[go: up one dir, main page]

CN110703148A - A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix - Google Patents

A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix Download PDF

Info

Publication number
CN110703148A
CN110703148A CN201910901823.4A CN201910901823A CN110703148A CN 110703148 A CN110703148 A CN 110703148A CN 201910901823 A CN201910901823 A CN 201910901823A CN 110703148 A CN110703148 A CN 110703148A
Authority
CN
China
Prior art keywords
matrix
hays
opt
specifically
signal sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910901823.4A
Other languages
Chinese (zh)
Inventor
翟明岳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Petrochemical Technology
Original Assignee
Guangdong University of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Petrochemical Technology filed Critical Guangdong University of Petrochemical Technology
Priority to CN201910901823.4A priority Critical patent/CN110703148A/en
Publication of CN110703148A publication Critical patent/CN110703148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明的实施例公开一种利用海斯矩阵的变压器振声信号重构方法和系统,所述方法包括:步骤1,输入实测的振声信号序列S;步骤2,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,

Figure DDA0002212066370000011
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。

Figure 201910901823

The embodiment of the present invention discloses a method and system for reconstructing a vibro-acoustic signal of a transformer using a Hays matrix. The method includes: step 1, inputting an actual measured vibro-acoustic signal sequence S; The transformer vibration and sound signal sequence S is reconstructed, and the reconstructed signal sequence is S NEW ; specifically,

Figure DDA0002212066370000011
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.

Figure 201910901823

Description

一种利用海斯矩阵的变压器振声信号重构方法和系统A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix

技术领域technical field

本发明涉及电力领域,尤其涉及一种变压器振声信号的重构方法和系统。The invention relates to the field of electric power, and in particular, to a method and system for reconstructing a transformer vibrating sound signal.

背景技术Background technique

随着智能电网的高速发展,电力设备安全稳定运行显得尤其重要。目前,对超高压及以上电压等级的电力设备开展运行状态检测,尤其是对异常状态的检测显得愈加重要和迫切。电力变压器作为电力系统的重要组成部分,是变电站中最重要的电气设备之一,其可靠运行关系到电网的安全。一般而言,变压器的异常状态可分为铁芯异常与绕组异常。铁芯异常主要表现为铁芯饱和,绕组异常通常包括绕组变形、绕组松动等。With the rapid development of smart grid, the safe and stable operation of power equipment is particularly important. At present, it is more and more important and urgent to carry out the operation status detection of power equipment with ultra-high voltage and above voltage levels, especially the detection of abnormal status. As an important part of the power system, the power transformer is one of the most important electrical equipment in the substation, and its reliable operation is related to the security of the power grid. Generally speaking, the abnormal state of the transformer can be divided into iron core abnormality and winding abnormality. Iron core anomalies mainly manifest as iron core saturation, and winding anomalies usually include winding deformation, winding looseness, etc.

变压器异常状态检测的基本原理是提取变压器运行中的各特征量,分析、辨识并跟踪特征量以此监测变压器的异常运行状态。检测方法按照接触程度可分为侵入式检测和非侵入式检测;按照是否需停机检测可分为带电检测和停电检测;按照检测量类型可以分为电气量法和非电气量法等。相比而言,非侵入式检测可移植性强,安装更方便;带电检测不影响变压器运行;非电气量法与电力系统无电气连接,更为安全。当前变压器运行状态的常用检测方法中,包括检测局部放电的脉冲电流法和超声波检测法、检测绕组变形的频率响应法以及检测机械及电气故障的振动检测法等。这些检测方法主要检测变压器绝缘状况及机械结构状况,其中以变压器振动信号(振声)的检测最为全面,对于大部分变压器故障及异常状态均能有所反应。The basic principle of transformer abnormal state detection is to extract various characteristic quantities in the operation of the transformer, analyze, identify and track the characteristic quantities to monitor the abnormal operation state of the transformer. Detection methods can be divided into invasive detection and non-invasive detection according to the degree of contact; according to whether the shutdown detection can be divided into live detection and power failure detection; according to the type of detection, it can be divided into electrical measurement method and non-electric measurement method. In contrast, non-invasive detection has strong portability and is more convenient to install; live detection does not affect the operation of the transformer; non-electrical measurement method has no electrical connection with the power system, which is safer. The current common detection methods of transformer operation status include pulse current method and ultrasonic detection method for detecting partial discharge, frequency response method for detecting winding deformation, and vibration detection method for detecting mechanical and electrical faults. These detection methods mainly detect the insulation condition and mechanical structure condition of the transformer. Among them, the detection of the transformer vibration signal (vibration sound) is the most comprehensive, and it can respond to most of the transformer faults and abnormal states.

