CN110707294B - A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation - Google Patents
A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation Download PDFInfo
- Publication number
- CN110707294B CN110707294B CN201910810559.3A CN201910810559A CN110707294B CN 110707294 B CN110707294 B CN 110707294B CN 201910810559 A CN201910810559 A CN 201910810559A CN 110707294 B CN110707294 B CN 110707294B
- Authority
- CN
- China
- Prior art keywords
- lithium
- copper foil
- gelatin
- battery
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 57
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000000835 fiber Substances 0.000 title claims abstract description 12
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 125000005842 heteroatom Chemical group 0.000 title claims abstract description 6
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 26
- 108010010803 Gelatin Proteins 0.000 claims abstract description 24
- 229920000159 gelatin Polymers 0.000 claims abstract description 24
- 239000008273 gelatin Substances 0.000 claims abstract description 24
- 235000019322 gelatine Nutrition 0.000 claims abstract description 24
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 24
- 239000011889 copper foil Substances 0.000 claims abstract description 18
- 239000011787 zinc oxide Substances 0.000 claims abstract description 14
- UGZADUVQMDAIAO-UHFFFAOYSA-L zinc hydroxide Chemical compound [OH-].[OH-].[Zn+2] UGZADUVQMDAIAO-UHFFFAOYSA-L 0.000 claims abstract description 11
- 229940007718 zinc hydroxide Drugs 0.000 claims abstract description 11
- 229910021511 zinc hydroxide Inorganic materials 0.000 claims abstract description 11
- 238000001523 electrospinning Methods 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 8
- 238000009987 spinning Methods 0.000 claims abstract description 6
- 239000000725 suspension Substances 0.000 claims abstract description 6
- 238000000151 deposition Methods 0.000 claims abstract description 5
- 238000005516 engineering process Methods 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 8
- PQVSTLUFSYVLTO-UHFFFAOYSA-N ethyl n-ethoxycarbonylcarbamate Chemical compound CCOC(=O)NC(=O)OCC PQVSTLUFSYVLTO-UHFFFAOYSA-N 0.000 claims description 6
- GLXDVVHUTZTUQK-UHFFFAOYSA-M lithium hydroxide monohydrate Substances [Li+].O.[OH-] GLXDVVHUTZTUQK-UHFFFAOYSA-M 0.000 claims description 6
- 229940040692 lithium hydroxide monohydrate Drugs 0.000 claims description 6
- YZYKBQUWMPUVEN-UHFFFAOYSA-N zafuleptine Chemical compound OC(=O)CCCCCC(C(C)C)NCC1=CC=C(F)C=C1 YZYKBQUWMPUVEN-UHFFFAOYSA-N 0.000 claims description 6
- 239000011701 zinc Substances 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000004070 electrodeposition Methods 0.000 claims description 4
- 238000004321 preservation Methods 0.000 claims description 4
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 claims description 3
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 238000010041 electrostatic spinning Methods 0.000 claims 3
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 claims 2
- 229910001290 LiPF6 Inorganic materials 0.000 claims 1
- 229940125904 compound 1 Drugs 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- 150000002642 lithium compounds Chemical class 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 210000001787 dendrite Anatomy 0.000 abstract description 7
- 238000011161 development Methods 0.000 description 5
- 229910013553 LiNO Inorganic materials 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910013918 LiPF6 + 0.4 M Inorganic materials 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229910003266 NiCo Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- NLTSCOZQKALPGZ-UHFFFAOYSA-N acetic acid;dihydrate Chemical compound O.O.CC(O)=O NLTSCOZQKALPGZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
