CN110708067A - A capacitance correction method for double-sort interval selection applied to analog-to-digital converters - Google Patents
A capacitance correction method for double-sort interval selection applied to analog-to-digital converters Download PDFInfo
- Publication number
- CN110708067A CN110708067A CN201910998717.2A CN201910998717A CN110708067A CN 110708067 A CN110708067 A CN 110708067A CN 201910998717 A CN201910998717 A CN 201910998717A CN 110708067 A CN110708067 A CN 110708067A
- Authority
- CN
- China
- Prior art keywords
- capacitor
- msb
- capacitance
- analog
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000003990 capacitor Substances 0.000 claims abstract description 115
- 230000001174 ascending effect Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000012163 sequencing technique Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 abstract description 12
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 description 8
- 238000000342 Monte Carlo simulation Methods 0.000 description 6
- 238000003491 array Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005094 computer simulation Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
本发明公开了一种应用于模数转换器的双排序间隔选取的电容校正方法,涉及微电子学与固体电子学领域,特别是该领域中混合电容电阻型逐次逼近模数转换器中的电容设置方法。本发明采用单位电容构成混合电容电阻型逐次逼近模数转换器的正负电容阵列,通过两次排序后间隔选取构成模数转换器的各级有效位最高有效位(MSB)、次高有效位(MSB-1)……最低有效位(LSB)、Dummy电容。相比于传统SAR ADC,在静态性能与动态性能上均有显著改善;相较于传统的模拟、数字校正算法,本发明提出的调整校正方法仅需进行两次排序,操作更为简单,大大地节省了面积和功耗。
The invention discloses a capacitance correction method applied to the double-sort interval selection of an analog-to-digital converter, and relates to the fields of microelectronics and solid electronics, in particular to the capacitance in the mixed capacitance-resistance type successive approximation analog-to-digital converter in the field. Set method. The invention adopts the unit capacitor to form the positive and negative capacitor array of the mixed capacitor resistance type successive approximation analog-to-digital converter. (MSB-1) ...... least significant bit (LSB), Dummy capacitance. Compared with the traditional SAR ADC, the static performance and dynamic performance are significantly improved; compared with the traditional analog and digital correction algorithms, the adjustment and correction method proposed by the present invention only needs to perform two sorting, and the operation is simpler and greatly improved. Save area and power consumption.
Description
技术领域technical field
本发明涉及微电子学与固体电子学领域,特别是该领域中混合电容电阻型逐次逼近模数转换器中的电容设置方法。The invention relates to the field of microelectronics and solid state electronics, in particular to a capacitance setting method in a mixed capacitance-resistance type successive approximation analog-to-digital converter in the field.
背景技术Background technique
在智能时代,数字信号涉及到生活的方方面面。模数转换器(Analog-to-DigitalConverter,缩写为ADC)与数模转换器(Digital-to-Analog Converter,缩写为DAC)是连接数字信号与模拟信号的桥梁,是数字世界的重要基础。逐次逼近模数转换器(SAR ADC)具有高精度、低功耗、小尺寸等优势,并且兼具中等速度,广泛运用于如植入式医疗设备、智能传感器等嵌入式低功耗的应用。In the age of intelligence, digital signals are involved in all aspects of life. Analog-to-Digital Converter (abbreviated as ADC) and Digital-to-Analog Converter (abbreviated as DAC) are bridges connecting digital signals and analog signals, and are important foundations of the digital world. Successive approximation analog-to-digital converters (SAR ADCs) have the advantages of high precision, low power consumption, small size, and moderate speed, and are widely used in embedded low-power applications such as implantable medical equipment and smart sensors.
