[go: up one dir, main page]

CN110702756A - 一种检测核酸的电化学方法 - Google Patents

一种检测核酸的电化学方法 Download PDF

Info

Publication number
CN110702756A
CN110702756A CN201910822843.2A CN201910822843A CN110702756A CN 110702756 A CN110702756 A CN 110702756A CN 201910822843 A CN201910822843 A CN 201910822843A CN 110702756 A CN110702756 A CN 110702756A
Authority
CN
China
Prior art keywords
nucleic acid
electrochemical
detecting
electrochemical method
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910822843.2A
Other languages
English (en)
Inventor
崔静洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yinmu Medical Technology Hangzhou Co Ltd
Original Assignee
Yinmu Medical Technology Hangzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yinmu Medical Technology Hangzhou Co Ltd filed Critical Yinmu Medical Technology Hangzhou Co Ltd
Priority to CN201910822843.2A priority Critical patent/CN110702756A/zh
Publication of CN110702756A publication Critical patent/CN110702756A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种检测核酸的电化学方法。本发明的方法包括如下步骤:(1)根据碱基配对原则,设计与目标核酸相匹配的探针DNA或RNA;(2)将探针与待检测对象混合形成核酸杂化溶液;(3)对核酸杂化溶液进行电化学伏安扫描,当出现电化学氧化还原峰时,表明待检测对象包含目标核酸;当未出现电化学氧化还原峰时,表明待检测对象不包含目标核酸。本发明具有特异性高、重复性好、操作经济简单等优点。

