[go: up one dir, main page]

CN110713466B - Novel C-H activation method for tetrazole-oriented meta-position nitration - Google Patents

Novel C-H activation method for tetrazole-oriented meta-position nitration Download PDF

Info

Publication number
CN110713466B
CN110713466B CN201911057510.1A CN201911057510A CN110713466B CN 110713466 B CN110713466 B CN 110713466B CN 201911057510 A CN201911057510 A CN 201911057510A CN 110713466 B CN110713466 B CN 110713466B
Authority
CN
China
Prior art keywords
phenyl
nitro
meta
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201911057510.1A
Other languages
Chinese (zh)
Other versions
CN110713466A (en
Inventor
吴勇
海俐
施月森
陈健
邢慧敏
黄天乐
刘雪忻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201911057510.1A priority Critical patent/CN110713466B/en
Publication of CN110713466A publication Critical patent/CN110713466A/en
Application granted granted Critical
Publication of CN110713466B publication Critical patent/CN110713466B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D257/00Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
    • C07D257/02Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D257/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/10Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D237/14Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • C07D249/061,2,3-Triazoles; Hydrogenated 1,2,3-triazoles with aryl radicals directly attached to ring atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The invention provides a novel method for meta-selective C-H nitration guided by tetrazole, which comprises the following steps: 5-phenyltetrazole compounds are used as raw materials, and m-nitro 5-phenyltetrazole compounds are prepared through m-position nitration catalyzed by transition metal ruthenium. The method has good functional group compatibility and meta-position selectivity and high yield. Compared with the traditional method, the method has the following advantages: (1) simple steps, easily obtained raw materials, wide substrate application range, good meta-selectivity and high reaction yield. (2) Avoids the use of strong acid and strong oxidant, is safe and convenient, and has wide application prospect.

Description

一种四氮唑导向的间位硝化的C-H活化新方法A new method for C-H activation of tetrazolium-directed meta-nitration

技术领域technical field

本发明涉及一种基于5-苯基四氮唑类为原料,硝酸盐为硝基源,在膦配体的辅助下用 Ru3(CO)12催化的C-H活化方法合成间位硝基取代的5-苯基四氮唑类的全新方法,属于化学合成领域。The invention relates to a method for synthesizing meta-nitro-substituted tetrazolium by a CH activation method catalyzed by Ru 3 (CO) 12 with the aid of phosphine ligands based on 5-phenyltetrazolium as raw material and nitrate as nitro source. A brand-new method of 5-phenyltetrazolium belongs to the field of chemical synthesis.

背景技术Background technique

四唑作为有机化合物中常见的骨架分子,具有广泛的生物活性。到目前为止,四氮唑类被报道具有抗菌1,2、降血压3,4、抗癌5、抗炎、镇痛6,7、ACE酶抑制8、金属类β内酰胺酶抑制活性9,10等。值得注意的是,5-苯基四唑作为最重要的一类药物结构,经常出现在药物分子中,如循环利尿剂阿佐塞米、降血压药物氯沙坦、抗过敏药物阿扎司特等。与此同时,硝基芳烃是药物化学和材料科学中一类重要的含C-N键化合物,可作为前体化合物或直接使用。传统硝基芳烃的合成方法主要依赖于F-C硝化反应,在对位上生成含硝基的主要化合物。然而这些反应通常有需要使用强酸、很多官能团不耐受和低邻位/间位选择性的缺点,导致底物适用范围窄,反应副产物多,环境污染严重。在过去的几十年里,通过过渡金属催化、导向基辅助的邻位C-H功能化,邻位C-C或C-X键的形成已经取得了巨大的成功。11 过渡金属催化的C-H活化具有反应效率高,所需能量低,无需进行底物的预活化并且反应条件温和,降低了操作难度,而且具有原子经济和步骤经济等多种优点。于是在此期间,以四氮唑为导向基团的邻位C-H活化逐渐被报道。12,13 但至今为止,以四氮唑为导向基团的间位C-H活化还未被开发。可能是导向基团距离芳基间位C-H键较远,且四氮唑含有多个氮原子(其额外的3个氮原子可以螯合金属催化剂而降低催化活性),导致5-苯基四氮唑类的间位硝化具有很大的挑战。Tetrazoles, as common backbone molecules in organic compounds, have a wide range of biological activities. So far, tetrazolium has been reported to have antibacterial1,2 , blood pressure lowering3,4 , anticancer5, anti - inflammatory, analgesic6,7 , ACE enzyme inhibitory8, metallo -β-lactamase inhibitory activities9 , 10 and so on. It is worth noting that, as the most important class of drug structures, 5-phenyltetrazole often appears in drug molecules, such as the circulating diuretic azosemide, the blood pressure-lowering drug losartan, and the anti-allergic drug azarlast. Meanwhile, nitroarenes are an important class of compounds containing CN bonds in medicinal chemistry and materials science, which can be used as precursor compounds or directly. The traditional synthesis method of nitroaromatics mainly relies on FC nitration reaction to generate nitro-containing main compounds at the para position. However, these reactions usually have the disadvantages of requiring the use of strong acids, intolerance of many functional groups, and low ortho/meta selectivity, resulting in a narrow substrate scope, many reaction by-products, and serious environmental pollution. Over the past few decades, the formation of ortho-CC or CX bonds through transition-metal-catalyzed, guiding-group-assisted ortho-CH functionalization has achieved great success. 11 Transition metal-catalyzed CH activation has the advantages of high reaction efficiency, low energy requirement, no need for substrate preactivation, mild reaction conditions, reduced operational difficulty, and multiple advantages such as atom economy and step economy. During this period, ortho-CH activation with tetrazolium as the directing group was gradually reported. 12,13 But so far, meta-CH activation with tetrazole as a directing group has not been exploited. It may be that the directing group is far away from the CH bond in the meta position of the aryl group, and the tetrazolium contains multiple nitrogen atoms (its extra 3 nitrogen atoms can chelate the metal catalyst and reduce the catalytic activity), resulting in 5-phenyltetrazolium Meta-nitration of azoles presents great challenges.