开关电源高频噪声、模拟输入信号噪声、电源输出不稳定、元件不匹配等将会影响到ADC的精度。在SAR ADC的设计中,精度,速度,功耗,面积等性能指标的综合考量,以及ADC结构、校正算法等的选取,是设计者需要面对的问题。文献[J.Shen et al.,"A 16-bit16MS/s SAR ADC with on-chip calibration in 55nm CMOS,"2017Symposium on VLSICircuits,Kyoto,2017,pp.C282-C283.]提出一种具有低输入电容和高效片上前景校准算法,使用与储能电容器的信号无关的参考开关以提高速度并减小面积,校正后性能方面有明显改善,但是增加了整体的功耗。文献[W.Tung and S.Huang,"An Energy-Efficient11-bit 10-MS/s SAR ADC with Monotonic Switching Split Capacitor Array,"2018IEEE International Symposium on Circuits and Systems(ISCAS),Florence,2018,pp.1-5.]提出了一种异步差分SAR ADC,同时使用单调开关程序与分离电容器结构,达到了减少面积和能量消耗的目的,并提出一种数字校准方法,使由电容器失配和桥式寄生电容器失配引起的影响最小化,但是该方法较为复杂,增加了版图设计的复杂度,且线性度与动态参数的提升不是很明显。专利201910772581.3于2019年提出一种中位选取的电容校正方法,通过多次排序,多次中位选取,有效地提升了ADC的静态性能与动态性能。但高达6次的电容排序以及5次电容组合大幅提升了ADC的功耗,并降低了ADC的转换速率。High-frequency noise of switching power supply, noise of analog input signal, unstable power supply output, mismatch of components, etc. will affect the accuracy of ADC. In the design of SAR ADC, the comprehensive consideration of performance indicators such as accuracy, speed, power consumption, and area, as well as the selection of ADC structure and correction algorithm, are problems that designers need to face. The literature [J.Shen et al.,"A 16-bit16MS/s SAR ADC with on-chip calibration in 55nm CMOS,"2017Symposium on VLSICircuits,Kyoto,2017,pp.C282-C283.] proposes a low input capacitance And high-efficiency on-chip foreground calibration algorithm, using a reference switch independent of the signal from the storage capacitor to increase speed and reduce area, there is a significant improvement in performance after calibration, but the overall power consumption is increased. Literature [W.Tung and S.Huang,"An Energy-Efficient11-bit 10-MS/s SAR ADC with Monotonic Switching Split Capacitor Array,"2018IEEE International Symposium on Circuits and Systems(ISCAS),Florence,2018,pp.1 -5.] proposed an asynchronous differential SAR ADC, which uses a monotonic switching procedure and a split capacitor structure at the same time to achieve the purpose of reducing area and energy consumption, and proposed a digital calibration method that makes the difference between capacitor mismatch and bridge parasitics The influence caused by capacitor mismatch is minimized, but this method is more complicated, which increases the complexity of layout design, and the improvement of linearity and dynamic parameters is not obvious. Patent 201910772581.3 proposed a capacitance correction method for median selection in 2019. Through multiple sorting and multiple median selection, the static performance and dynamic performance of the ADC are effectively improved. However, up to 6 capacitor sequencing and 5 capacitor combinations greatly increase the power consumption of the ADC and reduce the conversion rate of the ADC.
发明内容SUMMARY OF THE INVENTION
本发明针对现有技术中性能较差、功耗大、电容版图设计复杂、体积大等方面的缺陷,设计出一种应用于逐次逼近模数转换器的双排序间隔选取的电容校正方法。Aiming at the defects of the prior art in terms of poor performance, high power consumption, complex capacitor layout design, and large volume, the present invention designs a capacitor correction method for double-sort interval selection applied to successive approximation analog-to-digital converters.
本发明技术方案为一种应用于模数转换器的双排序间隔选取的电容校正方法,该方法包括:The technical solution of the present invention is a capacitance correction method applied to double-sort interval selection of an analog-to-digital converter, the method comprising:
步骤1:采用单位电容构成混合电容电阻型逐次逼近模数转换器中的正负电容阵列,设正负电容阵列各包含n个单位电容,并将单位电容标号为:Cu1、Cu2、Cu3……Cu(n-1)、Cun;Step 1: Use unit capacitors to form the positive and negative capacitor arrays in the mixed capacitor resistance type successive approximation analog-to-digital converter. Set the positive and negative capacitor arrays to each contain n unit capacitors, and label the unit capacitors as: C u1 , C u2 , C u3 ......C u(n-1) , C un ;
步骤2:进行第一次排序:将单位电容Cui按电容值大小进行升序排列,并依次编号为 将位于中间位置的两个单位电容分别作为转换器的最低有效位LSB与Dummy电容;然后将剩余的电容首尾组合,得到n/2-1个新的电容组Ci:与组合为C1、与组合为C2、与组合为C3……与组合为C(n/2-1);Step 2: Perform the first sorting: Arrange the unit capacitances C ui in ascending order according to the capacitance value, and number them as follows Place the two unit capacitors in the middle As the least significant bit LSB of the converter and the Dummy capacitor, respectively; then combine the remaining capacitors end to end to get n/2-1 new capacitor banks C i : and The combination is C 1 , and The combination is C 2 , and The combination is C3... and The combination is C (n/2-1) ;
步骤3:进行第二次排序:将n/2-1个新的电容组按电容值大小进行升序排列,并依次编号为: Step 3: Perform the second sorting: Arrange n/2-1 new capacitor banks in ascending order according to the capacitance value, and number them as follows:
步骤4:对于排序后的电容组,从第一个电容组开始间隔选取,选取出当前n/4个电容组作为转换器的最高有效位MSB;Step 4: For the sorted capacitor banks, start with the first capacitor bank Start interval selection, and select the current n/4 capacitor banks as the most significant bit MSB of the converter;
步骤5:对于剩余的电容组,从第一个电容组开始间隔选取,选取出当前n/8个电容组作为转换器的次高有效位MSB-1;Step 5: For the remaining capacitor banks, start with the first capacitor bank Start interval selection, select the current n/8 capacitor banks as the second most significant bit MSB-1 of the converter;
步骤6:重复步骤5,在剩余的电容组中,从第一个电容组开始间隔选取,每次选取电容组数目减半,作为转换器的其余有效位:MSB-2、MSB-3……,直至剩余一个电容组作为转换器的次低有效位LSB+1;Step 6: Repeat
步骤7:采用得到的MSB、MSB-1、MSB-2、MSB-3……LSB、dummy电容,作为逐次逼近模数转换器的电容阵列进行模数转换。Step 7: Use the obtained MSB, MSB-1, MSB-2, MSB-3... LSB, dummy capacitors as the capacitor array of the successive approximation analog-to-digital converter to perform analog-to-digital conversion.