变压器在运行过程中,铁芯硅钢片的磁致伸缩与绕组电动力引起的振动会向四周辐射不同幅值和频率的振声信号。变压器正常运行时对外发出的是均匀的低频噪声;如果发出不均匀声音,则属不正常现象。变压器在不同运行状态下会发出有区别性的声音,可通过对其发出声音的检测,掌握变压器的运行状况。值得关注的是,对变压器不同运行状态下发出声音的检测不仅可以检测很多种引起电气量变化的严重故障,还可以检测许多并未危及绝缘的没有引起电气量变化的异常状态,比如变压器内外部零部件松动等。During the operation of the transformer, the vibration caused by the magnetostriction of the iron core silicon steel sheet and the electrodynamic force of the windings will radiate vibro-acoustic signals of different amplitudes and frequencies to the surroundings. When the transformer is in normal operation, it emits uniform low-frequency noise; if it emits uneven sound, it is an abnormal phenomenon. The transformer will emit distinct sounds under different operating states, and the operating status of the transformer can be grasped by detecting the sound it emits. It is worth noting that the detection of the sound of the transformer under different operating states can not only detect many serious faults that cause changes in electrical quantities, but also detect many abnormal states that do not endanger the insulation and do not cause changes in electrical quantities, such as inside and outside the transformer. loose parts, etc.

由于振声检测方法利用了变压器发出的震动信号,很容易受到工作环境的影响,造成信号传输的中断和信号质量的严重下降,使得接收到的部分振声信号无法使用,因此如何有效地重构变压器振声信号,是此方法能否成功应用的重要制约因素。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。Since the vibration and sound detection method utilizes the vibration signal sent by the transformer, it is easily affected by the working environment, resulting in interruption of signal transmission and serious degradation of signal quality, making part of the received vibration and sound signal unusable, so how to effectively reconstruct Transformer vibration and sound signal is an important restricting factor for the successful application of this method. The methods commonly used now do not pay enough attention to this problem, and no effective measures have been taken to solve this problem.

发明内容SUMMARY OF THE INVENTION

本发明的目的是提供一种利用海斯矩阵的变压器振声信号重构方法和系统,所提出的方法利用了变压器振声信号的连续性,根据海斯矩阵重构信号。所提出的方法具有较好的鲁棒性,计算也较为简单。The purpose of the present invention is to provide a method and system for reconstructing the vibro-acoustic signal of a transformer using the Hays matrix. The proposed method utilizes the continuity of the vibrating and acoustic signal of the transformer to reconstruct the signal according to the Hays matrix. The proposed method has good robustness and simple calculation.

为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:

一种利用海斯矩阵的变压器振声信号重构方法,包括:A method for reconstructing a transformer vibration-acoustic signal using a Hays matrix, comprising:

步骤1,输入实测的变压器振声信号序列S;Step 1, input the measured transformer vibration and sound signal sequence S;

步骤2,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,Step 2, according to the Hays matrix, reconstruct the transformer vibration-acoustic signal sequence S, and the reconstructed signal sequence is S NEW ; specifically,

其中,D为海 where D is the sea

斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整W OPT is the optimal weight matrix of Hayes; λ OPT is the optimal adjustment of Hayes

矩阵;α为海斯调整因子;μ为海斯因子。matrix; α is the Hayes adjustment factor; μ is the Hays factor.

一种利用海斯矩阵的变压器振声信号重构系统,包括:A transformer vibro-acoustic signal reconstruction system using Hayes matrix, comprising:

获取模块,输入实测的变压器振声信号序列S;The acquisition module, input the measured transformer vibration and sound signal sequence S;

重构模块,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构The reconstruction module reconstructs the transformer vibration-acoustic signal sequence S according to the Hays matrix, and reconstructs the

后的信号序列为SNEW;具体为,The latter signal sequence is S NEW ; specifically,

Figure BDA0002212066350000022
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。
Figure BDA0002212066350000022
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

虽然变压器振声信号检测技术有着广泛的应用,且技术相对成熟,但由于振声检测方法利用了变压器发出的震动信号,很容易受到工作环境的影响,造成信号传输的中断和信号质量的严重下降,使得接收到的部分振声信号无法使用,因此如何有效地重构变压器振声信号,是此方法能否成功应用的重要制约因素。现在常用的方法,对此问题重视不够,还未采取有效的措施解决此问题。Although the transformer vibration and acoustic signal detection technology has a wide range of applications and the technology is relatively mature, because the vibration and acoustic detection method utilizes the vibration signal sent by the transformer, it is easily affected by the working environment, resulting in interruption of signal transmission and serious degradation of signal quality. , making the received part of the vibro-acoustic signal unusable, so how to effectively reconstruct the transformer's vibrating-acoustic signal is an important restrictive factor for the successful application of this method. The methods commonly used now do not pay enough attention to this problem, and no effective measures have been taken to solve this problem.

本发明的目的是提供一种利用海斯矩阵的变压器振声信号重构方法和系统,所提出的方法利用了变压器振声信号的连续性,根据海斯矩阵重构信号。所提出的方法具有较好的鲁棒性,计算也较为简单。The purpose of the present invention is to provide a method and system for reconstructing the vibro-acoustic signal of a transformer using the Hays matrix. The proposed method utilizes the continuity of the vibrating and acoustic signal of the transformer to reconstruct the signal according to the Hays matrix. The proposed method has good robustness and simple calculation.

附图说明Description of drawings

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention, and for those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative effort.

