulation
2)Ficoll梯度离心收集PBMC,PBS离心洗涤3次2) PBMCs were collected by Ficoll gradient centrifugation and washed 3 times with PBS
3)10%FCS-RPMI中静息(resting)培养过夜3) Resting overnight in 10% FCS-RPMI
4)加入20%K3EC后离心弃上清,3%SG-AIM-V调整PBMC至1x 107/ml4) After adding 20% K3EC, centrifuge and discard the supernatant, adjust PBMC to
5)加入1μg/ml CMV-pp65抗原肽段(Miltenyi,美天旎,货号130-093-435),37℃温育2hr5) Add 1 μg/ml CMV-pp65 antigenic peptide (Miltenyi, Miltenyi, Cat. No. 130-093-435), incubate at 37°C for 2hr
6)补充3%SG-AIM-V至4ml,加入4ml 2x CM,6孔板培养及传代6)
7)培养7天时收集细胞,调整细胞至1x 107/ml7) Collect cells after 7 days of culture, adjust cells to
8)加入1μg/ml CMV-pp65抗原肽段,37℃温育2hr8) Add 1 μg/ml CMV-pp65 antigenic peptide and incubate at 37°C for 2hr
9)多聚甲醛固定K3EC细胞9) Fix K3EC cells with paraformaldehyde
10)3%SG-AIM-V调整细胞至1x 106/ml,2x CM稀释至5x 105/ml,扩增细胞数量至≥1x 108(约3天)10) Adjust cells to
注:3%SG-AIM-V系AIM-V培养基(GIBCO公司)中添加3%的血清替代物(不含异种蛋白) 2x CM是在3%SG-AIM-V中添加20ng/ml重组人IL15及100U/ml重组人IL2Note: 3% SG-AIM-V line AIM-V medium (GIBCO company) is supplemented with 3% serum replacement (without xenogeneic protein) 2x CM is 20ng/ml recombinant in 3% SG-AIM-V Human IL15 and 100U/ml recombinant human IL2
2.富集CD8 T细胞及培养扩增2. Enrichment of CD8 T cells and culture expansion
1)收集细胞,磁珠分选(MACS)富集CD8 T细胞(美国Invitrogen试剂盒)1) Collect cells and enrich CD8 T cells by magnetic bead sorting (MACS) (Invitrogen kit in the United States)
2)3%SG-AIM-V调整CD8 T细胞至1x 106/ml2) 3% SG-AIM-V to adjust CD8 T cells to
3)2x CM稀释至5x 105/ml,扩增细胞数量至≥1x 108(约3-5天)3) Dilute 2x CM to
3.质控检验3. Quality control inspection
1)FCM检测CD8 T细胞特性,包括TSCM/CM占比、抗原特异性应答能力(ASR)和TCR 识别的反应性肽段。1) FCM detects the characteristics of CD8 T cells, including T SCM/CM ratio, antigen-specific responsiveness (ASR) and reactive peptides recognized by TCR.
2)生物安全性指标,包括细胞存活率、致热源、病原体(如支原体等)和K3EC细胞残留。2) Biosafety indicators, including cell viability, pyrogens, pathogens (such as mycoplasma, etc.) and K3EC cell residues.
实施例2构建K562‐aAPC(K3EC)Example 2 Construction of K562-aAPC (K3EC)
1.共刺激分子的选择依据1. Basis for the selection of costimulatory molecules
构建K3EC主要目的是为MLPC激活抗原特异性CD8 T细胞时提供共刺激信号。目前已知激活此类T细胞所需要的共刺激信号可以由多个受体提供,其中CD28是功能最强的共刺激受体。CD28属于Ig超家族(Ig superfamily,IgSF),其胞尾区(cytoplasmic tail)含有YMNM、 TPRRP和PYAP三个基序。当CD28与B7配体(CD80/86)结合后,YMNM通过PI3K-AKT 通路及Grb2-Vav-Sos通路激活AP1(激活蛋白1)、NF-kB(κB核因子)和NFAT(活化T 细胞核因子)导致Bcl-xL抗凋亡蛋白和IL2细胞因子表达。PYAP基序也可以通过Grb2-Vav-Sos 通路激活AP1、NF-kB和NFAT转录因子,而TPRRP基序则主要激活酪氨酸激酶Itk,Itk的功能是磷酸化PLCγ脂酶,使其水解PIP2形成IP3和DAG第二信使。但是,在PBMC中仅半数的CD8 T细胞表达CD28,此类CD28+细胞包括TN、TSCM和TCM等。The main purpose of constructing K3EC is to provide a costimulatory signal for MLPC to activate antigen-specific CD8 T cells. It is currently known that the costimulatory signals required to activate such T cells can be provided by multiple receptors, of which CD28 is the most functional costimulatory receptor. CD28 belongs to the Ig superfamily (IgSF), and its cytoplasmic tail contains three motifs: YMNM, TPRRP and PYAP. When CD28 binds to B7 ligand (CD80/86), YMNM activates AP1 (activating protein 1), NF-kB (κB nuclear factor) and NFAT (activating T cell nuclear factor) through PI3K-AKT pathway and Grb2-Vav-Sos pathway ) resulted in Bcl-xL anti-apoptotic protein and IL2 cytokine expression. The PYAP motif can also activate AP1, NF-kB and NFAT transcription factors through the Grb2-Vav-Sos pathway, while the TPRRP motif mainly activates the tyrosine kinase Itk, whose function is to phosphorylate PLCγ lipase to hydrolyze PIP 2 form IP3 and DAG second messenger. However, only half of the CD8 T cells in PBMC express CD28, and such CD28 + cells include TN , TSCM , and TCM , among others.
CD2是CD28+细胞另一个有效的共刺激信号。CD2也属于IgSF,但与CD28不同,CD2的主要作用是与CD58配体结合后招募Lck激酶,引起CD3ζ及ZAP70磷酸化转导TCR的近端信号。此外,CD2激活信号也能够引起STAT5磷酸化从而促进T细胞增殖。因此,CD2受体可以发挥TCR第1信号和γC细胞因子受体第3信号的作用。当缺乏B7-CD28信号时,CD2 与NKG2D协同作用可以提供与CD28等效的共刺激信号。NKG2D的特异性配体包括MICA/B 等,其信号转导是激活PI3K-AKT通路,但程度低于CD28。CD2 is another potent costimulatory signal for CD28 + cells. CD2 also belongs to IgSF, but different from CD28, the main function of CD2 is to recruit Lck kinase after binding with CD58 ligand, causing CD3ζ and ZAP70 phosphorylation to transduce the proximal signal of TCR. In addition, CD2 activation signal can also cause STAT5 phosphorylation to promote T cell proliferation. Therefore, the CD2 receptor can function as the first signal of TCR and the third signal of γC cytokine receptor. In the absence of B7-CD28 signaling, CD2 cooperates with NKG2D to provide a co-stimulatory signal equivalent to CD28. The specific ligands of NKG2D include MICA/B, etc., and its signal transduction is to activate the PI3K-AKT pathway, but the degree is lower than that of CD28.
CD8 T细胞经TCR信号激活后48hr内还表达CD137(4-1BB),后者与CD137L(4-1BBL)结合可以影响增殖能力和分化命运。CD137属于TNFR(肿瘤坏死因子受体)家族,主要通过TAF2信号通路发挥抗凋亡功能。在CAR T细胞研究中发现,在嵌合受体(CAR)中插入 CD28信号域优先诱导形成TEM,而插入CD137信号域后主要形成TCM。因此,在CD8 T细胞培养时提供CD137信号有助于富集TCM。CD8 T cells also expressed CD137(4-1BB) within 48 hours after activation by TCR signaling, and the combination of the latter and CD137L(4-1BBL) could affect the proliferation ability and differentiation fate. CD137 belongs to the TNFR (tumor necrosis factor receptor) family and mainly exerts its anti-apoptotic function through the TAF2 signaling pathway. In CAR T-cell studies, it was found that insertion of the CD28 signaling domain in a chimeric receptor (CAR) preferentially induced the formation of TEM , whereas insertion of the CD137 signaling domain mainly formed TCM . Therefore, providing CD137 signal when CD8 T cells are cultured helps to enrich TCM .
基于上述分析,拟选择CD2配体CD58、NKG2D配体MICA/B和CD137配体CD137L 等共刺激分子构建aAPC。K562红白血病细胞是广泛用于构建aAPC的一个细胞系,该细胞的特点是不表达HLA-ABC分子,但阳性表达CD58和MICA/B。因此,只需要转基因导入 CD137L即可满足需求。此外,为了便于研究K562工程细胞的功能,部分转基因实验也导入了人IgG的FcγRI(即CD64),后者结合CD3抗体可以提供TCR第1信号。Based on the above analysis, costimulatory molecules such as CD2 ligand CD58, NKG2D ligand MICA/B and CD137 ligand CD137L were selected to construct aAPC. K562 erythroleukemia cells are a widely used cell line for the construction of aAPC, which are characterized by not expressing HLA-ABC molecules, but positively expressing CD58 and MICA/B. Therefore, only the transgene needs to be introduced into CD137L to meet the demand. In addition, in order to facilitate the study of the function of K562 engineered cells, some transgenic experiments also introduced FcγRI (ie CD64) of human IgG, which can provide the first signal of TCR in combination with CD3 antibody.
2.基因转染及稳转细胞筛选2. Gene Transfection and Screening of Stably Transfected Cells
1.构建人CD137L及CD64的慢病毒表达质粒,该质粒表达绿色荧光蛋白(GFP)作为示踪剂便于辨认转染细胞【委托上海吉凯公司构建】1. Construct human CD137L and CD64 lentiviral expression plasmids, which express green fluorescent protein (GFP) as a tracer to facilitate the identification of transfected cells [entrusted by Shanghai Jikai Company]
2.根据供应商提供的转染试剂盒和操作指南转染K562细胞(购自中国科学院上海生命科学研究院细胞资源中心)2. Transfect K562 cells according to the transfection kit and operating instructions provided by the supplier (purchased from the Cell Resource Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences)
3.FCM检测确认基因转染成功后,MACS分步分选CD137L+及CD64+细胞3. After the successful gene transfection was confirmed by FCM detection, the CD137L + and CD64 + cells were sorted by MACS step by step.
4.采用有限稀释法将CD137L+CD64+细胞稀释至100细胞/ml,96孔板(100μl/孔,10细胞/孔)培养并传代扩增,同时加入10μg/ml嘌呤霉素筛选抗性细胞。4. The CD137L + CD64 + cells were diluted to 100 cells/ml by limiting dilution method, cultured in a 96-well plate (100 μl/well, 10 cells/well) and passaged for expansion, and 10 μg/ml puromycin was added to screen for resistant cells .
5.FCM检测CD137L+CD64+稳转细胞5. FCM detection of CD137L + CD64 + stable cells
实验结果 Experimental results
基因转染后4天检测,CD137L和CD64阳性率分别为69.4%和35.8%。MACS分选富集CD137L+细胞和CD64+细胞后在96孔板中筛选稳转细胞。4 days after gene transfection, the positive rates of CD137L and CD64 were 69.4% and 35.8%, respectively. After MACS sorting enriched CD137L + cells and CD64 + cells, stably transfected cells were screened in 96-well plates.
在96个孔中约1/3观察到细胞增殖,FCM检测到12个CD64+和CD137L+孔,其中6号孔的阳性率最高。该孔细胞经传代扩增后再次检测(图3),显示CD64和CD137L阳性率分别为74.9%和99.4%。实验也检测了HLA-ABC、CD58和MICA/B,显示HLA-ABC呈微弱阳性,而MICA/B和CD58阳性率分别为99.1%和100%。该群细胞经液氮冻存后命名K3EC,即表达3种共刺激分子的K562工程细胞(K562 engineering cells with 3 co-stimulatory molecules)。Cell proliferation was observed in about 1/3 of the 96 wells, and FCM detected 12 CD64 + and CD137L + wells, of which well 6 had the highest positive rate. The cells in this well were passaged and expanded and tested again (Fig. 3), showing that the positive rates of CD64 and CD137L were 74.9% and 99.4%, respectively. The experiments also detected HLA-ABC, CD58 and MICA/B, showing that HLA-ABC was weakly positive, while the positive rates of MICA/B and CD58 were 99.1% and 100%, respectively. After cryopreservation in liquid nitrogen, this group of cells was named K3EC, namely K562 engineering cells with 3 co-stimulatory molecules.
3.CD64的人源IgG抗体结合能力检验3. Human IgG antibody binding ability test for CD64
CD64作为FcγRI能够与人源性IgG1、IgG3和IgG4抗体结合,但人CD64也可以与鼠源性IgG2(包括IgG2a和IgG2b)抗体高亲和结合。根据这一原理,选择PE荧光素标记的鼠IgG2a (CD154)作为示踪剂,采用竞争结合试验观察过量的人源性CD3抗体(IgG1)能否竞争抑制示踪剂与CD64结合。As FcγRI, CD64 can bind to human IgG1, IgG3 and IgG4 antibodies, but human CD64 can also bind to murine IgG2 (including IgG2a and IgG2b) antibodies with high affinity. According to this principle, PE fluorescein-labeled mouse IgG2a (CD154) was selected as the tracer, and a competitive binding assay was used to observe whether excess human CD3 antibody (IgG1) could competitively inhibit the binding of the tracer to CD64.
实验分为不添加CD3抗体的对照组和添加CD3抗体(10μg/ml)的实验组,每组均分成4 个管,分别用PE标记的鼠抗CD64(IgG1)、CD137L(IgG1)、CD154(IgG2a)和CD58 (IgG2a)抗体染色,荧光抗体用量均为20μl/100μl体积(内含5x 105K3EC),离心洗涤去除非结合抗体后FCM检测。The experiment was divided into the control group without the addition of CD3 antibody and the experimental group with the addition of CD3 antibody (10 μg/ml). For staining with IgG2a) and CD58 (IgG2a) antibodies, the amount of fluorescent antibody was 20 μl/100 μl (containing 5×10 5 K3EC), and the non-binding antibodies were removed by centrifugation and then detected by FCM.
实验结果 Experimental results
1.对照组检测显示,CD58和CD137L阳性率分别为100%和99.0%,CD64阳性率为72.1%,而示踪剂(CD154)阳性率为43.2%,二者的差异可能是荧光基团标记阻碍了IgG2a抗体与FcγRI结合(图4)。1. The detection of the control group showed that the positive rates of CD58 and CD137L were 100% and 99.0%, respectively, the positive rate of CD64 was 72.1%, and the positive rate of tracer (CD154) was 43.2%. The difference between the two may be the fluorophore labeling. Binding of IgG2a antibody to FcγRI was blocked (Figure 4).
2.实验组结果证实(图4),CD3抗体预温育后对CD58和CD137L检测没有明显影响,阳性率分别为99.9%和98.6%。但CD3抗体预温育后完全抑制了示踪剂与FcγRI结合,阳性率降至空白对照组水平(1.6%)。2. The results of the experimental group confirmed (Fig. 4) that CD3 antibody pre-incubation had no significant effect on the detection of CD58 and CD137L, and the positive rates were 99.9% and 98.6%, respectively. However, CD3 antibody pre-incubated completely inhibited the binding of tracer to FcγRI, and the positive rate decreased to the level of blank control group (1.6%).
实施例3多克隆T细胞增殖试验Example 3 Polyclonal T cell proliferation assay
aAPC通常需要经过灭活(即消除增殖能力)后才能用于T细胞共培养,这种灭活方式包括辐照、丝裂霉素处理和多聚甲醛固定等。为了评估K3EC固定后是否仍具备共刺激活性,实验以CD3抗体提供多克隆的TCR信号,4%多聚甲醛固定的K3EC提供共刺激信号。T细胞增殖活性采用CFSE稀释法检测,即用CFSE(20μM)标记PBMC,洗涤后将PBMC与 K3EC按不同比例(PBMC:K3EC=5:1,10:1和20:1)混合培养在96孔板中,同时设立 CD3抗体对照组,各组均添加1μg/ml CD3抗体。培养2天及5天后检测CD3+细胞及 CD3+CFSELow增殖细胞。CD3+增殖细胞%=(CD3+CFSELow细胞/CD3+细胞)x 100%aAPC usually needs to be inactivated (ie, the ability to proliferate) before being used for T cell co-culture. This inactivation method includes irradiation, mitomycin treatment, and paraformaldehyde fixation. In order to evaluate whether K3EC still has costimulatory activity after fixation, CD3 antibody was used to provide polyclonal TCR signal, and 4% paraformaldehyde-fixed K3EC provided costimulatory signal. The proliferation activity of T cells was detected by the CFSE dilution method, that is, PBMCs were labeled with CFSE (20 μM). At the same time, a CD3 antibody control group was set up in the plate, and 1 μg/ml CD3 antibody was added to each group. CD3 + cells and CD3 + CFSE Low proliferating cells were detected after 2 days and 5 days of culture. % CD3 + proliferating cells = (CD3 + CFSE Low cells/CD3 + cells) x 100%
实验结果 Experimental results
培养2天后显示各组均未能检测T细胞增殖,但K3EC共培养组的CD3+细胞比例(阳性率为54.0%-55.3%)显著高于抗体组(阳性率为7.8%),提示CD3抗体结合可能引起了细胞表面CD3蛋白内吞导致CD3表达下降。After 2 days of culture, T cell proliferation could not be detected in each group, but the proportion of CD3 + cells in the K3EC co-culture group (positive rate 54.0%-55.3%) was significantly higher than that in the antibody group (positive rate 7.8%), suggesting that CD3 antibody Binding may lead to cell surface CD3 protein endocytosis resulting in decreased CD3 expression.
培养5天后发现,共培养组的CD3+细胞比例(阳性率为78.2%-82.9%)仍高于抗体组(阳性率为52.3%),并且共培养组的CD3+增殖细胞%在K3EC高比例时(PBMC:K3EC=5:1和10:1)高于抗体组,而低比例时低于抗体组。进一步提高K3EC比例(PBMC:K3EC=2.5: 1和1:1)并不明显改善T细胞增殖活性(结果未列)。因此,K3EC比例选定为20%,即 PBMC:K3EC=5:1。图5为培养5天的CD3+CFSELow增殖细胞检测结果。After 5 days of culture, it was found that the proportion of CD3 + cells in the co-culture group (the positive rate was 78.2%-82.9%) was still higher than that in the antibody group (the positive rate was 52.3%), and the percentage of CD3 + proliferating cells in the co-culture group was higher in K3EC. When the ratio was high (PBMC:K3EC=5:1 and 10:1), it was higher than the antibody group, while the low ratio was lower than the antibody group. Further increasing the K3EC ratio (PBMC:K3EC=2.5:1 and 1:1) did not significantly improve T cell proliferation activity (results not shown). Therefore, the K3EC ratio was chosen to be 20%, ie PBMC:K3EC=5:1. Figure 5 shows the detection results of CD3 + CFSE Low proliferating cells cultured for 5 days.
表1多克隆T细胞增殖Table 1 Polyclonal T cell proliferation
●CMV抗原的选择●CMV antigen selection
CMV结构是一种二十面体蛋白衣壳(icosahedral protein capsid),内含约235kb的双链 DNA病毒基因组(图6)。CMV衣壳被脂质膜和体被蛋白(tegument)包裹,其中的体被蛋白由viral late gene编码。The CMV structure is an icosahedral protein capsid containing a double-stranded DNA viral genome of about 235 kb (Figure 6). The CMV capsid is wrapped by lipid membrane and tegument, and the tegument is encoded by the viral late gene.
CMV体被蛋白包括pp65、pp71、pp150和pp28等,其中pp65是CMV最主要的结构蛋白,也是病毒颗粒中含量最高的一种体被蛋白。pp71的功能是启动viral-immediate earlygene表达引起病毒基因组复制。pp150和pp28的作用是促使病毒颗粒的装配(assembly)和外泌(egress)。上述体被蛋白均具有强免疫原性,其中pp65是临床最常用的病毒抗原。CMV integument proteins include pp65, pp71, pp150 and pp28, among which pp65 is the most important structural protein of CMV and the most abundant integument protein in virus particles. The function of pp71 is to initiate viral-immediate earlygene expression and cause viral genome replication. The role of pp150 and pp28 is to promote the assembly and egress of viral particles. The above integument proteins all have strong immunogenicity, among which pp65 is the most commonly used viral antigen in clinic.
本专利采用pp65全蛋白的肽段重叠文库(pepMix,每个肽段长度15个氨基酸,相邻肽段之间11个氨基酸序列重叠)进行MLPC。该pepMix含138个肽段(图7),其中任一肽段与PBMC表面的MHCI结合均可以提供TCR第1信号,因而其优点是无需选择供者的HLA基因型。This patent uses the peptide overlapping library of pp65 whole protein (pepMix, each peptide is 15 amino acids in length, and 11 amino acid sequences overlap between adjacent peptides) for MLPC. The pepMix contains 138 peptides (Figure 7), any of which can provide the first signal of TCR by binding to MHCI on the surface of PBMC, so it has the advantage of not needing to select the HLA genotype of the donor.
●MLPC-plus培养激活抗原特异性CD8 T细胞MLPC-plus culture activates antigen-specific CD8 T cells
在MLPC-plus中抗原肽段激活CD8 T细胞后首先分泌细胞因子包括IL2和IFNγ,约72hr 后细胞开始增殖。为了评估MLPC与K3EC组合能否特异性激活T细胞,实验检测了培养24hr 后T细胞分泌的IFNγ。In MLPC-plus, CD8 T cells were activated by antigenic peptides and firstly secreted cytokines including IL2 and IFNγ, and the cells started to proliferate after about 72 hours. In order to evaluate whether the combination of MLPC and K3EC can specifically activate T cells, the experiment detected the IFNγ secreted by T cells after 24 hours of culture.
将PBMC与K3EC按5:1比例混合,实验组(E)加入1μg/ml CMV-pp65肽段或EB病毒的膜抗原肽段(EBV-LMP2a,德国Miltenyi公司),同时设立阴性对照组(N)和阳性对照组(P),前者不加TCR激活信号,后者加入1μg/ml功能级CD3抗体。培养24hr后加入 IFNγ俘获抗体(Miltenyi公司),该抗体由IFNγ抗体与CD45抗体偶联形成,其中CD45抗体与PBMC以及K3EC结合,IFNγ抗体则与培养上清中的IFNγ结合。离心洗涤后采用APC荧光标记的IFNγ检测抗体染色,FCM检测阳性细胞%。抗原特异性应答(antigen-specific response, ASR)按下述公式计算:ASR={(E‐N)/(P‐N)}x 100%。PBMC and K3EC were mixed at a ratio of 5:1, and 1 μg/ml CMV-pp65 peptide or Epstein-Barr virus membrane antigen peptide (EBV-LMP2a, Miltenyi, Germany) was added to the experimental group (E), and a negative control group (N ) and positive control group (P), the former did not add TCR activation signal, and the latter added 1 μg/ml functional grade CD3 antibody. After culturing for 24 hours, IFNγ capture antibody (Miltenyi Company) was added, which was formed by coupling IFNγ antibody and CD45 antibody, wherein CD45 antibody was combined with PBMC and K3EC, and IFNγ antibody was combined with IFNγ in the culture supernatant. After centrifugation and washing, the cells were stained with APC fluorescently labeled IFNγ detection antibody, and the percentage of positive cells was detected by FCM. Antigen-specific response (ASR) was calculated according to the following formula: ASR={(E-N)/(P-N)} x 100%.
实验结果 Experimental results
对7例PBMC进行了ASR检测(图8),结果显示在MLPC-plus条件下2种病毒抗原均能够特异性激活TCR+T细胞分泌IFNγ,其中CMV-pp65抗原的ASR平均为23.5%(范围 91.6%-1.7%),而EBV-LMP2a抗原的ASR平均为7.3%(范围16.1%-0%)。ASR assay was performed on 7 PBMCs (Figure 8), and the results showed that both viral antigens could specifically activate TCR + T cells to secrete IFNγ under MLPC-plus conditions, and the average ASR of CMV-pp65 antigen was 23.5% (range). 91.6%-1.7%), while the ASR for the EBV-LMP2a antigen averaged 7.3% (range 16.1%-0%).
表2 PBMC的ASR检测Table 2 ASR detection of PBMC
*nd未检测*nd not detected
实施例4 MLPC-plus培养促使抗原特异性CD8 T细胞扩增的技术效果分析Example 4 Analysis of the technical effect of MLPC-plus culture to promote the expansion of antigen-specific CD8 T cells
按照制备工艺进行了4例PBMC的培养扩增并评估了以下技术性能指标。According to the preparation process, 4 cases of PBMC were cultured and expanded and the following technical performance indicators were evaluated.
1.CD8 T细胞的扩增能力1. The expansion capacity of CD8 T cells
选择3个时间点评估了MLPC-plus刺激CD8 T细胞后的增殖状况。结果显示,培养前PBMC 的平均得率为1x 106/ml全血,其中CD8 T细胞在淋巴细胞群中占比约1/4。抗原刺激后1周, CD8 T细胞占比达到1/2,数量增加了3.8倍。Three time points were selected to evaluate the proliferation status of CD8 T cells stimulated by MLPC-plus. The results showed that the average yield of PBMC before culture was 1×10 6 /ml of whole blood, and CD8 T cells accounted for about 1/4 of the lymphocyte population. One week after antigen stimulation, the proportion of CD8 T cells reached 1/2, and the number increased by 3.8 times.
培养1周后PBMC中约77.2%(范围62.2%-91.8%)细胞检测到HLA-A2和CD86同时表达(图9),这些双阳性细胞负载抗原肽段后将具有APC功能。据此,在PBMC培养1周时按1μg抗原肽段/107细胞的比例进行再次抗原刺激,继续培养3–5天使细胞总量达到1–2x 108时,MACS分选富集CD8 T细胞,富集后CD8 T细胞纯度平均为84.4%(范围69%-97.1%),数量达到30.22x 106。若继续培养3–5天,此类T细胞可以扩增至108量级。After 1 week of culture, about 77.2% (range 62.2%-91.8%) of PBMC cells detected the simultaneous expression of HLA-A2 and CD86 (Fig. 9), these double positive cells will have APC function after loading with antigen peptides. According to this, PBMCs were cultured for 1 week after re-antigen stimulation at the ratio of 1 μg antigen peptide/10 7 cells, and continued to culture for 3–5 days when the total number of cells reached 1–
表3 MLPC-plus培养促使抗原特异性TCR+T细胞增殖Table 3 MLPC-plus culture promotes the proliferation of antigen-specific TCR + T cells
2.CD8 T细胞的亚群构成2. Subpopulation composition of CD8 T cells
采用四色荧光染色方法检测CD8 T细胞表型,同时设立2个对照组,空白对照组(不加抗体)用于设定CD8(PE标记)和CD95(APC标记)阳性基准,CD8/CD95对照组(不加CD45RA和CD62L抗体)用于设定CD45RA(PerCP标记)和CD62L(FITC标记)阳性基准,然后检测实验组细胞中5个亚群的比例,其中TN表型为CD8+CD95-,TSCM表型为 CD8+CD95+CD45RA+CD62L+,TCM表型为CD8+CD95+CD45RA-CD62L+,TEM表型为 CD8+CD95+CD45RA-CD62L-,而TEMRA表型为CD8+CD95+CD45RA+CD62L-。Four-color fluorescent staining was used to detect the phenotype of CD8 T cells, and two control groups were set up at the same time. The blank control group (without antibody) was used to set the positive benchmark for CD8 (PE marker) and CD95 (APC marker), and the CD8/CD95 control The group (without CD45RA and CD62L antibodies) was used to set the positive benchmark for CD45RA (PerCP marker) and CD62L (FITC marker), and then the proportion of 5 subpopulations in the experimental group cells was detected, of which the TN phenotype was CD8 + CD95 - , T SCM phenotype is CD8 + CD95 + CD45RA + CD62L + , T CM phenotype is CD8 + CD95 + CD45RA - CD62L + , T EM phenotype is CD8 + CD95 + CD45RA - CD62L - , while T EMRA phenotype is CD8 + CD95 + CD45RA + CD62L − .
实验结果 Experimental results
培养前CD8 T细胞中TN比例约为TEMRA的2倍(占比分别为44.4%和21.4%),而TM的3个亚群占比依次递减,分别为17.4%(TSCM)、9.4%(TCM)和7.2%(TEM)。培养1周后 CD8 T细胞的亚群构成发生了重大变化,表现为TN和TEMRA占比均显著降低,而TSCM/CM占比达到90.2%,其中以TCM为主。MACS富集CD8 T细胞后再次检测,显示TSCM/CM占比平均达到68.8%,优势细胞仍为TCM。图10为1例代表性实验的检测结果。The proportion of TN in CD8 T cells before culture was about twice that of TEMRA (44.4% and 21.4%, respectively), while the proportions of the three subpopulations of TM decreased sequentially, 17.4% ( TSCM ), 9.4% (T CM ) and 7.2% (T EM ). After 1 week of culture, the subpopulation composition of CD8 T cells changed significantly, and the proportion of TN and TEMRA decreased significantly, while the proportion of T SCM/CM reached 90.2%, of which T CM was the main component. After MACS enriched CD8 T cells, it was detected again, showing that the proportion of T SCM/CM reached an average of 68.8%, and the dominant cell was still T CM . Figure 10 shows the detection results of a representative experiment.
表4 MACS富集后CD8 T细胞的亚群构成Table 4 Subpopulation composition of CD8 T cells after MACS enrichment
3.抗原特异性应答能力3. Antigen-specific responsiveness
MACS富集后CD8 T细胞对CMV-pp65抗原的应答能力较培养前显著增强,检测显示ASR 达到101.0%,说明此类T细胞在抗原刺激下,IFNγ分泌量与多克隆的CD3抗体刺激相等。这些均质性CD8 T细胞的另一个特征是具有高度抗原特异性,当同步检测EBV-LMP2a的应答能力时,发现ASR仅为3.3%,与培养前比较没有显著差异。The ability of CD8 T cells to respond to CMV-pp65 antigen after MACS enrichment was significantly enhanced compared with that before culture, and the detection showed that the ASR reached 101.0%, indicating that the amount of IFNγ secreted by such T cells under antigen stimulation was equal to that of polyclonal CD3 antibody stimulation. Another characteristic of these homogeneous CD8 T cells is their high antigen specificity, when EBV-LMP2a responsiveness was tested concurrently, the ASR was found to be only 3.3%, which was not significantly different from pre-culture.
表5 MACS富集后CD8 T细胞对CMV-pp65抗原的特异性应答能力Table 5 The specific response ability of CD8 T cells to CMV-pp65 antigen after MACS enrichment
4.反应性肽段筛查4. Screening of reactive peptides
CMV-pp65抗原中的肽段表位主要通过HLA-A和HLA-B递呈。在我国汉族人群中,上述位点中占据优势的等位基因分别是HLA-A*11:01和HLA-B*40:01,而国际上备受青睐的HLA-A*02:01等位基因,在我国汉族人群中则退居第3位。根据该项17万人超大样本的检测数据,我们分别选择了5个最常见的HLA-A和HLA-B等位基因,并合成了相应的CMV-pp65 肽段表位,目的是分析该抗原特异性CD8 T细胞中能够识别这些表位的细胞亚群。The peptide epitopes in CMV-pp65 antigen are mainly presented by HLA-A and HLA-B. In the Chinese Han population, the dominant alleles in the above loci are HLA-A*11:01 and HLA-B*40:01 respectively, while the internationally favored HLA-A*02:01 allele Gene, in my country's Han population, is relegated to the third place. According to the detection data of 170,000 large samples of this project, we selected the 5 most common HLA-A and HLA-B alleles respectively, and synthesized the corresponding CMV-pp65 peptide epitopes, the purpose is to analyze the antigen Cell subsets that recognize these epitopes in specific CD8 T cells.
表6 HLA-A和HLA-B表位及其CMV-pp65肽段表位Table 6 HLA-A and HLA-B epitopes and their CMV-pp65 peptide epitopes
肽段表位筛查仍采用IFNγ检测法,区别只是在实验组中除了全蛋白pepMix外,还包括上述10个肽段表位。结果以IFNγ+细胞%表示。Peptide epitope screening still uses IFNγ detection method, the difference is that in addition to the whole protein pepMix, the above 10 peptide epitopes are also included in the experimental group. Results are expressed as % of IFNγ + cells.
实验结果 Experimental results
实验在上述4例HLA-A2+CD8 T细胞中随机选择1例进行检测,图11结果显示,该例T细胞中存在2个亚群,其中1个亚群识别HLA-A*02:01递呈的NLV肽段,而另1个亚群则识别HLA-A*11:01递呈的ATV肽段,但ATV刺激后的IFNγ+细胞只有NLV的40%。In the experiment, 1 case was randomly selected among the above 4 cases of HLA-A2 + CD8 T cells for detection. The results in Figure 11 show that there are 2 subsets of T cells in this case, and 1 subset recognizes HLA-A*02:01. NLV peptides presented by HLA-A*11:01 were recognized by another subset, but ATV-stimulated IFNγ + cells were only 40% of NLV.
实施例5 CMV-pp65特异性CD8 T细胞的安全性评估Example 5 Safety assessment of CMV-pp65-specific CD8 T cells
我们曾经配合北京大学附属人民医院血液科开展了CMV-pp65特异性T细胞治疗的临床研究,通过这项研究建立了一套T细胞制剂的安全性评估指标,包括(1)T细胞的活率检测; (2)致热源检测;(3)支原体检测和(4)细菌(需氧菌和厌氧菌)检测,证明上述检测指标符合放行标准(release criteria)时,输注T细胞是安全的,没有观察到明显不良反应。We once cooperated with the Department of Hematology, Peking University Affiliated People's Hospital to carry out a clinical study of CMV-pp65-specific T cell therapy. Through this study, we established a set of safety evaluation indicators for T cell preparations, including (1) the viability of T cells. (2) Pyrogen detection; (3) Mycoplasma detection and (4) Bacterial (aerobic and anaerobic) detection, when it is proved that the above detection indicators meet the release criteria, the infusion of T cells is safe , no obvious adverse reactions were observed.
对4例CD8 T细胞培养也进行了上述安全性指标检测,结果均符合放行标准。The above-mentioned safety indicators were also tested for 4 cases of CD8 T cell culture, and the results all met the release criteria.
表7 CMV-pp65特异性CD8 T细胞的安全性评估Table 7 Safety assessment of CMV-pp65-specific CD8 T cells
与前期研究不同,采用MLPC-plus平台制备的CD8 T细胞培养中添加了K562工程细胞 K3EC,该细胞具有潜在的致癌风险,因而需要对其进行严格检测。首先,评估了K3EC经多聚甲醛固定后的增殖能力。实验将固定后的K3EC置于24孔培养板中(2x 106/孔)连续培养7天,分别在培养第1、3、5和7天收集6孔细胞计数。结果显示,经4%多聚甲醛固定30min 后,K3EC能够存活7天,但期间没有检测到细胞数量增加,说明多聚甲醛固定后该细胞已经完全丧失了增殖能力,这些细胞即使残留也不至于致瘤。随后,实验评估了经MACS分选后 CD8 T细胞中是否残留K3EC。美国贝勒医学院课题组也采用K562工程细胞培养扩增NK细胞,并证明当NK细胞培养中K562工程细胞的残留量≤0.2%时,输注此类NK细胞是安全的。据此,我们也将K3EC残留量≤0.2%作为放行标准。实验以转基因导入的绿色荧光蛋白 (GFP)示踪剂作为检测标志,结果证明,CD8 T细胞培养中K3EC细胞占比均低于检测下限 (FCM分析5x104细胞中未能检测到阳性细胞)。由此揭示,K3EC经多聚甲醛固定后不仅丧失了增殖能力,而且经过CD8 T细胞分选并扩增后,在T细胞培养中的残留量已经达到放行标准。Different from previous studies, the K562 engineered cell K3EC was added to the CD8 T cell culture prepared by the MLPC-plus platform, which has a potential carcinogenic risk, so it needs to be strictly tested. First, the proliferative capacity of K3ECs after paraformaldehyde fixation was assessed. Experiment The fixed K3ECs were placed in a 24-well culture plate (2×10 6 /well) for 7 consecutive days, and 6-well cells were counted on the 1st, 3rd, 5th and 7th days of culture, respectively. The results showed that K3EC could survive for 7 days after being fixed with 4% paraformaldehyde for 30 minutes, but no increase in the number of cells was detected during the period, indicating that the cells had completely lost their ability to proliferate after being fixed with paraformaldehyde. tumorigenic. Subsequently, experiments assessed whether K3EC remained in CD8 T cells after MACS sorting. The research group of Baylor College of Medicine in the United States also used K562 engineered cells to expand NK cells, and proved that when the residual amount of K562 engineered cells in the NK cell culture is ≤0.2%, the infusion of such NK cells is safe. Accordingly, we also take K3EC residue ≤0.2% as the release standard. In the experiment, the transgenic green fluorescent protein (GFP) tracer was used as the detection marker. The results showed that the proportion of K3EC cells in the CD8 T cell culture was lower than the detection limit (no positive cells were detected in 5× 10 4 cells by FCM analysis). It was revealed that K3EC not only lost the proliferation ability after being fixed with paraformaldehyde, but also the residual amount in T cell culture after CD8 T cell sorting and expansion had reached the release standard.
K3EC多聚甲醛固定步骤:K3EC paraformaldehyde fixation steps:
K3EC加10ml PBS,400g离心5min,清洗去上清;加2ml 4%多聚甲醛,加6ml PBS,室温30min;400g离心5min,清洗去上清;加10ml PBS重悬,400g离心5min,清洗去上清;加10mlSG-AIM-V培养基,4℃保存。Add 10ml PBS to K3EC, centrifuge at 400g for 5min, wash and remove supernatant; add 2ml 4% paraformaldehyde, add 6ml PBS, room temperature for 30min; centrifuge at 400g for 5min, wash and remove supernatant; add 10ml PBS to resuspend, centrifuge at 400g for 5min, wash away Supernatant; add 10ml SG-AIM-V medium and store at 4°C.
也可以采用方法灭活K3EC细胞,然后通过多次清洗去上清后,获得CD8 T细胞,使K3EC 细胞残留量达到规定标准,但是多聚甲醛固定效果更佳;另外,固定K3EC细胞后,经过细胞分选并扩增,K3EC细胞残留量也自然达到放行标准。The method can also be used to inactivate K3EC cells, and then wash and remove the supernatant for several times to obtain CD8 T cells, so that the residual amount of K3EC cells reaches the specified standard, but the paraformaldehyde fixation effect is better; The cells are sorted and expanded, and the residual amount of K3EC cells naturally meets the release standards.
根据上述方法培养扩增的外周血单个核细胞的CD8T细胞,在预防和治疗CMV感染及CMV 相关癌症的治疗中具有较高的临床应用价值。所述CMV感染包括造血干细胞移植后的白血病患者,CMV相关癌症包括多型性胶质母细胞瘤。The CD8 T cells of peripheral blood mononuclear cells cultured and expanded according to the above method have high clinical application value in the prevention and treatment of CMV infection and CMV-related cancer. The CMV infection includes leukemia patients after hematopoietic stem cell transplantation, and CMV-related cancers include glioblastoma multitype.
本发明提供的一种K3EC细胞,是一种K562工程细胞,能均质性表达CD58、MICA/B和CD137L,能够同时提供CD2、NKG2D和CD137等共刺激受体(co-stimulatory receptor) 信号,其优点在于:The K3EC cell provided by the present invention is a K562 engineered cell, which can homogeneously express CD58, MICA/B and CD137L, and can simultaneously provide co-stimulatory receptor (co-stimulatory receptor) signals such as CD2, NKG2D and CD137, etc. Its advantages are:
(1)当抗原肽段嵌入PBMC表面的MHCI分子(如HLA-A和HLA-B)形成TCR第1信号时,K562工程细胞通过提供上述共刺激受体第2信号即可诱导激活CD8 T细胞。由于抗原肽段采用的是靶标抗原(即CMV-pp65)的全蛋白重叠肽段文库,因而只要其中一个肽段与细胞表面的MHCI结合,添加K562工程细胞均能够诱导激活特异性CD8 T细胞。(1) When antigenic peptides are embedded in MHCI molecules (such as HLA-A and HLA-B) on the surface of PBMCs to form the first signal of TCR, K562 engineered cells can induce activation of CD8 T cells by providing the second signal of the above-mentioned costimulatory receptors . Since the antigenic peptides use a full-protein overlapping peptide library of the target antigen (ie, CMV-pp65), as long as one of the peptides binds to the MCI on the cell surface, the addition of K562 engineered cells can induce activation of specific CD8 T cells.
(2)由于K562工程细胞表面缺乏CD28配体(如CD80和CD86),CD8 T细胞激活后较少发生终未分化,使得培养扩增后干细胞组份占比明显增高。(2) Due to the lack of CD28 ligands (such as CD80 and CD86) on the surface of K562 engineered cells, CD8 T cells are less likely to be undifferentiated after activation, resulting in a significant increase in the proportion of stem cells after culture expansion.
本发明是一种的扩增培养方法,采用MLPC-plus平台技术可以无需制备DC作为抗原递呈细胞,实现抗原(CMV-pp65)特异性CD8 T细胞的快速高效扩增;同时通过优化配置CD8 T 细胞增殖所需要的共刺激受体第2信号能大幅增加CD8 T细胞中的干细胞组份(即TSCM和 TCM)占比,和细胞因子受体第3信号,能够显著增加扩增后CD8 T细胞中的干细胞组份(即 TSCM和TCM)占比,获得抗原特异性CD8 T细胞,在预防和治疗CMV感染及CMV相关癌症的治疗中具有临床应用价值。The present invention is a kind of expansion culture method, using MLPC-plus platform technology can realize the rapid and efficient expansion of antigen (CMV-pp65) specific CD8 T cells without preparing DC as antigen presenting cells; meanwhile, by optimizing the configuration of
以上实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域相关技术人员应该理解的是,在不偏离本发明的精神和范围下,所有类似的替换和改动都应包括在本发明保护范围内。The above embodiments are only exemplary and do not constitute any limitation to the scope of the present invention. Those skilled in the art should understand that, without departing from the spirit and scope of the present invention, all similar substitutions and modifications should be included within the protection scope of the present invention.
SEQUENCE LISTINGSEQUENCE LISTING
<110> 上海赛傲生物技术有限公司<110> Shanghai Saiao Biotechnology Co., Ltd.
重庆国联干细胞技术有限公司Chongqing Guolian Stem Cell Technology Co., Ltd.
北京赛傲生物技术有限公司Beijing Saiao Biotechnology Co., Ltd.
广州赛傲生物技术有限公司Guangzhou Saiao Biotechnology Co., Ltd.
徐州细胞医疗有限公司Xuzhou Cell Medical Co., Ltd.
<120> 一种CD8 T细胞的培养扩增方法及K3EC细胞<120> A method for culture expansion of CD8 T cells and K3EC cells
<130> 180524<130> 180524
<160> 10<160> 10
<170> PatentIn version 3.3<170> PatentIn version 3.3
<210> 1<210> 1
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 1<400> 1
Ala Thr Val Gln Gly Gln Asn Leu LysAla Thr Val Gln Gly Gln Asn Leu Lys
1 51 5
<210> 2<210> 2
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 2<400> 2
Gln Tyr Asp Pro Val Ala Ala Leu PheGln Tyr Asp Pro Val Ala Ala Leu Phe
1 51 5
<210> 3<210> 3
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 3<400> 3
Asn Leu Val Pro Met Val Ala Thr ValAsn Leu Val Pro Met Val Ala Thr Val
1 51 5
<210> 4<210> 4
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 4<400> 4
Arg Ile Phe Ala Glu Leu Glu Gly ValArg Ile Phe Ala Glu Leu Glu Gly Val
1 51 5
<210> 5<210> 5
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 5<400> 5
Val Thr Glu His Asp Thr Leu Leu TyrVal Thr Glu His Asp Thr Leu Leu Tyr
1 51 5
<210> 6<210> 6
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 6<400> 6
Cys Glu Asp Val Pro Ser Gly Lys IleCys Glu Asp Val Pro Ser Gly Lys Ile
1 51 5
<210> 7<210> 7
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 7<400> 7
Leu Pro Gly Pro Cys Ile Ala Ser ThrLeu Pro Gly Pro Cys Ile Ala Ser Thr
1 51 5
<210> 8<210> 8
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 8<400> 8
Lys Met Gln Val Ile Gly Asp Gln TyrLys Met Gln Val Ile Gly Asp Gln Tyr
1 51 5
<210> 9<210> 9
<211> 9<211> 9
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 9<400> 9
Ile Pro Ser Ile Asn Val His His TyrIle Pro Ser Ile Asn Val His His Tyr
1 51 5
<210> 10<210> 10
<211> 10<211> 10
<212> PRT<212> PRT
<213> 人工序列(Artificial)<213> Artificial Sequence (Artificial)
<400> 10<400> 10
Thr Pro Arg Val Thr Gly Gly Gly Ala MetThr Pro Arg Val Thr Gly Gly Gly Ala Met
1 5 101 5 10
Claims (19)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765305.XA CN110713977B (en) | 2018-07-12 | 2018-07-12 | A method for culture expansion of CD8 T cells |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810765305.XA CN110713977B (en) | 2018-07-12 | 2018-07-12 | A method for culture expansion of CD8 T cells |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110713977A true CN110713977A (en) | 2020-01-21 |
CN110713977B CN110713977B (en) | 2022-05-27 |
Family
ID=69209145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810765305.XA Active CN110713977B (en) | 2018-07-12 | 2018-07-12 | A method for culture expansion of CD8 T cells |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110713977B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113260369A (en) * | 2018-08-10 | 2021-08-13 | 优特力克斯有限公司 | Cancer antigen specific cytotoxic T cells |
CN113302285A (en) * | 2018-08-10 | 2021-08-24 | 优特力克斯有限公司 | Preparation and cryopreservation method of cancer antigen specific CD8+ T cells |
CN113512529A (en) * | 2021-07-21 | 2021-10-19 | 上海赛傲生物技术有限公司 | Preparation method of specific antiviral adoptive immune cell AB |
CN113981031A (en) * | 2021-11-01 | 2022-01-28 | 山西中医药大学 | Novel T cell function detection method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102988959A (en) * | 2004-04-05 | 2013-03-27 | 加利福尼亚大学董事会 | Modulation of NKG2D |
CN105112370A (en) * | 2015-08-25 | 2015-12-02 | 深圳市科晖瑞生物医药有限公司 | Method for efficiently multiplying gamma delta T cells by stimulating peripheral blood in vitro and application of method |
-
2018
- 2018-07-12 CN CN201810765305.XA patent/CN110713977B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102988959A (en) * | 2004-04-05 | 2013-03-27 | 加利福尼亚大学董事会 | Modulation of NKG2D |
CN105112370A (en) * | 2015-08-25 | 2015-12-02 | 深圳市科晖瑞生物医药有限公司 | Method for efficiently multiplying gamma delta T cells by stimulating peripheral blood in vitro and application of method |
Non-Patent Citations (1)
Title |
---|
T. W. H. FLINSENBERG ET AL.: "Cognate CD4 T-Cell Licensing of Dendritic Cells Heralds AntiCytomegalovirus CD8 T-Cell Immunity after Human Allogeneic Umbilical Cord Blood Transplantation", 《JOURNAL OF VIROLOGY》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113260369A (en) * | 2018-08-10 | 2021-08-13 | 优特力克斯有限公司 | Cancer antigen specific cytotoxic T cells |
CN113302285A (en) * | 2018-08-10 | 2021-08-24 | 优特力克斯有限公司 | Preparation and cryopreservation method of cancer antigen specific CD8+ T cells |
CN113260369B (en) * | 2018-08-10 | 2024-08-23 | 优特力克斯有限公司 | Cancer antigen specific cytotoxic T cells |
CN113512529A (en) * | 2021-07-21 | 2021-10-19 | 上海赛傲生物技术有限公司 | Preparation method of specific antiviral adoptive immune cell AB |
CN113512529B (en) * | 2021-07-21 | 2022-11-25 | 上海赛傲生物技术有限公司 | Preparation method of specific antiviral adoptive immune cell AB |
CN113981031A (en) * | 2021-11-01 | 2022-01-28 | 山西中医药大学 | Novel T cell function detection method |
Also Published As
Publication number | Publication date |
---|---|
CN110713977B (en) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6522671B2 (en) | Method for isolation and expansion of autologous cancer antigen-specific CD8 + T cells | |
CN110713977B (en) | A method for culture expansion of CD8 T cells | |
KR100786054B1 (en) | Method for producing cytotoxic lymphocytes | |
JP2009504151A (en) | Use of common γ-chain cytokines for visualization, isolation and genetic modification of memory T lymphocytes | |
EP1812563A2 (en) | Methods of generating antigen-specific cd4+cd25+ regulatory t cells, compositions and methods of use | |
JP2023058659A (en) | Mr1 restricted t cell receptors for cancer immunotherapy | |
CN101243187A (en) | Preparation method of lymphocytes | |
JP5840857B2 (en) | Composition for inducing cytotoxic T cells | |
EP3946636A1 (en) | Car for use in the treatment of hvg disease | |
JP2022543026A (en) | Systems and methods for evaluating NK cells | |
JP2022500038A (en) | MR1 restricted T cell receptor for cancer immunotherapy | |
US20110086367A1 (en) | Pharmaceuticals for influencing the reaction of the human immune system | |
JP6903866B2 (en) | Method for inducing proliferation of blood-derived monocytes | |
US20070128670A1 (en) | Methods for the identification and preparation of regulator/suppressor t lymphocytes, compositions and use thereof | |
WO2005077048A2 (en) | Immune modulation by regulating expression of the “minor” gene in immune dendritic cells | |
US20220228164A1 (en) | Engineered antigen presenting cells | |
RU2784566C2 (en) | REPRODUCTION AND USE OF NON-HEMATOPOIETIC TISSUE-RESIDENT γδ T-CELLS | |
CN118028235A (en) | Artificial antigen presenting cell, preparation method and application thereof | |
Böhm | Adoptive T-cell-receptor Transfer to Examine Human T-cell Immunology in Vitro | |
HK1120548A (en) | USE OF COMMON γ CHAIN CYTOKINES FOR THE VISUALIZATION, ISOLATION AND GENETIC MODIFICATION OF MEMORY T LYMPHOCYTES | |
AU2003220722A1 (en) | Method for preparation and in vivo administration of antigen presenting cell composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: 200333 4th floor, building 15, Lane 879, Zhongjiang Road, Putuo District, Shanghai Patentee after: SHANGHAI ICELL BIOTECHNOLOGY Co.,Ltd. Patentee after: Chongqing Saiao Biotechnology Co.,Ltd. Patentee after: Beijing victory Biotechnology Co.,Ltd. Patentee after: Guangzhou victory Biotechnology Co.,Ltd. Patentee after: Xuzhou cell Medical Co.,Ltd. Address before: 200333 4th floor, building 15, Lane 879, Zhongjiang Road, Putuo District, Shanghai Patentee before: SHANGHAI ICELL BIOTECHNOLOGY Co.,Ltd. Patentee before: Chongqing United Stem Cell Technology Co.,Ltd. Patentee before: Beijing victory Biotechnology Co.,Ltd. Patentee before: Guangzhou victory Biotechnology Co.,Ltd. Patentee before: Xuzhou cell Medical Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: A Culture and Amplification Method for CD8 T Cells Effective date of registration: 20230717 Granted publication date: 20220527 Pledgee: Industrial Bank Co.,Ltd. Shanghai Changning sub branch Pledgor: SHANGHAI ICELL BIOTECHNOLOGY Co.,Ltd.|Guangzhou victory Biotechnology Co.,Ltd.|Chongqing Saiao Biotechnology Co.,Ltd.|Beijing victory Biotechnology Co.,Ltd.|Xuzhou cell Medical Co.,Ltd. Registration number: Y2023310000379 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Granted publication date: 20220527 Pledgee: Industrial Bank Co.,Ltd. Shanghai Changning sub branch Pledgor: SHANGHAI ICELL BIOTECHNOLOGY Co.,Ltd.|Guangzhou victory Biotechnology Co.,Ltd.|Chongqing Saiao Biotechnology Co.,Ltd.|Beijing victory Biotechnology Co.,Ltd.|Xuzhou cell Medical Co.,Ltd. Registration number: Y2023310000379 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right |