一种亲锂杂原子和金属氧化物共掺杂的三维纤维框架锂电池负极及制备,属于锂电池负极技术领域。具体制备:在明胶溶液中合成氢氧化锌,形成分散均匀的悬浊液;利用静电纺丝技术将上述悬浊液纺在铜箔表面,形成静电纺丝纤维膜,之后在室温下静置令溶剂挥发完,形成带有明胶纺丝膜的铜箔;加热,使得氢氧化锌转化为氧化锌;将修饰过的铜箔与金属锂片组装成纽扣电池,静置10小时后,利用电化学沉积方法使得金属锂沉积在修饰过的铜箔上;将纽扣电池拆解并取出铜箔即得到所需金属锂负极。解决了锂负极在电池循环过程中锂枝晶的产生及生长问题,具有优异的循环稳定性。A three-dimensional fiber frame lithium battery negative electrode co-doped with lithiophilic heteroatoms and metal oxides and preparation thereof belong to the technical field of lithium battery negative electrodes. Specific preparation: synthesize zinc hydroxide in gelatin solution to form a uniformly dispersed suspension; use electrospinning technology to spin the above suspension on the surface of copper foil to form an electrospinning fiber film, and then let stand at room temperature for After the solvent is evaporated, a copper foil with a gelatin spinning film is formed; heated to convert zinc hydroxide into zinc oxide; the modified copper foil and metal lithium sheet are assembled into a button battery, and after standing for 10 hours, the electrochemical The deposition method enables metal lithium to be deposited on the modified copper foil; the button battery is disassembled and the copper foil is taken out to obtain the desired metal lithium negative electrode. It solves the problem of the generation and growth of lithium dendrites in the lithium negative electrode during the battery cycle, and has excellent cycle stability.
Description
技术领域technical field
本发明涉及一种亲锂杂原子和金属氧化物共掺杂的三维纤维框架锂电池负极的设计制备方法及所得锂负极,属于储能器件,能源材料领域。The invention relates to a design and preparation method of a three-dimensional fiber frame lithium battery negative electrode co-doped with lithiophilic heteroatoms and metal oxides, and the obtained lithium negative electrode, belonging to the fields of energy storage devices and energy materials.
背景技术Background technique
新型的可再生能源,诸如水能、太阳能等的利用,电动汽车等的逐步市场化,各种便携式设备的快速发展,均需要高效实用的能量储运体系,但是对于新型的“绿色”储能器件,在关切其“绿色”的同时,能够决定其是否适合工业化应用的关键是其是否具有高功率密度、高能量密度等重要指标。新型的电源体系,特别是二次电池是目前重要的“绿色”储能装置。New types of renewable energy, such as the utilization of water energy and solar energy, the gradual marketization of electric vehicles, and the rapid development of various portable devices all require efficient and practical energy storage and transportation systems. While the device is concerned about its "greenness", the key to determining whether it is suitable for industrial applications is whether it has important indicators such as high power density and high energy density. New power systems, especially secondary batteries, are currently important "green" energy storage devices.
自20世纪90年代首次推出以来,锂离子电池作为便携式设备市场中的主流产品之一,已有20多年的历史,是最常见的可充电电源之一,金属锂具有很高的电负性,同时在所有金属中具有最低的密度,因此具有最高的比容量(3861mA h g-1),被认为是最佳的可再充电池负极。但是锂负极在使用过程中存在严重的问题——锂枝晶的产生及生长,一方面,锂枝晶在在发展生长到一定的程度时会与负极分离进入电解液中形成“死锂”,从而降低负极金属的利用率,另一方面,当锂枝晶较大时容易刺穿隔膜使得电池正负极接触,造成电池短路,产生安全问题。锂枝晶的产生和发展严重妨碍了锂电池的长循环稳定性及电池的安全性等,因此,现在急需开发一种稳定安全的锂电池负极以促进锂电池行业的发展。Since its first launch in the 1990s, lithium-ion batteries have been one of the mainstream products in the portable device market for more than 20 years and are one of the most common rechargeable power sources. Lithium metal has high electronegativity, At the same time, it has the lowest density among all metals, and therefore has the highest specific capacity (3861 mA hg -1 ), and is considered to be the best negative electrode for rechargeable batteries. However, there are serious problems in the use of lithium negative electrodes - the generation and growth of lithium dendrites. On the one hand, when the development and growth of lithium dendrites reach a certain level, they will separate from the negative electrode and enter the electrolyte to form "dead lithium". Therefore, the utilization rate of the negative electrode metal is reduced. On the other hand, when the lithium dendrite is large, it is easy to pierce the separator and make the positive and negative electrodes of the battery contact, resulting in a short circuit of the battery and a safety problem. The generation and development of lithium dendrites seriously hinder the long-term cycle stability and safety of lithium batteries. Therefore, it is urgent to develop a stable and safe lithium battery negative electrode to promote the development of the lithium battery industry.