Description

一种检测核酸的电化学方法
技术领域
本发明属于生物传感技术领域,特别是涉及一种检测核酸的电化学方法。
背景技术
miRNA是一类内源性非编码的小分子单链RNA,以基因表达的方式参与调节生物体系的各种生物及病理过程。因此miRNA检测应用引起包括医药、食品、法医和环境等应用领域的广泛兴趣,是目前传感检测应用研究领域的热点。miRNAs在癌变发生、发展过程中发挥关键作用,miRNAs被公认最具潜力的肿瘤标志物。但是,miRNAs链很短,20个碱基左右;序列同源性高,多数序列只相差一个碱基,因此,miRNAs特异性检测存在诸多挑战。miRNAs传统检测方法仍然存在很多无法克服的缺陷,例如微阵列分析方法存在特异性差、重复性差,易出现假阳性问题;而目前最常用的miRNAs检测技术----实时定量PCR(real—time PCR)技术,由于miRNA序列短而逆转录困难,PCR过程中非特异性扩增也容易导致假阳性。
核酸具有电化学活性,核酸的电化学活性来自拥有π电子体系的碱基对。核酸的碱基对能够发生电化学氧化或还原,使得电化学技术应用于癌症miRNAs检测研究成为可能,也为电化学技术进行癌症的早期筛查和伴随监测及遗传性诊断提供了强有力的依据。
发明内容
为了解决现有技术存在的缺陷,本发明的目的在于提供一种检测核酸的电化学方法。本发明具有特异性高、重复性好、操作经济简单等优点。
为了达到上述的目的,本发明采取以下技术方案:
一种检测核酸的电化学方法,包括如下步骤:
(1)根据碱基配对原则,设计与目标核酸相匹配的探针DNA或RNA;
(2)将探针与待检测对象混合形成核酸杂化溶液(即杂化的双链DNA-RNA,DNA-DNA或RNA-RNA);
(3)对核酸杂化溶液进行电化学伏安扫描,当出现电化学氧化还原峰时,表明待检测对象包含目标核酸;当未出现电化学氧化还原峰时,表明待检测对象不包含目标核酸。
进一步地,上述方法中,所述探针与待检测对象核酸片段按照任意体积比或浓度比进行混合。
进一步地,上述方法中,所述待检测对象为单核酸体系或多核酸混合体系;优选的,所述待检测对象为miRNA或总RNA。
进一步地,上述方法中,所述目标核酸选自DNA、cDNA或RNA;优选的,所述目标核酸选自具有疾病特征或病原体的DNA、cDNA或RNA;更优选的,所述目标核酸为miRNA。
进一步地,上述方法中,所述目标核酸来自人工合成、疾病细胞提取或者血清提取。
进一步地,上述方法中,所述电化学伏安扫描的电解质溶液为pH为7.4的磷酸缓冲溶液(PBS缓冲液)。该pH值模拟人体体液环境。
进一步地,上述方法中,所述电化学伏安扫描的电极为碳电极或金属电极。优选的,所述碳电极为玻碳电极、石墨电极、石墨烯修饰电极;所述金属电极为纳米金属电极或金属氧化物修饰电极。
本发明具有以下技术特点:
1)本发明利用电化学技术实现了核酸的检测,方法简单易行,可以应用于医学、食品、环境等领域,例如,通过对疾病特征的核酸进行检测,实现疾病诊断或病原体检测,具有广泛的应用前景。
2)本发明能够实现对核酸分子单碱基错配检出,具有良好的特异性。
3)本发明的检测结果重复性好。
4)本发明的方法操作过程经济简单,不存在链反应,无需扩增,无需荧光指示剂。
附图说明
图1肝癌miR-122与正配探针及错配探针杂化的电化学伏安扫描图:(a)正扫;(b)负扫。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
以下实施例提供的特异性检测疾病特征miRNA的电化学检测方法的目标核酸样品来源是人工合成的DNA及cDNA或RNA(miRNA)片段,细菌DNA及RNA(miRNA),病毒DNA及RNA(miRNA),细胞提取的DNA及RNA(miRNA),或血清RNA(miRNA),Total RNA等。
特异性检测疾病特征miRNA的电化学检测方法中核酸杂化形式为杂化的双链DNA-RNA,DNA-DNA或RNA-RNA。
实施例1.RNA-DNA杂化体系
将人工合成的肝癌生物标志物miR-122(5’-UGGAGUGUGACAAUGGUGUUUG-3’)溶液分别等体积地滴入5pM正配探针(5’-CAAACACCATTGTCACACTCCA-3’)溶液和5pM错配探针(5’-CAAACACCATTATCACACTCCA-3’)溶液中,通过RNA-DNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,玻碳电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果如附图1所示:完美配对的杂交溶液伏安曲线在1.2V左右出现电化学氧化峰(正扫,图1a),1.1V出出现电化学还原峰(负扫,图1b),错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例2.cDNA-DNA杂化体系
将人工合成的前列腺癌特征标志物miR-141的cDNA(5’-TAACACTGTCTGGTAAAGATGG-3’)溶液分别等体积地滴入5pM正配探针(5’-CCATCTTTACCAGACAGTGTTA-3’)溶液和5pM错配探针(5’-ACATCTTTACCAGACAGTGTTA-3’)溶液中,通过cDNA-DNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,石墨碳电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在1.1V左右出现电化学氧化峰,1.2V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例3.DNA-RNA杂化体系
将人工合成的乳腺癌特征标志物hsa-miR-373(5’-ACUCAAAAUGGGGGCGCUUUCC-3’)溶液分别等体积地滴入5pM正配探针(5’-GGAAAGCGCCCCCATTTTGAGT-3’)溶液和5pM错配探针(5’-GGAAAGCGCCCCCATTTTGGGT-3’)溶液中,通过DNA-RNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,金电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在0.16V左右出现电化学氧化峰,0.14V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例4.胰腺癌DNA-RNA杂化体系
将人工合成的胰腺癌特征标志物miR-1290(5'-UGGAUUUUUGGAUCAGGGA-3')溶液分别等体积地滴入5pM正配探针(5'-TCCCTGATCCAAAAATCCA-3')溶液和5pM错配探针(5'-TCGCTGATCCAAAAATCCA-3')溶液中,通过RNA-DNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,纳米二氧化钛修饰电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在1.5V左右出现电化学氧化峰,0.5V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例5.登革热RNA-RNA杂化体系
将人工合成的登革热特征标志物DENV-2miRNA(5'-GGAAGCUGUACGCAUGGCGUA-3')溶液分别等体积地滴入5pM正配探针(3'-NH2–2-O-Me-(CCUUCGACAUGCG)TACCGCAT-5')溶液和5pM错配探针(3'-NH2–2-O-Me-(CCUUCGACAUGCG)TACCCCAT-5')溶液中,通过RNA-RNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,铟锡氧化物薄膜修饰电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在1.0V左右出现电化学氧化峰,0.8V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例6.肝癌细胞DNA-Total RNA(总miRNA)杂化体系
将从肝癌细胞HePG2中提取的总miRNA溶液分别等体积地滴入5pM肝损伤特征标志物Has-miR-122的正配探针(5'-CAAACACCATTGTCACACTCCA-3')溶液和5pM错配探针(5'-CAAACACCATTCTCACACTCCA-3')溶液中,通过RNA-DNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,纳米银修饰电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在1.2V左右出现电化学氧化峰,1.1V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例7.肺癌患者血清DNA-Total RNA(总miRNA)杂化体系
将从肺癌患者血清中提取的miRNA溶液分别等体积地滴入5pM肺癌特征标志物miR-21的正配探针(5'-TCAACATCAGTCTGATAAGCTA-3')溶液和5pM错配探针(5'-TCAACATCAGTCTGATAAGATA-3')溶液中,通过RNA-DNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,石墨烯修饰电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在0.15V左右出现电化学氧化峰,1.1V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
实施例8.食品或环境检测应用-大肠杆菌E.Coli RNAs检测
将人工合成的目标lacZ,E.coli lacZ miRNA
(nt5’-AUGUGGAUUGGCGAUAAAAAACAA-3’)溶液等体积地滴入5pM正配探针(5’-d(GTTGTTTTTT)-2’-O-Me-RNA(AUCGCCAAUCCACAU)-d(CTGTGAAAGA)-NH2-3’)和错配探针(5’-d(GTTGTTTTTT)-2’-O-Me-RNA(AUCGCCAAUCCACAU)-d(CTGTGAAAGA)-NH2-3’)溶液中,通过RNA-RNA杂化反应,形成正配杂交溶液和错配杂交溶液。以pH=7.4的模拟体液磷酸缓冲溶液(PBS缓冲液)为电解液,石墨烯修饰电极为传感电极,对上述正配杂交溶液和错配杂交溶液进行电化学伏安扫描,电化学传感检测结果显示:完美配对的杂交溶液伏安曲线在1.7V左右出现电化学氧化峰,1.6V出出现电化学还原峰,错配杂交溶液伏安曲线在测试范围内没有电化学氧化还原峰出现。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内有一般技能的人士所理解的通常意义。
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。