发明内容SUMMARY OF THE INVENTION

本发明实现了以5-苯基四氮唑为原料,在Ru3(CO)12为催化剂,膦配体的辅助,三氟醋酸碘苯为氧化剂和六氟异丙醇为溶剂的情况下,通过过渡金属催化的间位硝基化合成得到一系类间硝基5-苯基四氮唑的新方法。本发明解决了传统合成方法中强酸的使用,多种官能基团的不耐受以及较差的间位选择性等问题。本发明提供了一种更加简便、有效、底物适用性好,选择性高的制备方法,具有广阔的应用前景。本发明反应式如下所示:The present invention realizes that 5-phenyltetrazolium is used as raw material, Ru 3 (CO) 12 is used as catalyst, phosphine ligand is assisted, iodobenzene trifluoroacetate is oxidant and hexafluoroisopropanol is under the situation of solvent, A new method for the synthesis of a series of meta-nitro 5-phenyltetrazoles by transition metal-catalyzed meta-nitrogenation. The invention solves the problems of the use of strong acid, intolerance of various functional groups and poor meta-selectivity in traditional synthesis methods. The invention provides a preparation method that is simpler, more effective, has good substrate applicability and high selectivity, and has broad application prospects. The reaction formula of the present invention is as follows:

Figure 870092DEST_PATH_IMAGE001
Figure 870092DEST_PATH_IMAGE001

其中:in:

A环为四氮唑、三氮唑、吡唑、噁二唑、哒嗪;A ring is tetrazolium, triazole, pyrazole, oxadiazole, pyridazine;

R1为氢、卤素、烷基、苯基、烷氧基、烷硫基、氨基中的一种或一种以上;R 1 is one or more of hydrogen, halogen, alkyl, phenyl, alkoxy, alkylthio, and amino;

R2为氢、卤素、烷基、苯基、烷氧基、氨基中的一种或一种以上。R 2 is one or more of hydrogen, halogen, alkyl, phenyl, alkoxy, and amino.

制备步骤如下:The preparation steps are as follows:

(1)在洁净的耐压瓶中加入5-苯基四氮唑类化合物、Ru3(CO)12、膦配体、三氟醋酸碘苯,六氟异丙醇和硝基源后,于100℃油浴锅里搅拌24 h;(1) After adding 5-phenyltetrazolium compound, Ru 3 (CO) 12 , phosphine ligand, iodobenzene trifluoroacetate, hexafluoroisopropanol and nitro source into a clean pressure-resistant bottle, at 100 Stir in an oil bath for 24 h;

(2)反应完成后减压除去溶剂,采用硅胶柱层析分离纯化即得产品。(2) After the reaction is completed, the solvent is removed under reduced pressure, and the product is obtained by separation and purification by silica gel column chromatography.