过渡金属氧化物,包括:Fe2O3,ZnO,Mn3O4,NiCo2O4和CoFe2O4等具有较高的理论容量和很好的亲锂性,在锂电池负极中具有很好的应用前景。Transition metal oxides, including: Fe 2 O 3 , ZnO, Mn 3 O 4 , NiCo 2 O 4 and CoFe 2 O 4 have high theoretical capacity and good lithiophilicity, and are very useful in lithium battery negative electrodes. good application prospects.
明胶是一种天然的高分子材料,由动物皮肤、骨等结缔组织中的胶原部分降解而成,故其结构与生物组织结构相似,明胶主要组成为80%以上的蛋白质,其余为水跟无机盐,具有很好的分散性、粘结性等,在当前追求环境保护以及绿色化学的趋势下,利用明胶的高分子特性并将其应用于电池的制作中,具有很好的应用前景。Gelatin is a natural polymer material, which is partially degraded from collagen in connective tissues such as animal skin and bone, so its structure is similar to that of biological tissues. Gelatin is mainly composed of more than 80% protein, and the rest is water and inorganic materials. Salt has good dispersibility, adhesion, etc. Under the current trend of pursuing environmental protection and green chemistry, using the polymer properties of gelatin and applying it to the production of batteries has a good application prospect.
发明内容SUMMARY OF THE INVENTION
为了更好地满足社会发展对于稳定安全的二次可充放锂电池的需求,本发明提供一种亲锂杂原子和金属氧化物共掺杂的三维纤维框架锂电池负极的设计制备方法及所得锂负极,以解决锂负极在电池循环过程中锂枝晶的产生及生长问题。In order to better meet the needs of social development for stable and safe secondary rechargeable lithium batteries, the present invention provides a design and preparation method of a three-dimensional fiber frame lithium battery negative electrode co-doped with lithiophilic heteroatoms and metal oxides, and the obtained Lithium anode to solve the problem of lithium dendrite generation and growth during battery cycling.
本发明提供的锂负极的制备方法包括以下步骤:The preparation method of the lithium negative electrode provided by the present invention comprises the following steps:
(1)在明胶溶液中二水合醋酸锌和一水合氢氧化锂原位反应合成氢氧化锌,形成分散均匀的悬浊液;(1) in the gelatin solution, zinc acetate dihydrate and lithium hydroxide monohydrate are reacted in situ to synthesize zinc hydroxide to form a uniformly dispersed suspension;
(2)利用静电纺丝技术将上述悬浊液纺在铜箔表面,形成静电纺丝纤维膜,之后在室温下静置令溶剂挥发完,形成带有明胶纺丝膜的铜箔;(2) using the electrospinning technology to spin the above-mentioned suspension on the surface of the copper foil to form an electrospinning fiber film, then stand at room temperature to make the solvent volatilize, and form a copper foil with a gelatin spinning film;
(3)将带有明胶纺丝膜的铜箔在180℃下加热,使得氢氧化锌转化为氧化锌;(3) heating the copper foil with the gelatin spinning film at 180°C to convert zinc hydroxide into zinc oxide;
(4)将修饰过的铜箔与金属锂片组装成纽扣电池,静置10小时后,利用电化学沉积方法使得金属锂沉积在修饰过的铜箔上;(4) assembling the modified copper foil and metal lithium sheet into a button battery, and after standing for 10 hours, the metal lithium is deposited on the modified copper foil by an electrochemical deposition method;
(5)将纽扣电池拆解并取出铜箔即得到所需金属锂负极。(5) Disassemble the button battery and take out the copper foil to obtain the required metal lithium negative electrode.