Claims (10)

1.一种检测核酸的电化学方法,其特征在于,包括如下步骤:
(1)根据碱基配对原则,设计与目标核酸相匹配的探针DNA或RNA;
(2)将探针与待检测对象混合形成核酸杂化溶液;
(3)对核酸杂化溶液进行电化学伏安扫描,当出现电化学氧化还原峰时,表明待检测对象包含目标核酸;当未出现电化学氧化还原峰时,表明待检测对象不包含目标核酸。
2.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述探针与待检测对象核酸片段按照任意体积比或浓度比进行混合。
3.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述待检测对象为单核酸体系或多核酸混合体系。
4.根据权利要求3所述的检测核酸的电化学方法,其特征在于,所述待检测对象为miRNA或总RNA。
5.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述目标核酸选自DNA、cDNA或RNA。
6.根据权利要求5所述的检测核酸的电化学方法,其特征在于,所述目标核酸选自具有疾病特征或病原体的DNA、cDNA或RNA。
7.根据权利要求6所述的检测核酸的电化学方法,其特征在于,所述目标核酸为miRNA。
8.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述目标核酸来自人工合成、疾病细胞提取或者血清提取。
9.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述电化学伏安扫描的电解质溶液为pH为7.4的磷酸缓冲溶液。
10.根据权利要求1所述的检测核酸的电化学方法,其特征在于,所述电化学伏安扫描的电极为碳电极或金属电极;优选的,所述碳电极为玻碳电极、石墨电极、石墨烯修饰电极;所述金属电极为纳米金属电极或金属氧化物修饰电极。
CN201910822843.2A 2019-09-02 2019-09-02 一种检测核酸的电化学方法 Pending CN110702756A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910822843.2A CN110702756A (zh) 2019-09-02 2019-09-02 一种检测核酸的电化学方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910822843.2A CN110702756A (zh) 2019-09-02 2019-09-02 一种检测核酸的电化学方法

Publications (1)

Publication Number Publication Date
CN110702756A true CN110702756A (zh) 2020-01-17

Family

ID=69194074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910822843.2A Pending CN110702756A (zh) 2019-09-02 2019-09-02 一种检测核酸的电化学方法