步骤(1)中的膦配体为三苯基膦、三环己基膦、三(2-呋喃基)膦、PCy3、P(o-Tol)3、PPh3、P(o-furyl)3、BINAP、XANT Phos、XPhox、IMes•HCl中的一种或以上。The phosphine ligands in step (1) are triphenylphosphine, tricyclohexylphosphine, tris(2-furyl)phosphine, PCy 3 , P(o-Tol) 3 , PPh 3 , P(o-furyl) 3 One or more of , BINAP, XANT Phos, XPhox, IMes•HCl.

步骤(1)中硝基源为Cu(NO3)2•3H2O、NH4NO3、AgNO3、KNO3、AgNO2中的一种或以上。In step (1), the nitro source is one or more of Cu(NO 3 ) 2 •3H 2 O, NH 4 NO 3 , AgNO 3 , KNO 3 , and AgNO 2 .

步骤(1)中5-苯基四氮唑类化合物 :Cu(NO3)2•3H2O :Ru3(CO)12 :三氟醋酸碘苯摩尔比为1 : (1.2~1.8) :(0.05~0.1) :(1.0~1.5)。In step (1), the 5-phenyltetrazolium compound: Cu(NO 3 ) 2 3H 2 O : Ru 3 (CO) 12 : the molar ratio of iodobenzene trifluoroacetate is 1 : (1.2~1.8) : ( 0.05~0.1): (1.0~1.5).

步骤(1)中5-苯基四氮唑类化合物的反应浓度为0.05~0.2 mol/L,膦配体的反应浓度为0.25~0.35mol/L。In step (1), the reaction concentration of the 5-phenyltetrazolium compound is 0.05-0.2 mol/L, and the reaction concentration of the phosphine ligand is 0.25-0.35 mol/L.

用核磁共振氢谱(1H NMR)、碳谱(13C NMR)以及高分辨质谱证实了间位硝化的产物正确性。其中核磁共振图采用Varian INOVA-400 型核磁共振仪测定,以四甲基硅烷(TMS)为内标(δ 0 ppm),氘代氯仿为溶剂;高分辨质谱用 Agilent 1946B 质谱仪测定。The correctness of the meta-nitration product was confirmed by hydrogen nuclear magnetic resonance spectroscopy ( 1 H NMR), carbon spectroscopy ( 13 C NMR) and high-resolution mass spectrometry. The nuclear magnetic resonance images were measured by Varian INOVA-400 nuclear magnetic resonance apparatus, with tetramethylsilane (TMS) as the internal standard (δ 0 ppm) and deuterated chloroform as the solvent; high-resolution mass spectrometry was measured with an Agilent 1946B mass spectrometer.

具体实施方式Detailed ways

下面结合具体实施方式对本发明作进一步描述,有助于对本发明的理解。但并不能以此来限制本发明的权利范围,而本发明的权利范围应以权利要求书阐述的为准。The present invention is further described below in conjunction with specific embodiments, which is helpful for understanding the present invention. However, this does not limit the scope of the right of the present invention, and the scope of the right of the present invention should be based on the description in the claims.

实施实例1:化合物1的合成Example 1: Synthesis of Compound 1

Figure 137126DEST_PATH_IMAGE002
Figure 137126DEST_PATH_IMAGE002

在洁净的耐压瓶中加入2-甲基-5-苯基-2H-四氮唑(32 mg, 0.20 mmol),Ru3(CO)12(4.8 mg, 0.015 mmol),PPh3(7.9 mg, 0.060 mmol),三氟醋酸碘苯(95 mg, 0.22mmol),六氟异丙醇(2 mL)和三水合硝酸铜(36 mg, 0.30 mmol)后于100℃油浴锅里搅拌24h;In a clean pressure bottle were added 2-methyl-5-phenyl- 2H -tetrazolium (32 mg, 0.20 mmol), Ru 3 (CO) 12 (4.8 mg, 0.015 mmol), PPh 3 (7.9 mg, 0.060 mmol), iodobenzene trifluoroacetate (95 mg, 0.22 mmol), hexafluoroisopropanol (2 mL) and copper nitrate trihydrate (36 mg, 0.30 mmol) and stirred in an oil bath at 100 °C for 24 h ;