本发明提出的双排序间隔选取的电容校正方法,相比于传统SAR ADC,在静态性能与动态性能上均有显著改善;相较于传统的模拟、数字校正算法,本发明提出的调整校正方法仅需进行两次排序,操作更为简单,大大地节省了面积和功耗。Compared with the traditional SAR ADC, the capacitance calibration method proposed by the present invention has significantly improved static performance and dynamic performance; compared with the traditional analog and digital calibration algorithms, the adjustment and calibration method proposed by the present invention Only two sortings are required, which makes the operation simpler and greatly saves area and power consumption.
附图说明Description of drawings
图1为混合电容电阻型SAR ADC结构示意图。Figure 1 is a schematic diagram of the structure of a mixed capacitor-resistance SAR ADC.
图2为本发明提出的双排序间隔选取示意图。FIG. 2 is a schematic diagram of selecting a double-sort interval proposed by the present invention.
图3为两步完成单位电容Cu1、Cu2比较的示意图;(a)正负电容阵列中所有单位电容上极板接VCM,正电容阵列中Cu1下极板接VREFP,其他单位电容下极板接接VREFN,负电容阵列中Cu1下极板接接VREFN,其他单位电容下极板接接VREFP;(b)正负电容阵列中所有单位电容上极板断开与VCM连接,正电容阵列中Cu2下极板接VREFP,其他单位电容下极板接接VREFN,负电容阵列中Cu2下极板接接VREFN,其他单位电容下极板接接VREFP。Figure 3 is a schematic diagram of comparing the unit capacitors Cu1 and Cu2 in two steps; (a) the upper plates of all unit capacitors in the positive and negative capacitor arrays are connected to VCM, the lower plates of Cu1 in the positive capacitor array are connected to VREFP, and the lower plates of other unit capacitors are connected to Connect VREFN, the lower plate of Cu1 in the negative capacitor array is connected to VREFN, and the lower plate of other unit capacitors is connected to VREFP; (b) The upper plates of all unit capacitors in the positive and negative capacitor array are disconnected from VCM, and Cu2 in the positive capacitor array is connected The lower plate is connected to VREFP, the lower plate of other unit capacitors is connected to VREFN, the lower plate of Cu2 in the negative capacitor array is connected to VREFN, and the lower plate of other unit capacitors is connected to VREFP.
图4为18位SAR ADC的静态性能仿真结果。Figure 4 shows the simulation results of the static performance of the 18-bit SAR ADC.
图5为16位SAR ADC的静态性能仿真结果。Figure 5 shows the static performance simulation results of the 16-bit SAR ADC.
图6为14位SAR ADC的静态性能仿真结果。Figure 6 shows the simulation results of the static performance of the 14-bit SAR ADC.
图7为18位SAR ADC的动态性能仿真结果。Figure 7 shows the simulation results of the dynamic performance of the 18-bit SAR ADC.
图8为16位SAR ADC的动态性能仿真结果。Figure 8 shows the simulation results of the dynamic performance of the 16-bit SAR ADC.
图9为14位SAR ADC的动态性能仿真结果。Figure 9 shows the simulation results of the dynamic performance of the 14-bit SAR ADC.
具体实施方式Detailed ways
本发明提出双排序间隔选取的电容校正方法,对于传统二进制阵列,以由高8位电容DAC和低10位电阻DAC组成的18位混合电容电阻型逐次逼近模数转换器为例进行详述。The present invention proposes a capacitance correction method with double sorting interval selection. For a traditional binary array, an 18-bit mixed capacitance resistance type successive approximation analog-to-digital converter composed of a high 8-bit capacitance DAC and a low 10-bit resistance DAC is taken as an example for detailed description.