Country Status (1)

Country Link
CN (1) CN110702756A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096859A1 (en) * 2001-02-12 2004-05-20 Emil Palecek Method for detecting and/or quantifying an analyte
CN107988318A (zh) * 2017-11-24 2018-05-04 杭州电子科技大学 基于电化学电势预处理技术快速检测核酸的方法及应用
CN109682875A (zh) * 2018-06-01 2019-04-26 上海大学 用于肝细胞癌筛查的核酸电化学检测体系及检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040096859A1 (en) * 2001-02-12 2004-05-20 Emil Palecek Method for detecting and/or quantifying an analyte
CN107988318A (zh) * 2017-11-24 2018-05-04 杭州电子科技大学 基于电化学电势预处理技术快速检测核酸的方法及应用
CN109682875A (zh) * 2018-06-01 2019-04-26 上海大学 用于肝细胞癌筛查的核酸电化学检测体系及检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGJIE CUI 等: "Selective Binding of Nucleobases and its Electrochemical Behavior at Glassy Carbon Electrode in PBS at pH 7.4", 《ADVANCED MATERIALS RESEARCH》 *

Similar Documents

Publication Publication Date Title
Shabaninejad et al. Electrochemical-based biosensors for microRNA detection: Nanotechnology comes into view
Yuan et al. Simultaneously electrochemical detection of microRNAs based on multifunctional magnetic nanoparticles probe coupling with hybridization chain reaction
Bollella et al. Enzyme based amperometric biosensors
Zhang et al. Multiplexed detection of microRNAs by tuning DNA-scaffolded silver nanoclusters
Ma et al. Sensitive quantification of microRNAs by isothermal helicase-dependent amplification
ES2636664T3 (es) Microelectrodos nanoestructurados y dispositivos de biodetección que los incorporan
Zhang et al. An ultrasensitive label-free electrochemical biosensor for microRNA-21 detection based on a 2′-O-methyl modified DNAzyme and duplex-specific nuclease assisted target recycling
Wei et al. Exponential amplification reaction and triplex DNA mediated aggregation of gold nanoparticles for sensitive colorimetric detection of microRNA
Wang et al. Target-triggered hybridization chain reaction for ultrasensitive dual-signal miRNA detection
Zhong et al. PCDetection: PolyA-CRISPR/Cas12a-based miRNA detection without PAM restriction
Hu et al. An electrochemical biosensor for sensitive detection of microRNAs based on target-recycled non-enzymatic amplification
Chai et al. Ultrasensitive electrochemical detection of miRNA coupling tetrahedral DNA modified gold nanoparticles tags and catalyzed hairpin assembly
CN103597094A (zh) 利用电活性水解探针(e-tag探针)监测实时聚合酶链式反应(pcr)的方法和装置
Tang et al. Dual-signal amplification strategy for miRNA sensing with high sensitivity and selectivity by use of single Au nanowire electrodes
Ma et al. CRISPR-empowered electrochemical biosensor for target amplification-free and sensitive detection of miRNA
Sadighbathi et al. Genosensors, a nanomaterial-based platform for microRNA-21 detection, non-invasive methods in early detection of cancer
Li et al. An electrochemical microRNA biosensor based on protein p19 combining an acridone derivate as indicator and DNA concatamers for signal amplification
Wang et al. Naked-eye detection of site-specific ssRNA and ssDNA using PAMmer-assisted CRISPR/Cas9 coupling with exponential amplification reaction
CN107988318B (zh) 基于电化学电势预处理技术快速检测核酸的方法及应用
Han et al. Recent strategies for electrochemical sensing detection of miRNAs in lung cancer
Song et al. Tailoring high-energy self-powered sensing system by Walker-mediated CRISPR/Cas12a cascade signal amplification and hybridization chain reaction for ultrasensitive microRNA detection
Zhang et al. Triple-hairpin mediated feedback system based on rolling circle amplification for enhanced imaging and detection of intracellular microRNA
Zhang et al. Enzyme-free isothermal target-recycled amplification combined with PAGE for direct detection of microRNA-21
CN110702756A (zh) 一种检测核酸的电化学方法
Liu et al. Light-gated cascade amplification DNA circuit under the encapsulation of a natural protein-derived facilitate nanocarrier for spatiotemporal sensing in living cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200117