进一步地,步骤(1)中二水合醋酸锌和一水合氢氧化锂反应为:Further, in step (1), the reaction of zinc acetate dihydrate and lithium hydroxide monohydrate is:
Zn(CH3COO)2·2H2O+2LiOH·H2O→Zn(OH)2+2Li(CH3COO)+4H2OZn(CH 3 COO) 2 ·2H 2 O+2LiOH·H 2 O→Zn(OH) 2 +2Li(CH 3 COO)+4H 2 O
步骤(1)中配置的明胶溶液质量浓度优选为8-15wt%。The mass concentration of the gelatin solution configured in step (1) is preferably 8-15wt%.
步骤(1)中,明胶溶液的溶剂由水和三氟乙醇在质量比为1:1的条件下组成。In step (1), the solvent of the gelatin solution is composed of water and trifluoroethanol in a mass ratio of 1:1.
二水合醋酸锌和一水合氢氧化锂的摩尔比1:2。使得最终Zn(OH)2的浓度为0.1wt%-1wt%。The molar ratio of zinc acetate dihydrate and lithium hydroxide monohydrate is 1:2. The final Zn(OH) 2 concentration was made to be 0.1wt%-1wt%.
步骤(2)中利用静电纺丝技术制得包含有氢氧化锌的明胶纤维膜(膜厚度为0.01-0.05mm,优选0.02mm),并使其附着在铜箔表面。In step (2), a gelatin fiber film (film thickness of 0.01-0.05 mm, preferably 0.02 mm) containing zinc hydroxide is prepared by electrospinning technology, and is attached to the surface of the copper foil.
进一步地,步骤(3)中氢氧化锌经以下反应转化为氧化锌:Further, in step (3), zinc hydroxide is converted into zinc oxide through following reaction:
Zn(OH)2→ZnO+H2OZn(OH) 2 →ZnO+H 2 O
进一步优选,步骤(1)中反应得到的氢氧化锌在经过步骤(3)加热脱水得到氧化锌后,氧化锌/(氧化锌+明胶)=1.25%(质量分数)。Further preferably, after the zinc hydroxide obtained by the reaction in step (1) is heated and dehydrated to obtain zinc oxide in step (3), zinc oxide/(zinc oxide+gelatin)=1.25% (mass fraction).
步骤(3)中带有明胶静电纺丝膜的铜箔在充满氮气的管式炉中加热。The copper foil with the gelatin electrospun film in step (3) was heated in a tube furnace filled with nitrogen.
步骤(3)中加热过程的温度区间为室温至180℃,升温速率为2℃/min,在180℃下的保温时间为5小时,保温后自然降温至50℃。In the step (3), the temperature range of the heating process is from room temperature to 180°C, the heating rate is 2°C/min, the holding time at 180°C is 5 hours, and the temperature is naturally cooled to 50°C after the heat preservation.
进一步地,步骤(4)中所使用的电池电解液为普通商业化锂电池电解液,其中电解液溶剂为DOL/DME=1:1(体积比),包含溶质1M LiPF6和0.4M LiNO3。Further, the battery electrolyte used in step (4) is a common commercial lithium battery electrolyte, wherein the electrolyte solvent is DOL/DME=1:1 (volume ratio), including solutes 1M LiPF 6 and 0.4M LiNO 3 .
进一步地,步骤(4)中所组装的纽扣电池静置时间为10小时。Further, the standing time of the button battery assembled in step (4) is 10 hours.
步骤(4)中电化学沉积步骤为在电流密度为0.2mA/cm2条件下沉积15-30小时。In step (4), the electrochemical deposition step is deposition under the condition of a current density of 0.2 mA/cm 2 for 15-30 hours.
本发明还公开了一种按照前述方法制备得到的锂负极片。The invention also discloses a lithium negative electrode sheet prepared according to the foregoing method.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
本发明所使用的主要材料明胶为天然生物高分子,其具有很好的分散性、粘结性和加工性等理化性能,能够将氧化锌分散均匀并且静电纺丝膜能很好的黏附于表面。The main material gelatin used in the present invention is a natural biopolymer, which has good physical and chemical properties such as dispersibility, cohesion, and processability, can disperse zinc oxide evenly, and the electrospinning film can well adhere to the surface .