高M位电容DAC和低N电位电阻DAC的M+N位混合电容电阻型逐次逼近模数转换器结构如图1所示。若M=8,N=10,则表示高8位电容DAC和低10位电阻DAC组成的18位SAR ADC。高8位的正负电容阵列中各包含128个单位电容,将128个单位电容标号为:C_u1、C_u2、C_u3……C_u127、C_u128(如图2中的(1)所示)。128个单位电容的电容值本应是相等的,但是在实际情况中,由于各种因素的影响,128个单位电容往往并不完全相等,而是服从正态分布。Figure 1 shows the structure of the M+N-bit mixed capacitance-resistance type successive approximation analog-to-digital converter of the high-M-bit capacitance DAC and the low-N potential resistance DAC. If M=8, N=10, it means the 18-bit SAR ADC composed of high 8-bit capacitance DAC and low 10-bit resistance DAC. The positive and negative capacitor arrays of the upper 8 bits each contain 128 unit capacitors, and the 128 unit capacitors are labeled as: C_u1, C_u2, C_u3... C_u127, C_u128 (as shown in (1) in Figure 2). The capacitance values of the 128 unit capacitors should be equal, but in practice, due to the influence of various factors, the 128 unit capacitors are often not exactly equal, but obey a normal distribution.
对128个单位电容进行第一次升序排序:采用与文献[H.-.Lee,D.A.Hodges andP.R.Gray,“A Self-Calibrating 15Bit CMOS A/D Converter,”IEEE Journal of Solid-State Circuits,1984,19(6):813-819]类似的电容比较方法(如图3所示)完成电容与电容的比较,进而对128个单位电容进行升序排序,并依次标号为:C_u1^*、C_u2^*、C_u3^*……C_u127^*、C_u128^*(如图2(2)所示)。将位于中间位置的两个单位电容C_u64^*、C_u65^*分别作为转换器的最低有效位(the least significant bit,LSB)与Dummy电容,然后将剩余的电容首尾组合,得到63个新的电容组C_i:C_u1^*与C_u128^*组合为C_1、C_u2^*与C_u127^*组合为C_2、C_u3^*与C_u126^*组合为C_3……C_u63^*与C_u66^*组合为C_63。First Ascending Sorting of 128 Unit Capacitors: Adoption and Literature [H.-.Lee, D.A.Hodges and P.R.Gray, "A Self-Calibrating 15Bit CMOS A/D Converter," IEEE Journal of Solid-State Circuits ,1984,19(6):813-819] Similar capacitance comparison method (as shown in Figure 3) completes the comparison of capacitance and capacitance, and then sorts the 128 unit capacitances in ascending order, and labels them in turn: C_u1^*, C_u2^*, C_u3^*...C_u127^*, C_u128^* (as shown in Figure 2(2)). Use the two unit capacitors C_u64^* and C_u65^* located in the middle as the least significant bit (LSB) and Dummy capacitor of the converter respectively, and then combine the remaining capacitors end to end to get 63 new capacitors Group C_i: The combination of C_u1^* and C_u128^* is C_1, the combination of C_u2^* and C_u127^* is C_2, the combination of C_u3^* and C_u126^* is C_3... The combination of C_u63^* and C_u66^* is C_63.
图2中:In Figure 2:
(1)正负电容阵列中各有128个单位电容,记为Cui。(1) There are 128 unit capacitors in the positive and negative capacitor arrays, which are denoted as C ui .
(2)第一次排序:将128个单位电容根据电容值大小进行升序排列,记为Cui *;(2) The first sorting: Arrange the 128 unit capacitors in ascending order according to the capacitance value, denoted as C ui * ;
将位于中间位置的两个电容Cu64,Cu65分别作为转换器的LSB与Dummy电容;Use the two capacitors C u64 and C u65 in the middle as the LSB and Dummy capacitors of the converter respectively;
将剩余的电容首尾组合,得到63个新的电容组,记为Ci。The remaining capacitors are combined end to end to obtain 63 new capacitor banks, denoted as C i .
(3)第二次排序:将新的63个电容组按电容值大小进行升序排列,记为Ci *;(3) Second sorting: Arrange the new 63 capacitance groups in ascending order according to the capacitance value, and denote it as C i * ;
对电容组进行间隔选取,选出32个电容组(64个单位电容)作为转换器的MSB。The capacitor groups are selected at intervals, and 32 capacitor groups (64 unit capacitors) are selected as the MSB of the converter.
(4)对剩余的电容组进行间隔选取选出16个电容组(32个单位电容)作为转换器的MSB-1。(4) Select 16 capacitor groups (32 unit capacitors) as the MSB-1 of the converter by interval selection of the remaining capacitor groups.
(5)对剩余的电容组进行间隔选取选出8个电容组(16个单位电容)作为转换器的MSB-2。(5) Select 8 capacitor groups (16 unit capacitors) as the MSB-2 of the converter by interval selection of the remaining capacitor groups.
(6)对剩余的电容组进行间隔选取,得到转换器的其他有效位:MSB-3,MSB-4,MSB-5。(6) The remaining capacitor groups are selected at intervals to obtain other valid bits of the converter: MSB-3, MSB-4, MSB-5.
对63个电容组进行第二次升序排序,并依次标号为:C_1^*、C_2^*、C_3^*……C_62^*、C_63^*,之后进行间隔选取(如(3)所示):从第一个电容组(C_1^*)开始间隔选取,选取32个电容组(64个单位电容)作为转换器的最高有效位(the most significant bit,MSB);在剩余的电容组中从第一个电容组(C_2^*)开始间隔选取,选取16个电容组(32个单位电容)作为转换器的次高有效位(MSB-1);继续在剩余的电容组中重复以上间隔选取方法,从第一个电容组开始选取,每次选取电容组数目减半,作为转换器的其余有效位:MSB-2、MSB-3……,直至剩余一个电容组(C_32^*)作为转换器的次低有效位(LSB+1)。Sort the 63 capacitor groups in ascending order for the second time, and label them as: C_1^*, C_2^*, C_3^*...C_62^*, C_63^*, and then select the interval (as shown in (3)) : Select from the first capacitor group (C_1^*) at intervals, and select 32 capacitor groups (64 unit capacitors) as the most significant bit (MSB) of the converter; The first capacitor group (C_2^*) is selected at intervals, and 16 capacitor groups (32 unit capacitors) are selected as the second most significant bit (MSB-1) of the converter; continue to repeat the above interval selection in the remaining capacitor groups method, starting from the first capacitor group, and halving the number of capacitor groups each time, as the remaining valid bits of the converter: MSB-2, MSB-3..., until the remaining capacitor group (C_32^*) is used as the conversion the second least significant bit (LSB+1) of the register.
在图1中,若M=8,N=8,则表示由高8位电容与低8位电阻组成的16位混合电容电阻型逐次逼近模数转换器;若M=8,N=6,则表示由高8位电容与低6位电阻组成的14位混合电容电阻型逐次逼近模数转换器。采用与18位(M=8,N=10)混合电容电阻型逐次逼近模数转换器完全相同的双排序间隔选取的电容校准方法,对16位(M=8,N=8)、14位(M=8,N=6)混合电容电阻型逐次逼近模数转换器进行校正。In Figure 1, if M=8, N=8, it means a 16-bit mixed capacitor resistance type successive approximation analog-to-digital converter composed of high 8-bit capacitors and low 8-bit resistors; if M=8, N=6, Then it represents a 14-bit mixed capacitance-resistance type successive approximation analog-to-digital converter composed of a high 8-bit capacitance and a low 6-bit resistance. The capacitance calibration method of double-sequencing interval selection is exactly the same as that of the 18-bit (M=8, N=10) mixed capacitor-resistance successive approximation analog-to-digital converter. For 16-bit (M=8, N=8), 14-bit (M=8, N=6) mixed capacitance-resistance type successive approximation analog-to-digital converter for correction.
在Matlab中对18位、16位、14位混合电容电阻型逐次逼近模数转换器进行仿真,电容失配率()分别设置为0.1%、0.15%、0.2%,并将静态仿真(差分非线性(DNL)、积分非线性(INL))蒙特卡洛仿真次数设置为100次,动态仿真(无杂散动态范围(SFDR)、信号与噪声谐波比(SNDR))蒙特卡洛仿真次数设置为500次。The 18-bit, 16-bit, and 14-bit mixed capacitor-resistance successive approximation analog-to-digital converters are simulated in Matlab, and the capacitance mismatch ratio ( ) is set to 0.1%, 0.15%, and 0.2%, respectively, and the static simulation (differential non- Linear (DNL), integral nonlinear (INL)) Monte Carlo simulation times are set to 100 times, dynamic simulation (spurious free dynamic range (SFDR), signal-to-noise harmonic ratio (SNDR)) Monte Carlo simulation times are set for 500 times.
静态仿真结果如图4(18位)、图5(16位)、图6(14位)所示,并总结于表1中。The static simulation results are shown in Figure 4 (18-bit), Figure 5 (16-bit), Figure 6 (14-bit), and summarized in Table 1.
对于18位SAR ADC,本发明提出的双排序间隔选取分别将DNL最大均方根(root-mean-square,RMS)与INL最大均方根分别提升95.1%、97.1%至0.43dB、0.40dB。对于16位SAR ADC,双排序间隔选取分别将DNL最大均方根与INL最大均方根分别提升94.4%、96.3%至0.22dB、0.18dB。对于14位SAR ADC,双排序间隔选取分别将DNL最大均方根与INL最大均方根分别提升87.3%、89.7%至0.16dB、0.15dB。For an 18-bit SAR ADC, the double-sort interval selection proposed in the present invention increases the DNL maximum root-mean-square (RMS) and INL maximum RMS by 95.1% and 97.1% to 0.43dB and 0.40dB, respectively. For the 16-bit SAR ADC, the double-sort interval selection improves the DNL maximum RMS and INL maximum RMS by 94.4% and 96.3% to 0.22dB and 0.18dB, respectively. For the 14-bit SAR ADC, the double-sort interval selection increases the DNL maximum RMS and INL maximum RMS by 87.3% and 89.7% to 0.16dB and 0.15dB, respectively.
动态仿真结果如图7(18位)、图8(16位)、图9(14位)所示,并总结于表2中。The dynamic simulation results are shown in Figure 7 (18-bit), Figure 8 (16-bit), Figure 9 (14-bit), and are summarized in Table 2.
对于18位SAR ADC,本发明提出的双排序间隔选取分别将SFDR最小值、平均值提升28.76dB、33.79dB至106.40dB、122.52dB;将SNDR最小值、平均值提升28.38dB、25.86dB至102.44dB、108.80dB。对于16位SAR ADC,双排序间隔选取分别将SFDR最小值、平均值提升26.50dB、32.21dB至101.65dB、117.16dB;将SNDR最小值、平均值提升24.31dB、18.66dB至95.21dB、97.84dB。对于14位SAR ADC,双排序间隔选取分别将SFDR最小值、平均值提升26.13dB、25.76dB至98.24dB、108.58dB;将SNDR最小值、平均值提升17.00dB、9.62dB至85.64dB、86.00dB。For the 18-bit SAR ADC, the dual-sort interval selection proposed in the present invention increases the minimum and average SFDR by 28.76dB, 33.79dB to 106.40dB, and 122.52dB, respectively; and increases the minimum and average SNDR by 28.38dB and 25.86dB to 102.44 dB, 108.80dB. For the 16-bit SAR ADC, the selection of double sorting interval increases the minimum and average SFDR by 26.50dB, 32.21dB to 101.65dB, and 117.16dB; the minimum and average SNDR increases by 24.31dB, 18.66dB to 95.21dB, and 97.84dB. . For the 14-bit SAR ADC, the selection of double sorting interval increases the minimum and average SFDR by 26.13dB, 25.76dB to 98.24dB, and 108.58dB; the minimum and average SNDR increases by 17.00dB, 9.62dB to 85.64dB, and 86.00dB. .
表3与表4分别总结了本文提出的双排序间隔选取与专利201910772581.3提出的中位选取的静态性能与动态性能提升对比,其中表3中DNL最大均方根与INL最大均方根提升效果,表4中SFDR平均值与SNDR平均值提升效果。可以发现,本发明提出的双排序间隔选取与专利201910772581.3提出的中位选取在静态与动态性能提升上几乎相同,但本发明所提出的双排序间隔选取只要两次排序,远低于专利201910772581.3提出的中位选取所需的六次排序,大大节省了功耗并提升了转换速率。Tables 3 and 4 respectively summarize the static performance and dynamic performance improvement of the double-sort interval selection proposed in this paper and the median selection proposed in Patent 201910772581.3. In Table 3, the maximum RMS of DNL and the maximum RMS of INL are improved. In Table 4, the average value of SFDR and the average value of SNDR are improved. It can be found that the double sorting interval selection proposed by the present invention is almost the same as the median selection proposed in the patent 201910772581.3 in terms of static and dynamic performance improvement, but the double sorting interval selection proposed by the present invention only needs to be sorted twice, which is much lower than that proposed in the patent 201910772581.3. The six sorts required for median selection of 100% save power and increase the conversion rate.
本发明提出的双排序间隔选取的电容校正方法,相比于传统SAR ADC,在静态性能与动态性能上均有显著改善;相较于传统的模拟、数字校正算法,本发明提出的调整校正方法仅需进行两次排序,操作更为简单,大大地节省了面积和功耗。Compared with the traditional SAR ADC, the capacitance calibration method proposed by the present invention has significantly improved static performance and dynamic performance; compared with the traditional analog and digital calibration algorithms, the adjustment and calibration method proposed by the present invention Only two sortings are required, which makes the operation simpler and greatly saves area and power consumption.
表1 DNL与INL 100次蒙特卡洛仿真最大均方根总结Table 1 DNL and
表2 SFDR与SNDR 500次蒙特卡洛仿真总结Table 2 Summary of 500 Monte Carlo simulations of SFDR and SNDR
表3双排序间隔选取与中位选取对SAR ADC静态性能提升对比(蒙特卡洛仿真次数均为100次)Table 3. Comparison of static performance improvement of SAR ADC by double-sort interval selection and median selection (the number of Monte Carlo simulations is 100 times)
表4双排序间隔选取与中位选取对SAR ADC动态性能提升对比(蒙特卡洛仿真次数均为500次)Table 4. Comparison of dynamic performance improvement of SAR ADC by double-sort interval selection and median selection (the number of Monte Carlo simulations is 500 times)
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910998717.2A CN110708067A (en) | 2019-10-21 | 2019-10-21 | A capacitance correction method for double-sort interval selection applied to analog-to-digital converters |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910998717.2A CN110708067A (en) | 2019-10-21 | 2019-10-21 | A capacitance correction method for double-sort interval selection applied to analog-to-digital converters |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110708067A true CN110708067A (en) | 2020-01-17 |
Family
ID=69201893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910998717.2A Pending CN110708067A (en) | 2019-10-21 | 2019-10-21 | A capacitance correction method for double-sort interval selection applied to analog-to-digital converters |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110708067A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113131941A (en) * | 2021-04-27 | 2021-07-16 | 电子科技大学 | Low-power-consumption switching method applied to successive approximation analog-to-digital converter |
CN113131940A (en) * | 2021-04-07 | 2021-07-16 | 电子科技大学 | Capacitor sequencing circuit for capacitive successive approximation analog-to-digital converter |
US20210376726A1 (en) * | 2020-01-15 | 2021-12-02 | Teng Long | Mixed analog-to-digital converter circuit |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100001892A1 (en) * | 2008-03-24 | 2010-01-07 | Fujitsu Microelectronics Limited | Successive approximation a/d converter |
TW201220710A (en) * | 2010-11-09 | 2012-05-16 | Himax Tech Ltd | Multiplying DAC and a method thereof |
KR101603892B1 (en) * | 2014-12-30 | 2016-03-16 | 서경대학교 산학협력단 | Successive approxiamtion analog digital converter and converting method |
CN105680865A (en) * | 2016-03-12 | 2016-06-15 | 浙江大学 | Successive approximation type analog-to-digital converter and digital backend redundancy calibration method thereof |
CN106877869A (en) * | 2017-02-10 | 2017-06-20 | 电子科技大学 | A Capacitance Sorting Method for Improving the Linearity of Resistor-Capacitor Successive Approximation Analog-to-Digital Converters |
CN106899299A (en) * | 2017-01-09 | 2017-06-27 | 电子科技大学 | A kind of electric capacity reconstructing method for improving resistance-capacitance type gradually-appoximant analog-digital converter SFDR and SNDR |
US20180183458A1 (en) * | 2016-12-23 | 2018-06-28 | Avnera Corporation | Hybrid flash architecture of successive approximation register analog to digital converter |
CN108880546A (en) * | 2018-07-09 | 2018-11-23 | 电子科技大学 | A kind of capacitive calibration method applied to gradually-appoximant analog-digital converter |
CN110113050A (en) * | 2019-05-05 | 2019-08-09 | 电子科技大学 | A kind of mismatch error bearing calibration applied to gradually-appoximant analog-digital converter |
CN110199482A (en) * | 2018-01-23 | 2019-09-03 | 香港应用科技研究院有限公司 | A kind of multistage mixed analog to digital converter |
-
2019
- 2019-10-21 CN CN201910998717.2A patent/CN110708067A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100001892A1 (en) * | 2008-03-24 | 2010-01-07 | Fujitsu Microelectronics Limited | Successive approximation a/d converter |
TW201220710A (en) * | 2010-11-09 | 2012-05-16 | Himax Tech Ltd | Multiplying DAC and a method thereof |
KR101603892B1 (en) * | 2014-12-30 | 2016-03-16 | 서경대학교 산학협력단 | Successive approxiamtion analog digital converter and converting method |
CN105680865A (en) * | 2016-03-12 | 2016-06-15 | 浙江大学 | Successive approximation type analog-to-digital converter and digital backend redundancy calibration method thereof |
US20180183458A1 (en) * | 2016-12-23 | 2018-06-28 | Avnera Corporation | Hybrid flash architecture of successive approximation register analog to digital converter |
CN106899299A (en) * | 2017-01-09 | 2017-06-27 | 电子科技大学 | A kind of electric capacity reconstructing method for improving resistance-capacitance type gradually-appoximant analog-digital converter SFDR and SNDR |
CN106877869A (en) * | 2017-02-10 | 2017-06-20 | 电子科技大学 | A Capacitance Sorting Method for Improving the Linearity of Resistor-Capacitor Successive Approximation Analog-to-Digital Converters |
CN110199482A (en) * | 2018-01-23 | 2019-09-03 | 香港应用科技研究院有限公司 | A kind of multistage mixed analog to digital converter |
CN108880546A (en) * | 2018-07-09 | 2018-11-23 | 电子科技大学 | A kind of capacitive calibration method applied to gradually-appoximant analog-digital converter |
CN110113050A (en) * | 2019-05-05 | 2019-08-09 | 电子科技大学 | A kind of mismatch error bearing calibration applied to gradually-appoximant analog-digital converter |
Non-Patent Citations (2)
Title |
---|
FAN,HUA: "a novel redundant cyclic method to improve the SPFR of SAR ADC", 《ANALOT INTEGRATED CIRCUITS SIGNAL PROCESSING》 * |
岑远军: "一种用于逐次逼近模数转换器的时域比较器", 《实验科学与技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210376726A1 (en) * | 2020-01-15 | 2021-12-02 | Teng Long | Mixed analog-to-digital converter circuit |
US11652414B2 (en) * | 2020-01-15 | 2023-05-16 | Teng Long | Mixed analog-to-digital converter circuit |
CN113131940A (en) * | 2021-04-07 | 2021-07-16 | 电子科技大学 | Capacitor sequencing circuit for capacitive successive approximation analog-to-digital converter |
CN113131940B (en) * | 2021-04-07 | 2022-05-31 | 电子科技大学 | A Capacitor Sequencing Circuit for Capacitive Successive Approximation Analog-to-Digital Converter |
CN113131941A (en) * | 2021-04-27 | 2021-07-16 | 电子科技大学 | Low-power-consumption switching method applied to successive approximation analog-to-digital converter |
CN113131941B (en) * | 2021-04-27 | 2022-05-03 | 电子科技大学 | Low-power-consumption switching method applied to successive approximation analog-to-digital converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101977058B (en) | Sequential approximation analog to digital converter with digital correction and processing method thereof | |
CN104917527B (en) | Capacitor mismatch calibration circuit and its calibration method applied to single-ended SAR ADC | |
CN106899299B (en) | capacitance reconstruction method for improving SFDR and SNDR of resistance-capacitance type successive approximation analog-to-digital converter | |
CN105322966B (en) | Improve the capacitors exchange and averaging method of the gradually-appoximant analog-digital converter linearity | |
CN108880546B (en) | Capacitance correction method applied to successive approximation analog-to-digital converter | |
KR20180122235A (en) | Successive-approximation register analog to digital converter | |
CN106877869B (en) | Capacitor sorting method capable of improving linearity of resistance-capacitance type successive approximation analog-to-digital converter | |
CN110708067A (en) | A capacitance correction method for double-sort interval selection applied to analog-to-digital converters | |
CN112583409B (en) | Successive approximation type analog-to-digital converter and three-level switching method thereof | |
CN106899300A (en) | A kind of redundant cyclic averaging method for gradually-appoximant analog-digital converter | |
CN106209106B (en) | A kind of position round-robin method improving hybrid resistor capacitor type analog-to-digital converter dynamic property | |
Youn et al. | 12-bit 20M-S/s SAR ADC using CR DAC and capacitor calibration | |
CN105071811A (en) | Bit circulation method used for improving successive approximation analog to digital converter DNL/INL | |
Waho | Non-binary successive approximation analog-to-digital converters: A survey | |
Konwar et al. | Deterministic Dithering-Based 12-b 8-MS/s SAR ADC in 0.18-μm CMOS | |
US10868558B1 (en) | Successive approximation register analog-to-digital converter | |
Bao et al. | A 16-bit 300-kS/s foreground calibration SAR ADC with single-ended/differential configurable input modes | |
CN110677155B (en) | A Correction Method of Median Selection Capacitance Applied to Successive Approximation Analog-to-Digital Converter | |
Wang et al. | A foreground calibration technique with multi-level dither for a 14-bit 1-MS/s SAR ADC | |
CN117494634A (en) | A CDAC based on traditional C-2C and extended C-2C hybrid structures and its design method | |
CN109039338A (en) | Differential capacitance array and its Switching method applied to charge type SAR ADC | |
Fan et al. | Capacitive recombination calibration method to improve the performance of SAR ADC | |
CN114826263A (en) | Floating node calibration method applied to sectional type successive approximation analog-to-digital converter | |
CN115133933A (en) | Successive approximation type analog-to-digital converter based on segmented double-switching mode of residual amplification | |
CN114531153A (en) | Successive approximation type analog-to-digital converter with digital enhancement technology, circuit and equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200117 |