反应完成后,减压除去溶剂,直接采用硅胶柱层析分离纯化即得产品38.5 mg,白色固体,收率94%,熔点96-100oC;1H NMR (400 MHz, Chloroform-d) δ 8.97 (s, 1H),8.47 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H),4.44 (s, 3H);13C NMR (100 MHz, Chloroform-d) δ 163.5, 148.8, 132.5, 130.2,129.2, 125.0, 121.9, 39.9;HRMS (ESI): 计算值C22H16ClN2 [M + H]+ :206.0673, 实测值:206.0671。After the reaction was completed, the solvent was removed under reduced pressure, and the product was directly separated and purified by silica gel column chromatography to obtain 38.5 mg of the product, white solid, yield 94%, melting point 96-100 o C; 1 H NMR (400 MHz, Chloroform- d ) δ 8.97 (s, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 4.44 (s, 3H); 13 C NMR (100 MHz, Chloroform- d ) δ 163.5, 148.8, 132.5, 130.2, 129.2, 125.0, 121.9, 39.9; HRMS (ESI): Calculated for C 22 H 16 ClN 2 [M + H] + : 206.0673, Measured value: 206.0671.

实施实例2:化合物2的合成Example 2: Synthesis of Compound 2

Figure 398343DEST_PATH_IMAGE003
Figure 398343DEST_PATH_IMAGE003

在洁净的耐压瓶中加入2-甲基-5-(3-甲基-5-苯基)-2H-三氮唑(34.8 mg, 0.20mmol),Ru3(CO)12(4.8 mg, 0.015 mmol),P(o-Tol)3 (18.2mg, 0.060 mmol),三氟醋酸碘苯(95 mg, 0.22 mmol),六氟异丙醇(2 mL)和Cu(NO3)2•3H2O (36 mg mg, 0.30 mmol)后于100℃油浴锅里搅拌24 h;In a clean pressure bottle was added 2-methyl-5-(3-methyl-5-phenyl)-2 H -triazole (34.8 mg, 0.20 mmol), Ru 3 (CO) 12 (4.8 mg , 0.015 mmol), P(o-Tol) 3 (18.2 mg, 0.060 mmol), iodobenzene trifluoroacetate (95 mg, 0.22 mmol), hexafluoroisopropanol (2 mL) and Cu(NO 3 ) 2 • 3H 2 O (36 mg mg, 0.30 mmol) was then stirred in an oil bath at 100 °C for 24 h;

反应完成后,减压除去溶剂,直接采用硅胶柱层析分离纯化即得产品40.8 mg,灰色固体, 收率65%,熔点90-92 oC; 1H NMR (400 MHz, Chloroform-d) δ 8.77 (s, 1H),8.29 (s, 1H), 8.13 (s, 1H), 4.43 (s, 3H), 2.55 (s, 3H);13C NMR (100 MHz,Chloroform-d) δ 163.7, 148.8, 140.9, 133.2, 128.8, 125.4, 119.2, 39.8, 21.5;HRMS (ESI): m/z实测值: C9H9N5O2 [M+H]+: 220.0829, 实测值: 220.0835。After the reaction was completed, the solvent was removed under reduced pressure, and the product was directly separated and purified by silica gel column chromatography to obtain 40.8 mg of the product, a gray solid, the yield was 65%, and the melting point was 90-92 ° C; 1 H NMR (400 MHz, Chloroform- d ) δ 8.77 (s, 1H), 8.29 (s, 1H), 8.13 (s, 1H), 4.43 (s, 3H), 2.55 (s, 3H); 13 C NMR (100 MHz, Chloroform- d ) δ 163.7, 148.8 , 140.9, 133.2, 128.8, 125.4, 119.2, 39.8, 21.5; HRMS (ESI): m/z found: C 9 H 9 N 5 O 2 [M+H] + : 220.0829, found: 220.0835.

实施实例3:化合物3的合成Example 3: Synthesis of Compound 3

Figure 67221DEST_PATH_IMAGE004
Figure 67221DEST_PATH_IMAGE004

在洁净的耐压瓶中加入2-(4-甲氧基-苯基)-2H-1,2,3-三氮唑(56.8 mg, 0.20mmol),Ru3(CO)12(4.8 mg, 0.015 mmol),P(o-furyl)3 (13.9 mg, 0.060 mmol),三氟醋酸碘苯(95 mg, 0.22 mmol),六氟异丙醇(2 mL)和AgNO3 (61.1 mg, 0.36 mmol)后于100℃油浴锅里搅拌24 h;In a clean pressure bottle was added 2-(4-methoxy-phenyl)-2 H -1,2,3-triazole (56.8 mg, 0.20 mmol), Ru 3 (CO) 12 (4.8 mg , 0.015 mmol), P(o-furyl) 3 (13.9 mg, 0.060 mmol), iodobenzene trifluoroacetate (95 mg, 0.22 mmol), hexafluoroisopropanol (2 mL) and AgNO 3 (61.1 mg, 0.36 mmol) and then stirred in an oil bath at 100 °C for 24 h;