明胶中丰富的氮原子以及分散均匀的氧化锌协同作用,加之静电纺丝膜的三维立体结构使得锂可以均匀沉积于铜箔上,可有效避免在电池循环过程中锂枝晶的产生,提高锂电池的长循环稳定性和安全性。The synergistic effect of abundant nitrogen atoms in gelatin and uniformly dispersed zinc oxide, coupled with the three-dimensional structure of the electrospinning film, allows lithium to be uniformly deposited on the copper foil, which can effectively avoid the generation of lithium dendrites during battery cycling and improve lithium Long-term cycle stability and safety of batteries.
附图说明Description of drawings
图1为本发明的实施例1中制备的锂负极所组成的锂对电池与普通锂对电池的循环性能对比图Fig. 1 is the cycle performance comparison diagram of the lithium pair battery composed of the lithium negative electrode prepared in Example 1 of the present invention and the ordinary lithium pair battery
具体实施方式Detailed ways
下面结合具体实施例对本发明作进一步说明,但本发明所包含范围不限于此,对本发明所做的任何形式上的变通或改变都应在本发明的保护范围内。The present invention will be further described below in conjunction with specific embodiments, but the scope of the present invention is not limited to this, and any form modifications or changes made to the present invention should fall within the protection scope of the present invention.
实施例中所用电池隔膜为普通商业隔膜—Celgard 2325。The battery separator used in the examples is a common commercial separator—Celgard 2325.
实施例1Example 1
(1)制备稳定安全的锂负极(1) Preparation of stable and safe lithium anode
准确称取5.0g明胶并将其充分溶解在45.0g溶剂(其中水与三氟乙醇的质量比为1:1)中,之后将溶剂平均分成两份,其中一份中加入0.356g二水合醋酸锌,另一份中加入0.136g一水合氢氧化锂,搅拌均匀后,将含有一水合氢氧化锂的溶液滴加入含有二水合醋酸锌的溶液中,边滴加边搅拌,总计反应半小时,之后利用静电纺丝机将其在铜箔上纺成纤维膜(膜厚度为0.02mm),步骤(2)中利用静电纺丝技术参数为:推进量0.01mL/min,平移速度0.08cm/min。将其室温下静置24小时。Accurately weigh 5.0g of gelatin and fully dissolve it in 45.0g of solvent (wherein the mass ratio of water and trifluoroethanol is 1:1), then divide the solvent into two equal parts, and add 0.356g of acetic acid dihydrate to one part Zinc, add 0.136g of lithium hydroxide monohydrate to the other part, and after stirring evenly, add the solution containing lithium hydroxide monohydrate dropwise to the solution containing zinc acetate dihydrate, add dropwise and stir, and react for half an hour in total, Then, the electrospinning machine was used to spin it on the copper foil into a fiber film (the film thickness was 0.02mm). . Let it stand at room temperature for 24 hours.
将上述修饰后铜箔在充满氮气的管式炉中加热,加热过程的温度区间为室温至180℃,升温速率为2℃/min,在180℃下的保温时间为5小时,保温后自然降温至50℃将材料取出并利用裁片机将其裁成直径为12mm的小圆片。The above-mentioned modified copper foil is heated in a tube furnace filled with nitrogen. The temperature range of the heating process is from room temperature to 180°C, the heating rate is 2°C/min, the holding time at 180°C is 5 hours, and the temperature is naturally lowered after the heat preservation. At 50°C, the material was taken out and cut into small discs with a diameter of 12 mm using a cutting machine.
将上述圆片与普通金属锂片在手套箱中组装成CR2025型纽扣电池,隔膜为Celgard 2325,电解液为DOL/DME=1:1(体积比)+1M LiPF6+0.4M LiNO3,将组装好的电池静置10小时。The above-mentioned wafers and ordinary metal lithium sheets were assembled into a CR2025 button battery in a glove box, the separator was Celgard 2325, and the electrolyte was DOL/DME=1:1 (volume ratio) + 1M LiPF 6 +0.4M LiNO 3 . The assembled battery was allowed to stand for 10 hours.