图1为本发明的方法流程示意图;Fig. 1 is the method flow schematic diagram of the present invention;

图2为本发明的系统结构示意图;Fig. 2 is the system structure schematic diagram of the present invention;

图3为本发明具体实施案例的流程示意图。FIG. 3 is a schematic flowchart of a specific implementation case of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, but not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.

图1一种利用海斯矩阵的变压器振声信号重构方法的流程示意图Fig. 1 is a schematic flow chart of a method for reconstructing vibrating-acoustic signals of transformers using Hays matrix

图1为本发明一种利用海斯矩阵的变压器振声信号重构方法的流程示意图。如图1所示,所述的一种利用海斯矩阵的变压器振声信号重构方法具体包括以下步骤:FIG. 1 is a schematic flowchart of a method for reconstructing a transformer vibration-acoustic signal using a Hays matrix according to the present invention. As shown in Fig. 1, the described method for reconstructing the vibration-acoustic signal of a transformer using a Hays matrix specifically includes the following steps:

步骤1,输入实测的变压器振声信号序列S;Step 1, input the measured transformer vibration and sound signal sequence S;

步骤2,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,Step 2, according to the Hays matrix, reconstruct the transformer vibration-acoustic signal sequence S, and the reconstructed signal sequence is S NEW ; specifically,

Figure BDA0002212066350000041
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。
Figure BDA0002212066350000041
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.

所述步骤2之前,所述方法还包括:Before the step 2, the method further includes:

步骤3,求取所述海斯预测矩阵D、海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT、海斯调整因子α和海斯因子μ。Step 3: Obtain the Hays prediction matrix D, the Hays optimal weight matrix W OPT , the Hays optimal adjustment matrix λ OPT , the Hays adjustment factor α and the Hays factor μ.

所述步骤3包括:The step 3 includes:

步骤301,求取循环延迟矩阵DC,具体为:Step 301, obtain the cyclic delay matrix D C , specifically:

Figure BDA0002212066350000042
Figure BDA0002212066350000042

其中:in:

sn:所述信号序列S的第n个元素[n=1,2,…,N]s n : the n-th element of the signal sequence S [n=1,2,...,N]

N:所述信号序列S的长度N: the length of the signal sequence S

步骤302,求取所述海斯预测矩阵D,具体为:Step 302, obtaining the Hays prediction matrix D, specifically:

D=[STS-I][ΣV+I]DC D=[S T SI][ΣV+I]D C

其中:in:

Σ:矩阵[DC+I]-1的特征值矩阵Σ: matrix of eigenvalues of matrix [D C +I] -1

V:矩阵[DC+I]-1的右特征矢量矩阵V: the right eigenvector matrix of the matrix [D C +I] -1

I:单位矩阵I: identity matrix

步骤303,求取所述海斯调整因子α,具体为:Step 303: Obtain the Hays adjustment factor α, specifically:

其中:in:

Figure BDA0002212066350000052
矩阵[STS][D+I]-1的最大特征值
Figure BDA0002212066350000052
The largest eigenvalue of the matrix [S T S][D+I] -1

Figure BDA0002212066350000053
矩阵[STS][D+I]-1的最小特征值
Figure BDA0002212066350000053
Minimum eigenvalue of matrix [S T S][D+I] -1

步骤304,求取所述海斯因子μ,具体为:Step 304, obtaining the Hays factor μ, specifically:

Figure BDA0002212066350000054
Figure BDA0002212066350000054

其中:in:

LMAX:矩阵[STS][D+I]-1中所有元素绝对值的最大值L MAX : the maximum value of the absolute value of all elements in the matrix [S T S][D+I] -1

LMIN:矩阵[STS][D+I]-1中所有元素绝对值的最小值L MIN : the minimum value of the absolute value of all elements in the matrix [S T S][D+I] -1

步骤305,迭代求取所述海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT,具体为:Step 305, iteratively obtain the optimal Hayes weight matrix W OPT and the optimal Hayes adjustment matrix λ OPT , specifically:

第一步:迭代初始化,具体为:The first step: iterative initialization, specifically:

λ1=[S-mS]T[S-mS]:所述海斯最佳调整矩阵的初始化值λ 1 =[Sm S ] T [Sm S ]: the initialization value of the Hayes optimal adjustment matrix

W1=ΨV:所述海斯最佳权重矩阵的初始化值W 1 =ΨV: Initialization value of the Hays optimal weight matrix

k=1:迭代控制参数k=1: iterative control parameter

其中in

Figure BDA0002212066350000065
所述W1的特征值矩阵[i=1,2,…,NΨ]
Figure BDA0002212066350000065
The eigenvalue matrix of the W 1 [i=1,2,...,N Ψ ]

Figure BDA0002212066350000061
Figure BDA0002212066350000061

所述矩阵W1的特征值矩阵中的第i个特征值The ith eigenvalue in the eigenvalue matrix of the matrix W 1

Figure BDA0002212066350000062
所述循环延迟矩阵DC的第iL个特征值
Figure BDA0002212066350000062
The ith L eigenvalue of the cyclic delay matrix D C

NΨ:所述矩阵W1的特征值矩阵Ψ中非零特征值的个数N Ψ : the number of non-zero eigenvalues in the eigenvalue matrix Ψ of the matrix W 1

mS:所述信号序列S的均值m S : the mean value of the signal sequence S

第二步:迭代更新,具体为:The second step: iterative update, specifically:

Figure BDA0002212066350000063
Figure BDA0002212066350000063

Figure BDA0002212066350000064
Figure BDA0002212066350000064

其中:in:

d:用于求取最小值的第一中间参量d: the first intermediate parameter used to find the minimum value

c:用于求取最小值的第二中间参量c: The second intermediate parameter used to find the minimum value

v:用于求取最小值的第三中间参量v: the third intermediate parameter used to find the minimum value

UO:矩阵[STS-I]-1的左特征矢量矩阵U O : left eigenvector matrix of matrix [S T SI] -1

ΣO:矩阵[STS-I]-1的特征值矩阵Σ O : matrix of eigenvalues of matrix [S T SI] -1

第三步:迭代终止,具体为迭代控制参数k加1,重复执行第二步,直至相邻两次迭代结果的差值小于0.001为止,此时k=K,WOPT=WK+1和λOPT=λK+1The third step: the iteration is terminated, specifically, the iterative control parameter k is increased by 1, and the second step is repeated until the difference between the adjacent two iteration results is less than 0.001, at which time k=K, W OPT =W K+1 and λ OPTK+1 .

图2一种利用海斯矩阵的变压器振声信号重构系统的结构意图Fig. 2 The structural intention of a transformer vibro-acoustic signal reconstruction system using Hays matrix

图2为本发明一种利用海斯矩阵的变压器振声信号重构系统的结构示意图。如图2所示,所述一种利用海斯矩阵的变压器振声信号重构系统包括以下结构:FIG. 2 is a schematic structural diagram of a system for reconstructing a transformer vibration-acoustic signal using a Hays matrix according to the present invention. As shown in Figure 2, the described system for reconstructing the vibrating and acoustic signal of a transformer using a Hays matrix includes the following structures:

获取模块401,输入实测的变压器振声信号序列S;Obtaining module 401, inputting the measured transformer vibration-acoustic signal sequence S;

重构模块402,根据海斯矩阵对所述变压器振声信号序列S进行重构,The reconstruction module 402 reconstructs the transformer vibration-acoustic signal sequence S according to the Hays matrix,

重构后的信号序列为SNEW;具体为,The reconstructed signal sequence is S NEW ; specifically,

Figure BDA0002212066350000071
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。
Figure BDA0002212066350000071
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.

所述的系统,还包括:The system also includes:

计算模块403,求取所述海斯预测矩阵D、海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT、海斯调整因子α和海斯因子μ。The calculation module 403 obtains the Hays prediction matrix D, the Hays optimal weight matrix W OPT , the Hays optimal adjustment matrix λ OPT , the Hays adjustment factor α and the Hays factor μ.

所述计算模块403,还包括下列单元,具体为:The computing module 403 also includes the following units, specifically:

第一计算单元4031,求取循环延迟矩阵DC,具体为:The first calculation unit 4031 obtains the cyclic delay matrix D C , specifically:

Figure BDA0002212066350000072
Figure BDA0002212066350000072

其中:in:

sn:所述信号序列S的第n个元素[n=1,2,…,N]s n : the n-th element of the signal sequence S [n=1,2,...,N]

N:所述信号序列S的长度N: the length of the signal sequence S

第二计算单元4032,求取所述海斯预测矩阵D,具体为:The second computing unit 4032 obtains the Hays prediction matrix D, specifically:

D=[STS-I][ΣV+I]DC D=[S T SI][ΣV+I]D C

其中:in:

Σ:矩阵[DC+I]-1的特征值矩阵Σ: matrix of eigenvalues of matrix [D C +I] -1

V:矩阵[DC+I]-1的右特征矢量矩阵V: the right eigenvector matrix of the matrix [D C +I] -1

I:单位矩阵I: identity matrix

第三计算单元4033,求取所述海斯调整因子α,具体为:The third computing unit 4033 obtains the Hays adjustment factor α, specifically:

Figure BDA0002212066350000081
Figure BDA0002212066350000081

其中:in:

Figure BDA0002212066350000082
矩阵[STS][D+I]-1的最大特征值
Figure BDA0002212066350000082
The largest eigenvalue of the matrix [S T S][D+I] -1

Figure BDA0002212066350000083
矩阵[STS][D+I]-1的最小特征值
Figure BDA0002212066350000083
Minimum eigenvalue of matrix [S T S][D+I] -1

第四计算单元4034,求取所述海斯因子μ,具体为:The fourth calculation unit 4034 obtains the Hays factor μ, specifically:

Figure BDA0002212066350000084
Figure BDA0002212066350000084

其中:in:

LMAX:矩阵[STS][D+I]-1中所有元素绝对值的最大值L MAX : the maximum value of the absolute value of all elements in the matrix [S T S][D+I] -1

LMIN:矩阵[STS][D+I]-1中所有元素绝对值的最小值L MIN : the minimum value of the absolute value of all elements in the matrix [S T S][D+I] -1

迭代单元4035,迭代求取所述海斯最佳权重矩阵WOPT和海斯最佳调整矩阵λOPT,具体为:The iterative unit 4035, iteratively obtains the optimal Hayes weight matrix W OPT and the optimal Hayes adjustment matrix λ OPT , specifically:

第一步:迭代初始化,具体为:The first step: iterative initialization, specifically:

λ1=[S-mS]T[S-mS]:所述海斯最佳调整矩阵的初始化值λ 1 =[Sm S ] T [Sm S ]: the initialization value of the Hayes optimal adjustment matrix

W1=ΨV:所述海斯最佳权重矩阵的初始化值W 1 =ΨV: Initialization value of the Hays optimal weight matrix

k=1:迭代控制参数k=1: iterative control parameter

其中in

所述W1的特征值矩阵[i=1,2,…,NΨ] The eigenvalue matrix of the W 1 [i=1,2,...,N Ψ ]

Figure BDA0002212066350000091
Figure BDA0002212066350000091

所述矩阵W1的特征值矩阵中的第i个特征值The ith eigenvalue in the eigenvalue matrix of the matrix W 1

Figure BDA0002212066350000092
所述循环延迟矩阵DC的第iL个特征值
Figure BDA0002212066350000092
The ith L eigenvalue of the cyclic delay matrix D C

NΨ:所述矩阵W1的特征值矩阵Ψ中非零特征值的个数N Ψ : the number of non-zero eigenvalues in the eigenvalue matrix Ψ of the matrix W 1

mS:所述信号序列S的均值m S : the mean value of the signal sequence S

第二步:迭代更新,具体为:The second step: iterative update, specifically:

其中:in:

d:用于求取最小值的第一中间参量d: the first intermediate parameter used to find the minimum value

c:用于求取最小值的第二中间参量c: The second intermediate parameter used to find the minimum value

v:用于求取最小值的第三中间参量v: the third intermediate parameter used to find the minimum value

UO:矩阵[STS-I]-1的左特征矢量矩阵U O : left eigenvector matrix of matrix [S T SI] -1

ΣO:矩阵[STS-I]-1的特征值矩阵Σ O : matrix of eigenvalues of matrix [S T SI] -1

第三步:迭代终止,具体为迭代控制参数k加1,重复执行第二步,直至相邻两次迭代结果的差值小于0.001为止,此时k=K,WOPT=WK+1和λOPT=λK+1The third step: the iteration is terminated, specifically, the iterative control parameter k is increased by 1, and the second step is repeated until the difference between the adjacent two iteration results is less than 0.001, at which time k=K, W OPT =W K+1 and λ OPTK+1 .

下面提供一个具体实施案例,进一步说明本发明的方案A specific implementation case is provided below to further illustrate the solution of the present invention

图3为本发明具体实施案例的流程示意图。如图3所示,具体包括以下步骤:FIG. 3 is a schematic flowchart of a specific implementation case of the present invention. As shown in Figure 3, it specifically includes the following steps:

1.输入实测的PLC信号序列1. Input the measured PLC signal sequence

S=[s1,s2,…,sN-1,sN]S=[s 1 ,s 2 ,...,s N-1 ,s N ]

其中:in:

S:实测的PLC信号数据序列,长度为NS: The measured PLC signal data sequence, the length is N

si,i=1,2,…,N:序号为i的实测PLC信号s i , i=1,2,...,N: the measured PLC signal with serial number i

2.求取循环延迟矩阵2. Find the circular delay matrix

Figure BDA0002212066350000101
Figure BDA0002212066350000101

其中:in:

sn:所述信号序列S的第n个元素[n=1,2,…,N]s n : the n-th element of the signal sequence S [n=1,2,...,N]

N:所述信号序列S的长度N: the length of the signal sequence S

3.求取海斯预测矩阵3. Find the Hays prediction matrix

D=[STS-I][ΣV+I]DC D=[S T SI][ΣV+I]D C

其中:in:

Σ:矩阵[DC+I]-1的特征值矩阵Σ: matrix of eigenvalues of matrix [D C +I] -1

V:矩阵[DC+I]-1的右特征矢量矩阵V: the right eigenvector matrix of the matrix [D C +I] -1

I:单位矩阵I: identity matrix

4.求取海斯调整因子4. Find the Hayes adjustment factor

Figure BDA0002212066350000102
Figure BDA0002212066350000102

其中:in:

Figure BDA0002212066350000103
矩阵[STS][D+I]-1的最大特征值
Figure BDA0002212066350000103
The largest eigenvalue of the matrix [S T S][D+I] -1

Figure BDA0002212066350000104
矩阵[STS][D+I]-1的最小特征值
Figure BDA0002212066350000104
Minimum eigenvalue of matrix [S T S][D+I] -1

5.求取海斯因子5. Find the Hayes factor

Figure BDA0002212066350000111
Figure BDA0002212066350000111

其中:in:

LMAX:矩阵[STS][D+I]-1中所有元素绝对值的最大值L MAX : the maximum value of the absolute value of all elements in the matrix [S T S][D+I] -1

LMIN:矩阵[STS][D+I]-1中所有元素绝对值的最小值L MIN : the minimum value of the absolute value of all elements in the matrix [S T S][D+I] -1

6.迭代求取海斯最佳权重矩阵和海斯最佳调整矩阵,具体为:6. Iteratively obtain the Hays optimal weight matrix and the Hays optimal adjustment matrix, specifically:

第一步:迭代初始化,具体为:The first step: iterative initialization, specifically:

λ1=[S-mS]T[S-mS]:所述海斯最佳调整矩阵的初始化值λ 1 =[Sm S ] T [Sm S ]: the initialization value of the Hayes optimal adjustment matrix

W1=ΨV:所述海斯最佳权重矩阵的初始化值W 1 =ΨV: Initialization value of the Hays optimal weight matrix

k=1:迭代控制参数k=1: iterative control parameter

其中in

Figure BDA0002212066350000116
所述W1的特征值矩阵[i=1,2,…,NΨ]
Figure BDA0002212066350000116
The eigenvalue matrix of the W 1 [i=1,2,...,N Ψ ]

Figure BDA0002212066350000112
Figure BDA0002212066350000112

所述矩阵W1的特征值矩阵中的第i个特征值The ith eigenvalue in the eigenvalue matrix of the matrix W 1

Figure BDA0002212066350000113
所述循环延迟矩阵DC的第iL个特征值
Figure BDA0002212066350000113
The ith L eigenvalue of the cyclic delay matrix D C

NΨ:所述矩阵W1的特征值矩阵Ψ中非零特征值的个数N Ψ : the number of non-zero eigenvalues in the eigenvalue matrix Ψ of the matrix W 1

mS:所述信号序列S的均值m S : the mean value of the signal sequence S

第二步:迭代更新,具体为:The second step: iterative update, specifically:

Figure BDA0002212066350000115
Figure BDA0002212066350000115

其中:in:

d:用于求取最小值的第一中间参量d: the first intermediate parameter used to find the minimum value

c:用于求取最小值的第二中间参量c: The second intermediate parameter used to find the minimum value

v:用于求取最小值的第三中间参量v: the third intermediate parameter used to find the minimum value

UO:矩阵[STS-I]-1的左特征矢量矩阵U O : left eigenvector matrix of matrix [S T SI] -1

ΣO:矩阵[STS-I]-1的特征值矩阵Σ O : matrix of eigenvalues of matrix [S T SI] -1

第三步:迭代终止,具体为迭代控制参数k加1,重复执行第二步,直至相邻两次迭代结果的差值小于0.001为止,此时k=K,WOPT=WK+1和λOPT=λK+1The third step: the iteration is terminated, specifically, the iterative control parameter k is increased by 1, and the second step is repeated until the difference between the adjacent two iteration results is less than 0.001, at which time k=K, W OPT =W K+1 and λ OPTK+1 .

7.重构7. Refactoring

根据多优化理论对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,According to the multi-optimization theory, the transformer vibration-acoustic signal sequence S is reconstructed, and the reconstructed signal sequence is S NEW ; specifically,

Figure BDA0002212066350000121
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。
Figure BDA0002212066350000121
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述较为简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The principles and implementations of the present invention are described herein using specific examples. The descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.

Claims (5)

1.一种利用海斯矩阵的变压器振声信号重构方法,其特征在于,包括:1. a method for reconstructing the oscillatory sound signal of a transformer utilizing a Hays matrix, is characterized in that, comprising: 步骤1,输入实测的变压器振声信号序列S;Step 1, input the measured transformer vibration and sound signal sequence S; 步骤2,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,Step 2, according to the Hays matrix, reconstruct the transformer vibration-acoustic signal sequence S, and the reconstructed signal sequence is S NEW ; specifically, 其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。 Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor. 2.根据权利要求1所述的方法,其特征在于,所述步骤2之前,所述方法还包括:2. The method according to claim 1, wherein before the step 2, the method further comprises: 步骤3,求取所述海斯预测矩阵D、海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT、海斯调整因子α和海斯因子μ。Step 3: Obtain the Hays prediction matrix D, the Hays optimal weight matrix W OPT , the Hays optimal adjustment matrix λ OPT , the Hays adjustment factor α and the Hays factor μ. 3.根据权利要求2所述的方法,其特征在于,所述步骤3包括:3. The method according to claim 2, wherein the step 3 comprises: 步骤301,求取循环延迟矩阵DC,具体为:Step 301, obtain the cyclic delay matrix D C , specifically: 其中:in: sn:所述信号序列S的第n个元素[n=1,2,…,N]s n : the n-th element of the signal sequence S [n=1,2,...,N] N:所述信号序列S的长度N: the length of the signal sequence S 步骤302,求取所述海斯预测矩阵D,具体为:Step 302, obtaining the Hays prediction matrix D, specifically: D=[STS-I][ΣV+I]DC D=[S T SI][ΣV+I]D C 其中:in: Σ:矩阵[DC+I]-1的特征值矩阵Σ: matrix of eigenvalues of matrix [D C +I] -1 V:矩阵[DC+I]-1的右特征矢量矩阵V: the right eigenvector matrix of the matrix [D C +I] -1 I:单位矩阵I: identity matrix 步骤303,求取所述海斯调整因子α,具体为:Step 303: Obtain the Hays adjustment factor α, specifically:
Figure FDA0002212066340000021
Figure FDA0002212066340000021
其中:in: 矩阵[STS][D+I]-1的最大特征值 The largest eigenvalue of the matrix [S T S][D+I] -1
Figure FDA0002212066340000023
矩阵[STS][D+I]-1的最小特征值
Figure FDA0002212066340000023
Minimum eigenvalue of matrix [S T S][D+I] -1
步骤304,求取所述海斯因子μ,具体为:Step 304, obtaining the Hays factor μ, specifically:
Figure FDA0002212066340000024
Figure FDA0002212066340000024
其中:in: LMAX:矩阵[STS][D+I]-1中所有元素绝对值的最大值L MAX : the maximum value of the absolute value of all elements in the matrix [S T S][D+I] -1 LMIN:矩阵[STS][D+I]-1中所有元素绝对值的最小值L MIN : the minimum value of the absolute value of all elements in the matrix [S T S][D+I] -1 步骤305,迭代求取所述海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT,具体为:Step 305, iteratively obtain the optimal Hayes weight matrix W OPT and the optimal Hayes adjustment matrix λ OPT , specifically: 第一步:迭代初始化,具体为:The first step: iterative initialization, specifically: λ1=[S-mS]T[S-mS]:所述海斯最佳调整矩阵的初始化值λ 1 =[Sm S ] T [Sm S ]: the initialization value of the Hayes optimal adjustment matrix W1=ΨV:所述海斯最佳权重矩阵的初始化值W 1 =ΨV: Initialization value of the Hays optimal weight matrix k=1:迭代控制参数k=1: iterative control parameter 其中in
Figure FDA0002212066340000025
所述W1的特征值矩阵[i=1,2,…,NΨ]
Figure FDA0002212066340000025
The eigenvalue matrix of the W 1 [i=1,2,...,N Ψ ]
Figure FDA0002212066340000026
Figure FDA0002212066340000026
所述矩阵W1的特征值矩阵中的第i个特征值The ith eigenvalue in the eigenvalue matrix of the matrix W 1 ζiL:所述循环延迟矩阵DC的第iL个特征值ζ iL : the ith L eigenvalue of the cyclic delay matrix D C NΨ:所述矩阵W1的特征值矩阵Ψ中非零特征值的个数N Ψ : the number of non-zero eigenvalues in the eigenvalue matrix Ψ of the matrix W 1 mS:所述信号序列S的均值m S : the mean value of the signal sequence S 第二步:迭代更新,具体为:The second step: iterative update, specifically:
Figure FDA0002212066340000031
Figure FDA0002212066340000031
Figure FDA0002212066340000032
Figure FDA0002212066340000032
其中:in: d:用于求取最小值的第一中间参量d: the first intermediate parameter used to find the minimum value c:用于求取最小值的第二中间参量c: The second intermediate parameter used to find the minimum value v:用于求取最小值的第三中间参量v: the third intermediate parameter used to find the minimum value UO:矩阵[STS-I]-1的左特征矢量矩阵U O : left eigenvector matrix of matrix [S T SI] -1 ΣO:矩阵[STS-I]-1的特征值矩阵Σ O : matrix of eigenvalues of matrix [S T SI] -1 第三步:迭代终止,具体为迭代控制参数k加1,重复执行第二步,直至相邻两次迭代结果的差值小于0.001为止,此时k=K,WOPT=WK+1和λOPT=λK+1The third step: the iteration is terminated, specifically, the iterative control parameter k is increased by 1, and the second step is repeated until the difference between the adjacent two iteration results is less than 0.001, at which time k=K, W OPT =W K+1 and λ OPTK+1 .
4.一种利用海斯矩阵的变压器振声信号重构系统,其特征在于,包括:4. a transformer vibrating-acoustic signal reconstruction system utilizing Hays matrix, is characterized in that, comprises: 获取模块,输入实测的变压器振声信号序列S;The acquisition module, input the measured transformer vibration and sound signal sequence S; 滤波模块,根据海斯矩阵对所述变压器振声信号序列S进行重构,重构后的信号序列为SNEW;具体为,
Figure FDA0002212066340000033
其中,D为海斯预测矩阵;WOPT为海斯最佳权重矩阵;λOPT为海斯最佳调整矩阵;α为海斯调整因子;μ为海斯因子。
The filtering module reconstructs the transformer vibration-acoustic signal sequence S according to the Hays matrix, and the reconstructed signal sequence is S NEW ; specifically,
Figure FDA0002212066340000033
Among them, D is the Hays prediction matrix; W OPT is the Hays optimal weight matrix; λ OPT is the Hays optimal adjustment matrix; α is the Hays adjustment factor; μ is the Hays factor.
5.根据权利要求4所述的系统,其特征在于,还包括:5. The system of claim 4, further comprising: 计算模块,求取所述海斯预测矩阵D、海斯最佳权重矩阵WOPT、海斯最佳调整矩阵λOPT、海斯调整因子α和海斯因子μ。The computing module obtains the Hays prediction matrix D, the Hays optimal weight matrix W OPT , the Hays optimal adjustment matrix λ OPT , the Hays adjustment factor α and the Hays factor μ.
CN201910901823.4A 2019-09-23 2019-09-23 A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix Pending CN110703148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910901823.4A CN110703148A (en) 2019-09-23 2019-09-23 A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910901823.4A CN110703148A (en) 2019-09-23 2019-09-23 A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix

Publications (1)

Publication Number Publication Date
CN110703148A true CN110703148A (en) 2020-01-17

Family

ID=69195831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910901823.4A Pending CN110703148A (en) 2019-09-23 2019-09-23 A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix

Country Status (1)

Country Link
CN (1) CN110703148A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110809A (en) * 2006-07-21 2008-01-23 电子科技大学 A method for multi-carrier data transmission
CN101943889A (en) * 2009-07-06 2011-01-12 包米勒公司 The method and the device that make the electric drive system regulator start and/or move automatically
CN102353945A (en) * 2011-03-31 2012-02-15 北京航空航天大学 Three-dimensional position reconstructing method based on ISAR (inverse synthetic aperture radar) image sequence for scattering point
CN103398769A (en) * 2013-08-05 2013-11-20 国家电网公司 Transformer on-line fault detecting method based on sampling integrated SVM (support vector machine) under wavelet GGD (general Gaussian distribution) feather and unbalanced K-mean value
CN108512220A (en) * 2018-03-22 2018-09-07 华南理工大学 A kind of network of ship dynamic reconfiguration method based on artificial intelligence
CN110031089A (en) * 2019-05-15 2019-07-19 广东石油化工学院 A kind of filtering method and device of running state of transformer vibration sound detection signal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110809A (en) * 2006-07-21 2008-01-23 电子科技大学 A method for multi-carrier data transmission
CN101943889A (en) * 2009-07-06 2011-01-12 包米勒公司 The method and the device that make the electric drive system regulator start and/or move automatically
CN102353945A (en) * 2011-03-31 2012-02-15 北京航空航天大学 Three-dimensional position reconstructing method based on ISAR (inverse synthetic aperture radar) image sequence for scattering point
CN103398769A (en) * 2013-08-05 2013-11-20 国家电网公司 Transformer on-line fault detecting method based on sampling integrated SVM (support vector machine) under wavelet GGD (general Gaussian distribution) feather and unbalanced K-mean value
CN108512220A (en) * 2018-03-22 2018-09-07 华南理工大学 A kind of network of ship dynamic reconfiguration method based on artificial intelligence
CN110031089A (en) * 2019-05-15 2019-07-19 广东石油化工学院 A kind of filtering method and device of running state of transformer vibration sound detection signal

Similar Documents

Publication Publication Date Title
CN110031089A (en) A kind of filtering method and device of running state of transformer vibration sound detection signal
CN110703145A (en) Transformer vibration sound signal reconstruction method and system by using multiple optimization theories
CN111664934A (en) Transformer state vibration and sound detection signal filtering method and system using feature selection
CN111664933A (en) Method and system for filtering vibration and sound detection signal by utilizing static vector optimization
CN110703148A (en) A method and system for reconstruction of transformer vibro-acoustic signal using Hays matrix
CN111751098A (en) A vibro-acoustic detection signal reconstruction method and system using Gaussian prediction model
CN111473861A (en) A method and system for reconstruction of transformer state vibro-acoustic detection signal using sparse error
CN110837013A (en) A method and system for reconstruction of transformer state vibration and sound detection signal using sparse dictionary representation
CN111879403A (en) Vibration and sound detection signal reconstruction method and system by using weak signal retention
CN110646691A (en) Transformer vibration sound signal filtering method and system by utilizing stretching transformation
CN110286289B (en) Filtering method for vibration and sound detection signal of transformer
CN110514295A (en) A method and system for filtering the vibration and sound detection signal of transformer operating state using SVD decomposition
CN110286287B (en) A method and system for filtering vibration-acoustic detection signal of transformer operating state based on wavelet transform
CN110320433A (en) The signal filtering method and device of transformer exception state vibration sound detection
CN111141384A (en) Transformer state vibration and sound detection signal reconstruction method and system by utilizing Frechet regularization
CN110516645A (en) Method and system for filtering transformer vibration-acoustic signal using mask operator
CN111649819A (en) A method and system for filtering transformer state vibration and sound detection signal using iterative soft threshold
CN111579059A (en) Transformer state vibration and sound detection signal reconstruction method and system by utilizing quadratic approximation
CN110320435A (en) A kind of running state of transformer vibration sound detection signal reconfiguring method and system using data regularization
CN112304419A (en) Vibration and sound detection signal reconstruction method and system by using generalized sparse coding
CN110703147A (en) A method and system for filtering vibration and sound signals of transformers using reduction effect
CN112345226B (en) Vibration and sound detection signal reconstruction method and system by utilizing block coordination minimization
CN112179479A (en) Power signal reconstruction method and system by using shaping factor
CN110657881A (en) Transformer vibration sound signal filtering method and system by utilizing sparse inversion
CN111929551A (en) Method and system for filtering vibration and sound detection signals of transformer in running state

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117

RJ01 Rejection of invention patent application after publication