反应完成后,减压除去溶剂,直接采用硅胶柱层析分离纯化即得产品40.8 mg,浅黄色固体, 收率92%,熔点122-124 oC;1H NMR (400 MHz, Chloroform-d) δ 8.60 (s,1H), 8.27 (d, J = 8.0 Hz, 1H), 7.82 (s, 2H), 7.21 (d, J = 8.0 Hz, 1H), 4.02(s, 3H);13C NMR (150 MHz, Chloroform-d) δ 152.0, 139.7, 136.1, 132.9, 124.2,116.6, 114.3, 57.1;HRMS (ESI): m/z 计算值C9H8N4O3 [M+H]+: 221.0669, 实测值:221.0676。After the reaction was completed, the solvent was removed under reduced pressure, and the product was directly separated and purified by silica gel column chromatography to obtain 40.8 mg of the product, a pale yellow solid, yield 92%, melting point 122-124 o C; 1 H NMR (400 MHz, Chloroform- d ) δ 8.60 (s, 1H), 8.27 (d, J = 8.0 Hz, 1H), 7.82 (s, 2H), 7.21 (d, J = 8.0 Hz, 1H), 4.02(s, 3H); 13 C NMR ( 150 MHz, Chloroform- d ) δ 152.0, 139.7, 136.1, 132.9, 124.2, 116.6, 114.3, 57.1; HRMS (ESI): m/z Calculated for C 9 H 8 N 4 O 3 [M+H] + : 221.0669 , found: 221.0676.

实施实例4:化合物4的合成Example 4: Synthesis of Compound 4

Figure 60585DEST_PATH_IMAGE005
Figure 60585DEST_PATH_IMAGE005

在洁净的耐压瓶中加入3-甲氧基-6-(4-甲氧基-苯基)-哒嗪(43.2 mg, 0.20mmol),Ru3(CO)12(4.8 mg, 0.015 mmol),PCy3(16.8 mg, 0.060 mmol),三氟醋酸碘苯(95mg, 0.22 mmol),六氟异丙醇(2 mL)和AgNO3 (61.1 mg, 0.36 mmol)后于100℃油浴锅里搅拌24 h;In a clean pressure bottle was added 3-methoxy-6-(4-methoxy-phenyl)-pyridazine (43.2 mg, 0.20 mmol), Ru 3 (CO) 12 (4.8 mg, 0.015 mmol) , PCy 3 (16.8 mg, 0.060 mmol), iodobenzene trifluoroacetate (95 mg, 0.22 mmol), hexafluoroisopropanol (2 mL) and AgNO 3 (61.1 mg, 0.36 mmol) and then placed in an oil bath at 100 °C Stir for 24 h;

反应完成后,减压除去溶剂,直接采用硅胶柱层析分离纯化即得产品40.8 mg,浅黄色固体, 收率89%,熔点187-190oC;1H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H),8.35 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 12.0 Hz, 1H), 7.23 (d, J = 8.0 Hz,1H), 7.09 (d, J = 12.0 Hz, 1H), 4.19 (s, 3H), 4.04 (s, 3H); 13C NMR (150 MHz,Chloroform-d) δ 164.6, 154.1, 152.7, 139.9, 132.3, 128.6, 126.7, 123.8,118.5, 114.3, 55.9, 55.2;HRMS (ESI): m/z 计算值C12H13N3O4 [M+H]+: 262.0822, 实测值: 262.0823。After the reaction was completed, the solvent was removed under reduced pressure, and the product was directly separated and purified by silica gel column chromatography to obtain 40.8 mg of the product, a pale yellow solid, the yield was 89%, the melting point was 187-190 ° C; 1 H NMR (400 MHz, Chloroform- d ) δ 8.47 (s, 1H), 8.35 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 12.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 7.09 (d, J = 12.0 Hz, 1H) 12.0 Hz, 1H), 4.19 (s, 3H), 4.04 (s, 3H); 13 C NMR (150 MHz, Chloroform- d ) δ 164.6, 154.1, 152.7, 139.9, 132.3, 128.6, 126.7, 123.8, 118.5, 114.3, 55.9, 55.2; HRMS (ESI): m/z calcd for C12H13N3O4 [ M + H] + : 262.0822 , found: 262.0823 .

参考文献:references:

1.C. X. Wei, M. Bian and G. H. Gong, Molecules, 2015, 20, 5528-5553.1.CX Wei, M. Bian and GH Gong, Molecules , 2015, 20, 5528-5553.

2.H. Parveen, S. Mukhtar, N. H. El Sayed and F. Hayat, Asian J Chem,2014, 26, 8134-8138.2.H. Parveen, S. Mukhtar, NH El Sayed and F. Hayat, Asian J Chem , 2014, 26, 8134-8138.

3.J. Wu, Q. Wang, J. Guo, Z. Hu, Z. Yin, J. Xu and X. Wu, Eur J Pharmacol, 2008, 589, 220-224.3. J. Wu, Q. Wang, J. Guo, Z. Hu, Z. Yin, J. Xu and X. Wu, Eur J Pharmacol , 2008, 589, 220-224.

4.M. H. Norman, H. D. Smith, C. W. Andrews, F. L. Tang, C. L. Cowanand R. P. Steffen, J Med Chem, 1995, 38, 4670-4678.4. MH Norman, HD Smith, CW Andrews, FL Tang, CL Cowanand RP Steffen, J Med Chem , 1995, 38, 4670-4678.

5.S. Bommagani, N. R. Penthala, M. Balasubramaniam, S. Kuravi, E.Caldas-Lopes, M. L. Guzman, R. Balusu and P. A. Crooks, Bioorg Med Chem Lett,2019, 29, 172-178.5. S. Bommagani, NR Penthala, M. Balasubramaniam, S. Kuravi, E. Caldas-Lopes, ML Guzman, R. Balusu and PA Crooks, Bioorg Med Chem Lett , 2019, 29, 172-178.

6.A. Rajasekaran and P. P. Thampi, Eur J Med Chem, 2004, 39, 273-279.6.A. Rajasekaran and PP Thampi, Eur J Med Chem , 2004, 39, 273-279.

7.A. A. Bekhit, O. A. El-Sayed, E. Aboulmagd and J. Y. Park, Eur J Med Chem, 2004, 39, 249-255.7.AA Bekhit, OA El-Sayed, E. Aboulmagd and JY Park, Eur J Med Chem , 2004, 39, 249-255.

8.G. Y. Meti, R. R. Kamble, D. B. Biradar and S. B. Margankop, Med Chem Res, 2013, 22, 5868-5877.8. GY Meti, RR Kamble, DB Biradar and SB Margankop, Med Chem Res , 2013, 22, 5868-5877.

9.A. Tamilselvi and G. Mugesh, ChemMedChem, 2009, 4, 512-516.9.A. Tamilselvi and G. Mugesh, ChemMedChem , 2009, 4, 512-516.

10. H. Park and K. M. Merz, J Med Chem, 2005, 48, 1630-1637.10. H. Park and KM Merz, J Med Chem , 2005, 48, 1630-1637.

11. C. Sambiagio, D. Schonbauer, R. Blieck, T. Dao-Huy, G.Pototschnig, P. Schaaf, T. Wiesinger, M. F. Zia, J. Wencel-Delord, T. Besset,B. U. W. Maes and M. Schnurch, Chem Soc Rev, 2018, 47, 6603-6743.11. C. Sambiagio, D. Schonbauer, R. Blieck, T. Dao-Huy, G. Pototschnig, P. Schaaf, T. Wiesinger, MF Zia, J. Wencel-Delord, T. Besset, BUW Maes and M. Schnurch, Chem Soc Rev , 2018, 47, 6603-6743.

12. B. Chen, Y. Jiang, J. Cheng and J. T. Yu, Org Biomol Chem, 2015,13, 2901-2904.12. B. Chen, Y. Jiang, J. Cheng and JT Yu, Org Biomol Chem , 2015,13, 2901-2904.

13. L. Wang, W. Wu, Q. Chen and M. He, Org Biomol Chem, 2014, 12,7923-7926。13. L. Wang, W. Wu, Q. Chen and M. He, Org Biomol Chem , 2014, 12, 7923-7926.

Claims (5)

1.一种制备间硝基5-苯基四氮唑类化合物的方法,其特征在于以5-苯基四氮唑类化合物为原料,硝酸盐为硝基源,在催化剂催化和膦配体的辅助下实现底物的间位硝基化,其反应方程式为:1. a method for preparing m-nitro 5-phenyl tetrazolium compound, it is characterized in that taking 5-phenyl tetrazolium compound as raw material, nitrate is nitro source, in catalyst catalysis and phosphine ligand The meta-nitration of the substrate is realized under the assistance of , and its reaction equation is:
Figure 197598DEST_PATH_IMAGE001
Figure 197598DEST_PATH_IMAGE001
其中:in: A环为四氮唑、三氮唑、哒嗪;A ring is tetrazolium, triazole, pyridazine; R1为氢、卤素、烷基、苯基、烷氧基、烷硫基、氨基中的一种或一种以上;R 1 is one or more of hydrogen, halogen, alkyl, phenyl, alkoxy, alkylthio, and amino; R2为氢、卤素、烷基、苯基、烷氧基、氨基中的一种或一种以上;R 2 is one or more of hydrogen, halogen, alkyl, phenyl, alkoxy, and amino; 膦配体为三苯基膦、PCy3、P(o-Tol)3、P(o-furyl)3中的一种或以上;The phosphine ligand is one or more of triphenylphosphine, PCy 3 , P(o-Tol) 3 , and P(o-furyl) 3 ; 硝基源为Cu(NO3)2•3H2O、AgNO3中的一种或以上。The nitro source is one or more of Cu(NO 3 ) 2 •3H 2 O and AgNO 3 .
2.根据权利要求1所述的间硝基5-苯基四氮唑类化合物的合成方法,其特征在于采用如下制备步骤:2. the synthetic method of m-nitro 5-phenyl tetrazolium compound according to claim 1 is characterized in that adopting following preparation step: (1)在洁净的耐压瓶中加入5-苯基四氮唑类化合物、Ru3(CO)12、膦配体、三氟醋酸碘苯,六氟异丙醇和硝基源后,于100℃油浴锅里搅拌24 h;(1) After adding 5-phenyltetrazolium compound, Ru 3 (CO) 12 , phosphine ligand, iodobenzene trifluoroacetate, hexafluoroisopropanol and nitro source into a clean pressure-resistant bottle, at 100 Stir in an oil bath for 24 h; (2)反应完成后减压除去溶剂,采用硅胶柱层析分离纯化即得产品。(2) After the reaction is completed, the solvent is removed under reduced pressure, and the product is obtained by separation and purification by silica gel column chromatography. 3.根据权利要求2所述的制备方法,其特征在于步骤(1)中5-苯基四氮唑类化合物 :Cu(NO3)2•3H2O :Ru3(CO)12 :三氟醋酸碘苯摩尔比为1 : (1.2~1.8) :(0.05~0.1) :(1.0~1.5)。3. preparation method according to claim 2 is characterized in that in step (1), 5-phenyl tetrazolium compound: Cu(NO 3 ) 2 3H 2 O: Ru 3 (CO) 12 : trifluoro The molar ratio of iodobenzene acetate is 1:(1.2~1.8):(0.05~0.1):(1.0~1.5). 4.根据权利要求2所述的制备方法,其特征在于步骤(1)中5-苯基四氮唑类化合物的反应浓度为0.05~0.2 mol/L。4 . The preparation method according to claim 2 , wherein the reaction concentration of the 5-phenyltetrazolium compound in step (1) is 0.05-0.2 mol/L. 5 . 5.根据权利要求2所述的制备方法,其特征在于膦配体的反应浓度为0.25~0.35mol/L。5. preparation method according to claim 2 is characterized in that the reaction concentration of phosphine ligand is 0.25~0.35mol/L.
CN201911057510.1A 2019-11-01 2019-11-01 Novel C-H activation method for tetrazole-oriented meta-position nitration Expired - Fee Related CN110713466B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911057510.1A CN110713466B (en) 2019-11-01 2019-11-01 Novel C-H activation method for tetrazole-oriented meta-position nitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911057510.1A CN110713466B (en) 2019-11-01 2019-11-01 Novel C-H activation method for tetrazole-oriented meta-position nitration

Publications (2)

Publication Number Publication Date
CN110713466A CN110713466A (en) 2020-01-21
CN110713466B true CN110713466B (en) 2022-07-05

Family

ID=69213683

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911057510.1A Expired - Fee Related CN110713466B (en) 2019-11-01 2019-11-01 Novel C-H activation method for tetrazole-oriented meta-position nitration

Country Status (1)

Country Link
CN (1) CN110713466B (en)

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Meta-Selective CAr−H Nitration of Arenes through a Ru3(CO)12-Catalyzed Ortho-Metalation Strategy;Zhoulong Fan,等;《J. Am. Chem. Soc》;20161231;第138卷;8470-8475 *
Monomeric Octahedral Ruthenium(II) Complex Enabled meta-C−H Nitration of Arenes with Removable Auxiliaries;Zhoulong Fan,等;《Org. Lett》;20170602;第19卷;3199-3202 *
PMes3‑Promoted Ruthenium-Catalyzed Meta C−H Nitration of 6‑Arylpurines;Zhoulong Fan,等;《J. Org. Chem》;20180227;第83卷;3245-3251 *
Recent advances in transition metal-catalyzed C(sp2)–H nitration;Li-Rui Song,等;《Organic &Biomolecular Chemistry》;20190103;第17卷;1351-1361 *
Synthesis of 2‑Arylbenzothiazole and 2‑Arylthiazole Derivatives via a Ru-Catalyzed meta-Selective C−H Nitration Reaction;Deming Liu,等;《J. Org. Chem.》;20190719;第84卷;12784-12791 *
The ruthenium-catalyzed meta-selective C–H nitration of various azole ring-substituted arenes;Dong Zhang,等;《Org. Biomol. Chem.》;20190923;第17卷;9065-9069 *

Also Published As

Publication number Publication date
CN110713466A (en) 2020-01-21

Similar Documents

Publication Publication Date Title
Albrecht et al. Chiral platinum and palladium complexes containing functionalized C2-symmetric bisaminoaryl ‘Pincer’ligands
CN110105305B (en) Transition metal catalyzed C-H activation/cyclization synthesis 1,2-benzothiazine derivative green synthesis method
Yuan et al. Catalytic enantioselective allene–anhydride approach to β, γ-unsaturated enones bearing an α-all-carbon-quarternary center
CN103265420A (en) Preparation method of aromatic diketone compound
CN104418861B (en) A kind of preparation method of Xi Gelieting midbody compound
US6225499B1 (en) Process for preparing aminoarylacetylenes
WO1998000427A1 (en) Process for the production of 8-chloro-6-(2-fluorophenyl)-1-methyl-4h-imidazo[1,5-a]benzodiazepine
CN110713466B (en) Novel C-H activation method for tetrazole-oriented meta-position nitration
CN115448848A (en) Preparation method of antifungal compound
CN113387886A (en) 2-aminodibenzo [ c, e ] azepine compound and synthetic method thereof
WO2020088119A1 (en) Catalyst for silylation reaction of aromatic amine
CN108440307B (en) Preparation method of chiral amine compound
CN103694246B (en) Preparation method of A3B type asymmetric porphyrin compound
CN109956865B (en) Preparation method of sitagliptin intermediate
Kong et al. Synthesis of spiro dienones from internal acetylene and cyclic 3-iodo enones in the presence of nickel bromide and zinc powder
CN111808023A (en) A new method for preparing 3-aryl isoquinoline derivatives
Nirmala et al. Ruthenium (II) complexes bearing pyridine-functionalized N-heterocyclic carbene ligands: Synthesis, structure and catalytic application over amide synthesis
Muratov et al. Formal reductive addition of acetonitrile to aldehydes and ketones
JP2003522744A (en) Method for producing polycyclic aromatic compound
Kuznetsov et al. Dimethylamine adducts of allylic triorganoboranes as effective reagents for Petasis-type homoallylation of primary amines with formaldehyde
CN1442403A (en) Chiral alkamine ligand and its application in asymmetrical addition of terminal alkyne para imine
CN118930551B (en) Process for preparing beta-aminopyrazine acetate
JP7648643B2 (en) Ruthenium complex, method for producing said complex, and method for producing optically active secondary alcohol using said complex as a catalyst
CN102503867A (en) N-aryl-N-alkyl methylpropane-2-sulfinamide and application thereof
Artamkina et al. Urea as ammonia equivalent in aryl halides amination catalyzed by palladium complexes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220705

CF01 Termination of patent right due to non-payment of annual fee