将电池在电流密度为0.2mA/cm2条件下放电25小时以实现锂在修饰后铜箔上的沉积,之后将沉积好锂的铜箔取出得到锂负极。The battery was discharged at a current density of 0.2 mA/cm 2 for 25 hours to achieve the deposition of lithium on the modified copper foil, and then the lithium-deposited copper foil was taken out to obtain a lithium negative electrode.
(2)制备锂对电池(2) Preparation of lithium battery
取两片经上述步骤制备好的锂负极,在手套箱中组装成CR2025型纽扣电池,隔膜为Celgard 2325,电解液为DOL/DME=1:1(体积比)+1M LiPF6+0.4M LiNO3,将组装好的电池静置10小时。Take two lithium negative electrodes prepared by the above steps and assemble them into a CR2025 button battery in a glove box. The diaphragm is Celgard 2325, and the electrolyte is DOL/DME=1:1 (volume ratio) + 1M LiPF 6 +0.4M LiNO 3. Let the assembled battery stand for 10 hours.
同样地,取两片普通锂金属片组装成锂对电池作为对照。Similarly, two ordinary lithium metal sheets were taken and assembled into a lithium pair battery as a control.
(3)锂对电池的电化学性能测试(3) Electrochemical performance test of lithium battery
在充放电设备上对锂电池进行循环性能测试,测试条件为:充放电流密度1.0mA/cm2,充放电量1.0mAh/cm2。如图1所示即为二者循环性能测试结果。由图中数据可见,利用本发明所制备锂负极组装的锂对电池具有更小的极化电压以及更长更稳定的循环周期,说明本发明所提供的锂负极制备方法及所得锂负极是可行的。The lithium battery was tested on the charging and discharging equipment, and the test conditions were as follows: the charging and discharging current density was 1.0 mA/cm 2 , and the charging and discharging capacity was 1.0 mAh/cm 2 . Figure 1 shows the cycle performance test results of the two. It can be seen from the data in the figure that the lithium pair battery assembled by using the lithium negative electrode prepared by the present invention has a smaller polarization voltage and a longer and more stable cycle period, indicating that the lithium negative electrode preparation method provided by the present invention and the obtained lithium negative electrode are feasible. of.
本领域技术人员将会认识到,在不偏离本发明的保护范围的前提下,可以对上述实施方式进行各种修改、变化和组合,并且认为这种修改、变化和组合是在独创性思想的范围之内。Those skilled in the art will recognize that, without departing from the scope of protection of the present invention, various modifications, changes and combinations can be made to the above-described embodiments, and such modifications, changes and combinations are considered to be original ideas within the range.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910810559.3A CN110707294B (en) | 2019-08-29 | 2019-08-29 | A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910810559.3A CN110707294B (en) | 2019-08-29 | 2019-08-29 | A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110707294A CN110707294A (en) | 2020-01-17 |
CN110707294B true CN110707294B (en) | 2020-10-27 |
Family
ID=69193179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910810559.3A Active CN110707294B (en) | 2019-08-29 | 2019-08-29 | A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110707294B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111952543B (en) * | 2020-08-24 | 2023-05-05 | 广东工业大学 | Three-dimensional lithium metal electrode, preparation method thereof and lithium metal battery |
CN111864186B (en) * | 2020-08-27 | 2021-09-21 | 中南大学 | Preparation method of three-dimensional porous metal lithium anode |
CN112216811A (en) * | 2020-09-23 | 2021-01-12 | 电子科技大学 | A kind of preparation method of ultra-thin lithium metal negative electrode |
EP4092789A4 (en) * | 2021-03-31 | 2023-12-13 | Ningde Amperex Technology Limited | Negative electrode pole piece, electrochemical device, and electronic device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1961974B (en) * | 2005-11-09 | 2010-04-21 | 中国科学院化学研究所 | Biodegradable and absorbable polymer nanofiber membrane material and its preparation method and use |
CN103165893A (en) * | 2011-12-15 | 2013-06-19 | 江南大学 | A kind of preparation method of zinc oxide nanofiber negative electrode material for lithium ion battery |
CN104562438B (en) * | 2013-10-17 | 2017-07-14 | 中国科学院理化技术研究所 | Gelatin-based micro-nano fiber membrane material and preparation method and application thereof |
CN103855361B (en) * | 2014-03-28 | 2016-08-17 | 清华大学 | The preparation method of nitrating porous carbon nanofiber cloth |
KR101684788B1 (en) * | 2015-05-29 | 2016-12-09 | 한국과학기술원 | Dual-diameter 3-D nanofiber network coated with conductive thin film and its application as interlayer for Li-S battery |
CN108760847B (en) * | 2018-06-07 | 2020-04-17 | 海南师范大学 | Method for preparing zinc oxide-carbon nanofiber composite material and modified electrode thereof by electrostatic spinning and high-temperature carbonization method |
CN109346690A (en) * | 2018-09-30 | 2019-02-15 | 肇庆市华师大光电产业研究院 | A kind of preparation method and application of nitrogen-doped carbon nano-fiber composite zinc oxide lithium ion battery negative material |
-
2019
- 2019-08-29 CN CN201910810559.3A patent/CN110707294B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN110707294A (en) | 2020-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020073915A1 (en) | Lithium ion battery negative electrode material and non-aqueous electrolyte battery | |
CN110707294B (en) | A three-dimensional fiber frame lithium battery anode co-doped with lithiophilic heteroatoms and metal oxides and its preparation | |
WO2016127786A1 (en) | All-solid-state polymer electrolyte, and preparation and application thereof | |
CN104201323B (en) | The preparation method of alumina-coated lithium cobaltate cathode material | |
CN103928672B (en) | A kind of positive electrode active material for lithium ion battery and preparation method thereof | |
CN110429268A (en) | A kind of modified boron doping lithium-rich manganese-based anode material and the preparation method and application thereof | |
CN102629686B (en) | Electrode material of drainage rechargeable and dischargeable lithium ion and aqueous solution rechargeable and dischargeable lithium ion battery | |
CN103151528A (en) | Method for preparing aluminum-doped zinc oxide coated lithium-ion battery positive-pole material | |
CN110165206B (en) | A kind of spherical sodium-ion battery cathode material and preparation method thereof | |
CN108767263A (en) | A kind of preparation method and application of modified metal cathode of lithium copper foil current collector | |
CN107204426A (en) | A kind of cobalt nickel oxide manganses lithium/titanate composite anode material for lithium of zirconium doping vario-property | |
CN103094580A (en) | Composite anode material and synthesis method and application thereof | |
CN103280572B (en) | A kind of lithium ion cell positive ternary material and preparation method | |
CN103545507B (en) | A kind of lithium ion battery negative material porous cobalt acid zinc and preparation method and application | |
CN110504489A (en) | A kind of 5V high-voltage lithium nickel manganate anode lithium-ion battery electrolytes | |
CN106450278A (en) | Ternary positive electrode material with hollow microsphere structure, preparation method and application | |
CN105047898A (en) | Twin-spherical lithium-rich cathode material of lithium ion secondary battery and preparation method thereof | |
CN102290603B (en) | Round lithium iron phosphate battery and making process thereof | |
CN103296266B (en) | Zinc titanate lithium titanate cathode material of doped with Cu and preparation method thereof | |
CN106486662A (en) | The preparation method of carbon-coated lithium ion battery negative material | |
CN114142006B (en) | High-cycle-stability lithium ion battery anode material and preparation method thereof | |
CN116573675A (en) | Potassium ion battery layered positive electrode material and preparation method thereof and potassium ion battery | |
CN103219516B (en) | Preparation method of phosphate potential boron-doped carbon-wrapped phosphoric acid iron-lithium material | |
CN110752343B (en) | Nickel-ion battery positive electrode, preparation method, nickel-ion battery and assembly method | |
CN106992289A (en) | Synthesis method of lithium magnesium titanate chromate and application of lithium magnesium titanate chromate as negative electrode material of lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |