CN110699066A - Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof - Google Patents
Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof Download PDFInfo
- Publication number
- CN110699066A CN110699066A CN201910976232.3A CN201910976232A CN110699066A CN 110699066 A CN110699066 A CN 110699066A CN 201910976232 A CN201910976232 A CN 201910976232A CN 110699066 A CN110699066 A CN 110699066A
- Authority
- CN
- China
- Prior art keywords
- cds
- source
- zns
- quantum dot
- shell structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 title claims abstract description 75
- 239000011258 core-shell material Substances 0.000 title claims abstract description 63
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000013078 crystal Substances 0.000 claims abstract description 29
- 238000005424 photoluminescence Methods 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 3
- 239000011701 zinc Substances 0.000 claims description 98
- 239000011669 selenium Substances 0.000 claims description 78
- 238000006243 chemical reaction Methods 0.000 claims description 51
- 239000002159 nanocrystal Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000003960 organic solvent Substances 0.000 claims description 23
- 239000011261 inert gas Substances 0.000 claims description 17
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 13
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 claims description 12
- ZTSAVNXIUHXYOY-CVBJKYQLSA-L cadmium(2+);(z)-octadec-9-enoate Chemical compound [Cd+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O ZTSAVNXIUHXYOY-CVBJKYQLSA-L 0.000 claims description 11
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 229910052793 cadmium Inorganic materials 0.000 claims description 8
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadecene Natural products CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- 238000003786 synthesis reaction Methods 0.000 claims description 7
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 claims description 6
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 5
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 150000004665 fatty acids Chemical class 0.000 claims description 4
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 4
- LHQLJMJLROMYRN-UHFFFAOYSA-L cadmium acetate Chemical compound [Cd+2].CC([O-])=O.CC([O-])=O LHQLJMJLROMYRN-UHFFFAOYSA-L 0.000 claims description 3
- ITQVEYJXZXMBTR-UHFFFAOYSA-L cadmium(2+);dodecanoate Chemical compound [Cd+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O ITQVEYJXZXMBTR-UHFFFAOYSA-L 0.000 claims description 3
- 229940095068 tetradecene Drugs 0.000 claims description 3
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 2
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical group [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 2
- GWOWVOYJLHSRJJ-UHFFFAOYSA-L cadmium stearate Chemical compound [Cd+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O GWOWVOYJLHSRJJ-UHFFFAOYSA-L 0.000 claims description 2
- KOTZHELIJDCVNA-UHFFFAOYSA-L cadmium(2+);octanoate Chemical compound [Cd+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O KOTZHELIJDCVNA-UHFFFAOYSA-L 0.000 claims description 2
- KADXVMUKRHQBGS-UHFFFAOYSA-L cadmium(2+);tetradecanoate Chemical compound [Cd+2].CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O KADXVMUKRHQBGS-UHFFFAOYSA-L 0.000 claims description 2
- 239000004246 zinc acetate Substances 0.000 claims description 2
- 229940105125 zinc myristate Drugs 0.000 claims description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 2
- NVKSAUAQUPYOPO-UHFFFAOYSA-L zinc;decanoate Chemical compound [Zn+2].CCCCCCCCCC([O-])=O.CCCCCCCCCC([O-])=O NVKSAUAQUPYOPO-UHFFFAOYSA-L 0.000 claims description 2
- GPYYEEJOMCKTPR-UHFFFAOYSA-L zinc;dodecanoate Chemical compound [Zn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O GPYYEEJOMCKTPR-UHFFFAOYSA-L 0.000 claims description 2
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 claims description 2
- GBFLQPIIIRJQLU-UHFFFAOYSA-L zinc;tetradecanoate Chemical compound [Zn+2].CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O GBFLQPIIIRJQLU-UHFFFAOYSA-L 0.000 claims description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical group OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims 33
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims 33
- 230000001737 promoting effect Effects 0.000 claims 3
- DNLGWCVZSDBXAH-UHFFFAOYSA-L cadmium(2+);hexadecanoate Chemical compound [Cd+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O DNLGWCVZSDBXAH-UHFFFAOYSA-L 0.000 claims 1
- 125000003748 selenium group Chemical group *[Se]* 0.000 claims 1
- 229940098697 zinc laurate Drugs 0.000 claims 1
- 229940012185 zinc palmitate Drugs 0.000 claims 1
- GJAPSKMAVXDBIU-UHFFFAOYSA-L zinc;hexadecanoate Chemical compound [Zn+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O GJAPSKMAVXDBIU-UHFFFAOYSA-L 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000000103 photoluminescence spectrum Methods 0.000 abstract description 6
- 230000005693 optoelectronics Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 239000011162 core material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 description 5
- 230000035484 reaction time Effects 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000000862 absorption spectrum Methods 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 150000003573 thiols Chemical class 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- NDWWLJQHOLSEHX-UHFFFAOYSA-L calcium;octanoate Chemical compound [Ca+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O NDWWLJQHOLSEHX-UHFFFAOYSA-L 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- -1 heat to 180°C~250°C Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000004054 semiconductor nanocrystal Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/56—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
- C09K11/562—Chalcogenides
- C09K11/565—Chalcogenides with zinc cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明属于光电材料领域,公开了一种多组分梯度能级核壳结构量子点及其制备方法。所述多组分梯度能级核壳结构量子点为CdS/CdxZn1‑ xS/ZnS、CdSySe1‑y/CdS/CdxZn1‑xS/ZnS或CdSe/CdSySe1‑y/CdS/CdxZn1‑xS/ZnS,0≤x≤1,0≤y≤1。上述三种量子点的光致发光光谱分别位于400~480nm,480~560nm和560~660nm之间,每种量子点的最大晶体颗粒尺寸不超过20nm。本发明的多组分梯度能级核壳结构量子点制备方法简单、成本较低,是一种制备强光致发光强度核壳结构量子点的有效方法。
The invention belongs to the field of optoelectronic materials, and discloses a multi-component gradient energy level core-shell structure quantum dot and a preparation method thereof. The multi-component gradient energy level core-shell structure quantum dots are CdS/Cd x Zn 1- x S/ZnS, CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS or CdSe/CdS y Se 1‑y /CdS/Cd x Zn 1‑x S/ZnS, 0≤x≤1, 0≤y≤1. The photoluminescence spectra of the above three quantum dots are respectively located between 400-480 nm, 480-560 nm and 560-660 nm, and the maximum crystal particle size of each quantum dot does not exceed 20 nm. The preparation method of the multi-component gradient energy level core-shell structure quantum dot of the invention is simple and low in cost, and is an effective method for preparing the core-shell structure quantum dot with strong photoluminescence intensity.
Description
技术领域technical field
本发明属于光电材料领域,具体涉及一种多组分梯度能级核壳结构量子点及其制备方法。The invention belongs to the field of optoelectronic materials, in particular to a multi-component gradient energy level core-shell structure quantum dot and a preparation method thereof.
背景技术Background technique
由于显著的量子限域效应,纳米晶(量子点)可通过调节尺寸、组分和结构等一系列措施,展现可调的吸收光谱和光致发光光谱,具有吸收光谱和发光Due to the remarkable quantum confinement effect, nanocrystals (quantum dots) can exhibit tunable absorption spectrum and photoluminescence spectrum by adjusting the size, composition and structure, etc.
光谱窄,发光强度强,以及荧光寿命长等优点,并且在光电器件和生物标记等应用上展现了巨大优势。It has the advantages of narrow spectrum, strong luminescence intensity, and long fluorescence lifetime, and has shown great advantages in applications such as optoelectronic devices and biomarkers.
例如目前市场上以量子点作为发光层的显示器已经得到广泛的认可。三星电子和TCL等家电公司以蓝光为背光源,红色量子点和绿色量子点作为发光层的类似液晶电视已经与OLED显示器形成激烈的竞争关系。同时,量子点作为生物细胞标记和快速诊断也从实验室逐渐过渡到人类的生活中。然而,基于量子点的光电器件的寿命和稳定性,以及快速诊断试剂的稳定性一直是制约量子点产品走向市场道路的最大障碍。作为纳米材料的一种,由于比表面积大而带来的不稳定性一直是目前合成化学所要解决的问题。For example, displays using quantum dots as light-emitting layers on the market have been widely recognized. Home appliance companies such as Samsung Electronics and TCL use blue light as the backlight source, and similar LCD TVs with red quantum dots and green quantum dots as light-emitting layers have formed a fierce competition with OLED displays. At the same time, quantum dots are gradually transitioning from the laboratory to human life as biological cell markers and rapid diagnosis. However, the lifetime and stability of quantum dot-based optoelectronic devices and the stability of rapid diagnostic reagents have always been the biggest obstacles restricting quantum dot products to the market. As a kind of nanomaterials, the instability caused by the large specific surface area has always been a problem to be solved in synthetic chemistry.
发明内容SUMMARY OF THE INVENTION
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种多组分梯度能级核壳结构量子点。In view of the above shortcomings and deficiencies of the prior art, the primary purpose of the present invention is to provide a multi-component gradient energy level core-shell structure quantum dot.
本发明的另一目的在于提供上述多组分梯度能级核壳结构量子点的制备方法。Another object of the present invention is to provide a method for preparing the above-mentioned multi-component gradient energy level core-shell structure quantum dots.
本发明目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种多组分梯度能级核壳结构量子点,所述多组分梯度能级核壳结构量子点为CdS/CdxZn1-xS/ZnS、CdSySe1-y/CdS/CdxZn1-xS/ZnS或CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS,其中0≤x≤1,0≤y≤1。A multi-component gradient energy level core-shell structure quantum dot, the multi-component gradient energy level core-shell structure quantum dot is CdS/Cd x Zn 1-x S/ZnS, CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS or CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS, wherein 0≤x≤1, 0≤y≤1.
进一步地,所述CdS/CdxZn1-xS/ZnS的光致发光范围为400~480nm;CdSySe1-y/CdS/CdxZn1-xS/ZnS的光致发光范围为480~560nm;CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS的光致发光范围为560~660nm。Further, the photoluminescence range of the CdS/Cd x Zn 1-x S/ZnS is 400-480 nm; the photoluminescence range of the CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS is 480~560nm; the photoluminescence range of CdSe/CdSySe1 -y / CdS/ CdxZn1 -xS /ZnS is 560~660nm.
进一步地,所述多组分梯度能级核壳结构量子点的平均粒径尺寸为2~20nm。可根据纳米晶种子尺寸和壳层厚度进行调节。Further, the average particle size of the multi-component gradient energy level core-shell structure quantum dots is 2-20 nm. It can be adjusted according to the nanocrystal seed size and shell thickness.
进一步地,所述CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdS晶粒尺寸不超过4nm,壳层CdxZn1-xS的厚度不超过15nm,ZnS的厚度不超过4nm;在CdSySe1-y/CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdSySe1-y晶粒尺寸不超过5nm,壳层CdS的厚度不超过2nm,CdxZn1-xS的厚度不超过20nm,ZnS的厚度不超过4nm;在CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdSe晶粒尺寸不超过5nm,壳层CdSySe1-y的厚度不超过2nm,CdS的厚度不超过1.5nm,CdxZn1- xS的厚度不超过20nm,ZnS的厚度不超过4nm。Further, in the CdS/Cd x Zn 1-x S/ZnS quantum dots, the grain size of the seed crystal CdS does not exceed 4 nm, the thickness of the shell layer Cd x Zn 1-x S does not exceed 15 nm, and the thickness of ZnS does not exceed 15 nm. 4nm; in CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS quantum dots, the grain size of seed crystal CdS y Se 1-y does not exceed 5 nm, the thickness of shell CdS does not exceed 2 nm, Cd The thickness of x Zn 1-x S does not exceed 20 nm, and the thickness of ZnS does not exceed 4 nm; in CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS quantum dots, the seed crystal CdSe grain size The thickness of the shell layer CdS y Se 1-y does not exceed 2 nm, the thickness of CdS does not exceed 1.5 nm, the thickness of Cd x Zn 1- x S does not exceed 20 nm, and the thickness of ZnS does not exceed 4 nm.
进一步地,所述CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdS的光致发光范围为375~435nm;在CdSySe1-y/CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdSySe1-y的光致发光范围为430~500nm;在CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS量子点中,种子晶体CdSe的光致发光范围为520~580nm。Further, in the CdS/Cd x Zn 1-x S/ZnS quantum dots, the photoluminescence range of the seed crystal CdS is 375-435 nm; in CdS y Se 1-y /CdS/Cd x Zn 1-x S In the /ZnS quantum dots, the photoluminescence range of the seed crystal CdS y Se 1-y is 430-500 nm; in the CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS quantum dots, the seed crystal The photoluminescence range of crystalline CdSe is 520-580 nm.
上述多组分梯度能级核壳结构量子点的制备方法,包括如下制备步骤:The preparation method of the above-mentioned multi-component gradient energy level core-shell structure quantum dots comprises the following preparation steps:
(1)所述多组分梯度能级核壳结构量子点为CdS/CdxZn1-xS/ZnS,其制备方法如下:(1) The multi-component gradient energy level core-shell structure quantum dot is CdS/Cd x Zn 1-x S/ZnS, and its preparation method is as follows:
a)合成CdS种子晶体:将Cd源和有机溶剂经混合后通入惰性气体排除空气,加热后注入S源,形成纳米晶晶核,并保持温度为180~300℃,促进晶核生长至所需尺寸,得到CdS种子纳米晶;a) Synthesis of CdS seed crystals: After mixing Cd source and organic solvent, inert gas is introduced to remove air, and after heating, S source is injected to form nanocrystalline nuclei, and the temperature is kept at 180-300 °C to promote the growth of the nuclei to the desired size. required size to obtain CdS seed nanocrystals;
b)取CdS种子纳米晶放入反应装置中,加入有机溶剂,通入惰性气体排除空气和水蒸气,加热后加入Cd源和Zn源,然后滴加S源反应,得到CdxZn1-xS壳层;b) Take CdS seed nanocrystals and put them into the reaction device, add organic solvent, pass in inert gas to remove air and water vapor, add Cd source and Zn source after heating, then drop S source to react to obtain Cd x Zn 1-x S shell;
c)往步骤b)的反应体系中加入Zn源,然后滴加S源反应,即可得到多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS;c) adding Zn source to the reaction system in step b), and then adding S source dropwise to react, to obtain multi-component gradient energy level core-shell structure quantum dots CdS/Cd x Zn 1-x S/ZnS;
(2)所述多组分梯度能级核壳结构量子点为CdSySe1-y/CdS/CdxZn1-xS/ZnS,其制备方法如下:(2) The multi-component gradient energy level core-shell quantum dots are CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS, and the preparation method is as follows:
a)合成CdSySe1-y种子晶体:将Cd源和有机溶剂经混合后通入惰性气体排除空气,加热后注入S源和Se源,形成纳米晶晶核,并保持温度为180~300℃,促进晶核生长至所需尺寸,得到CdSySe1-y种子纳米晶;a) Synthesis of CdS y Se 1-y seed crystals: After mixing Cd source and organic solvent, inert gas is introduced to remove air, and after heating, S source and Se source are injected to form nanocrystalline nuclei, and the temperature is maintained at 180-300 ℃, to promote the growth of the crystal nucleus to the desired size to obtain CdS y Se 1-y seed nanocrystals;
b)将CdSySe1-y种子纳米晶和有机溶剂加入反应装置中,通入惰性气体排除空气和水蒸气,加热后加入Cd源,然后滴加S源反应,得到CdS壳层;b) adding CdS y Se 1-y seed nanocrystals and an organic solvent into the reaction device, feeding an inert gas to remove air and water vapor, adding a Cd source after heating, and then adding an S source to react to obtain a CdS shell;
c)步骤b)反应结束后,加热后再次加入Cd源和Zn源,然后滴加S源反应,得到CdxZn1-xS壳层;c) After the reaction in step b), the Cd source and the Zn source are added again after heating, and then the S source is added dropwise to react to obtain a Cd x Zn 1-x S shell layer;
d)往步骤c)的反应体系中加入Zn源,然后滴加S源反应,即可得到多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS;d) adding Zn source to the reaction system of step c), and then adding S source dropwise to react, to obtain multi-component gradient energy level core-shell structure quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS;
(3)所述多组分梯度能级核壳结构量子点为CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS,其制备方法如下:(3) The multi-component gradient energy level core-shell structure quantum dot is CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS, and its preparation method is as follows:
a)合成CdSe种子晶体:将Cd前躯体脂肪酸镉和有机溶剂经混合后通入惰性气体排除空气,加热后加入Se源,形成纳米晶晶核,并保持温度为180~300℃,促进晶核生长至所需尺寸,得到CdSe种子纳米晶;a) Synthesis of CdSe seed crystals: Cd precursor fatty acid cadmium and organic solvent are mixed, and then inert gas is introduced to remove air, and after heating, Se source is added to form nanocrystal nuclei, and the temperature is kept at 180-300 °C to promote the nucleation. growing to a desired size to obtain CdSe seed nanocrystals;
b)将CdSe种子纳米晶和有机溶剂加入反应装置中,通入惰性气体排除空气和水蒸气,加热后加入Cd源,然后滴加S源和Se源反应,得到CdSySe1-y壳层;b) Add CdSe seed nanocrystals and organic solvent into the reaction device, pass in inert gas to remove air and water vapor, add Cd source after heating, then drop S source and Se source to react to obtain CdS y Se 1-y shell layer ;
c)步骤b)反应结束后,加热后加入Cd源,然后滴加S源反应,得到CdS壳层;c) After the reaction in step b), add the Cd source after heating, and then drop the S source to react to obtain a CdS shell layer;
d)步骤c)反应结束后,加热后再次加入Cd源和Zn源,然后滴加S源反应,得到CdxZn1-xS壳层;d) After the reaction in step c), the Cd source and the Zn source are added again after heating, and then the S source is added dropwise to react to obtain a Cd x Zn 1-x S shell layer;
e)往步骤d)的反应体系中加入Zn源,然后滴加S源反应,即可得到多组分梯度能级核壳结构量子点CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS。e) adding Zn source to the reaction system in step d), and then adding S source dropwise to react, to obtain multi-component gradient energy level core-shell structure quantum dots CdSe/CdS y Se 1-y /CdS/Cd x Zn 1 -x S/ZnS.
进一步地,(1)~(3)中所述Cd源是指脂肪酸镉,优选为醋酸镉、辛酸镉、十酸镉、十二酸镉、十四酸镉、十六酸镉、油酸镉或硬脂酸镉;所述S源是指溶解在有机溶剂或有机磷TOP、TBP、DDP中的硫,或者有机硫醇;所述Zn源是指脂肪酸锌,优选为醋酸锌、辛酸锌、十酸锌、十二酸锌、十四酸锌、十六酸锌、油酸锌或硬脂酸锌;所述Se源是指溶解在有机溶剂或有机磷TOP、TBP、DDP中的硒。Further, the Cd source described in (1) to (3) refers to fatty acid cadmium, preferably cadmium acetate, cadmium octoate, cadmium decarate, cadmium dodecanoate, cadmium myristate, cadmium hexadecate, cadmium oleate Or cadmium stearate; Described S source refers to the sulfur dissolved in organic solvent or organic phosphorus TOP, TBP, DDP, or organic mercaptan; Described Zn source refers to fatty acid zinc, preferably zinc acetate, zinc octoate, Zinc decanoate, zinc dodecanoate, zinc myristate, zinc hexadecate, zinc oleate or zinc stearate; the Se source refers to selenium dissolved in an organic solvent or organic phosphorus TOP, TBP, DDP.
进一步地,(1)~(3)中所述有机溶剂是指十八烯、十六烯、十四烯、十四烷、十二烷、十烷或辛烷。Further, the organic solvent in (1) to (3) refers to octadecene, hexadecene, tetradecene, tetradecane, dodecane, decane or octane.
相对于现有技术,本发明具有如下优点及有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:
(1)本发明多组分梯度能级核壳结构量子点中,核组成不同于包围核的壳组成。如果核壳结构的能带偏移是1型的,并且壳半导体具有比核材料大的带隙,则纳米晶体内的光子生成的电子和空穴主要被限制在核内。如此处使用的1型能带偏移是指核壳电子结构,其中壳半导体的导带和价带同时高于或低于核半导体的导带和价带。因此,核壳纳米晶体可以显示高光致发光和电致发光效率,并且与包括单一材料的“简单核”半导体纳米晶体相比,抗光氧化可以更稳定,只要核半导体的带隙小于壳半导体的带隙。(1) In the multi-component gradient energy level core-shell structure quantum dot of the present invention, the core composition is different from the shell surrounding the core composition. If the band shift of the core-shell structure is
(2)本发明多组分梯度能级核壳结构量子点中,随着壳层的形成,种子纳米晶的表面缺陷逐渐减少,直至较小到最小。多组分梯度能级的核壳结构量子点的光致发光效率逐渐增加(表现在相同浓度前提下,光致发光光谱强度在不断增加),直至达到接近100%的荧光效率。(2) In the multi-component gradient energy level core-shell structure quantum dots of the present invention, with the formation of the shell layer, the surface defects of the seed nanocrystals gradually decrease until they are small to the smallest. The photoluminescence efficiency of the core-shell quantum dots with multi-component gradient energy level gradually increases (in the same concentration, the photoluminescence spectral intensity is increasing), until the fluorescence efficiency is close to 100%.
(3)本发明多组分梯度能级核壳结构量子点在有机溶剂如十八烯、十六烯、十四烯、十四烷、十二烷、十烷、辛烷、正己烷、三氯甲烷、二氯甲烷、四氯化碳、甲苯等溶剂中的光致荧光量子效率(PLQY)大于90%,并且能再空气环境下保持长时间的稳定性。(3) The multi-component gradient energy level core-shell structure quantum dots of the present invention can be used in organic solvents such as octadecene, hexadecene, tetradecene, tetradecane, dodecane, decane, octane, n-hexane, and tridecane. The photoluminescence quantum efficiency (PLQY) in chloromethane, dichloromethane, carbon tetrachloride, toluene and other solvents is greater than 90%, and can maintain long-term stability in the air environment.
附图说明Description of drawings
图1为实施例1中所得CdS种子纳米晶的光致发光谱图。FIG. 1 is a photoluminescence spectrum of the CdS seed nanocrystals obtained in Example 1. FIG.
图2为实施例1中所得多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS的能带示意图。FIG. 2 is a schematic diagram of the energy bands of the multi-component gradient energy level core-shell structure quantum dots CdS/Cd x Zn 1-x S/ZnS obtained in Example 1. FIG.
图3为实施例1中所得多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS在高倍电镜下的形貌与尺寸图。FIG. 3 is a graph of the morphology and size of the multi-component gradient energy level core-shell quantum dots CdS/Cd x Zn 1-x S/ZnS obtained in Example 1 under a high magnification electron microscope.
图4为实施例2中所得CdSySe1-y种子纳米晶的光致发光谱图。FIG. 4 is a photoluminescence spectrum of the CdS y Se 1-y seed nanocrystals obtained in Example 2. FIG.
图5为实施例2中所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS的能带示意图。5 is a schematic diagram of the energy bands of the multi-component gradient energy level core-shell quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in Example 2.
图6为实施例2中所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS在高倍电镜下的形貌与尺寸图。6 is a graph of the morphology and size of the multi-component gradient energy level core-shell quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in Example 2 under a high magnification electron microscope.
图7为实施例3所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS的能带示意图。7 is a schematic diagram of the energy bands of the multi-component gradient energy level core-shell quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in Example 3.
图8为实施例3所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS的吸收与荧光光谱图。8 is the absorption and fluorescence spectra of the multi-component gradient energy level core-shell quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in Example 3.
图9为实施例3所得多组分梯度能级核壳结构量子点CdSe/CdSySe1-y/CdS/CdxZn1- xS/ZnS在高倍电镜下的形貌与尺寸图。9 is a graph of the morphology and size of the multi-component gradient core-shell structure quantum dots CdSe/CdS y Se 1-y /CdS/Cd x Zn 1- x S/ZnS obtained in Example 3 under a high magnification electron microscope.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例1Example 1
本实施例的一种合成多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS的方法,包括:A method for synthesizing multi-component gradient energy level core-shell structure quantum dots CdS/Cd x Zn 1-x S/ZnS in this embodiment includes:
1)合成CdS种子晶体。将1mmol的Cd前躯体油酸镉和10ml溶剂十八烯混合,排出空气填入氮气,加热到180℃~300℃,快速注入硫源1mmol单质硫溶解在10ml十八烯中),形成纳米晶晶核,并保持温度在180℃~300℃温度范围内,促进晶核的生长。在保温30秒到20分钟过程中,取样测试吸收光谱,用于判断纳米晶的尺寸。等晶核长到1.5纳米到5纳米范围内的时候,撤掉加热装置,降到室温,提纯后得到CdS种子纳米晶。所得CdS种子纳米晶的光致发光谱如图1所示。1) Synthesis of CdS seed crystals. Mix 1mmol of Cd precursor cadmium oleate and 10ml of solvent octadecene, exhaust air and fill with nitrogen, heat to 180℃~300℃, quickly inject sulfur source (1mmol elemental sulfur and dissolve in 10ml octadecene) to form nanocrystals The crystal nucleus is maintained, and the temperature is kept in the temperature range of 180°C to 300°C to promote the growth of the crystal nucleus. During the incubation period of 30 seconds to 20 minutes, samples were taken to test the absorption spectrum for judging the size of the nanocrystals. When the nuclei grow to within the range of 1.5 nanometers to 5 nanometers, the heating device is removed, the temperature is lowered to room temperature, and CdS seed nanocrystals are obtained after purification. The photoluminescence spectra of the obtained CdS seeded nanocrystals are shown in Figure 1.
2)取0.1g提纯后的CdS种子纳米晶和5ml溶剂十八烯加入到反应装置中,排除空气和水蒸气,填入惰性气体。将惰性气体环境下的CdS种子纳米晶和溶剂一起加热到200℃~320℃,加入0.5mmol的油酸镉和1.5mmol的油酸锌,再以每分钟1ml的滴速度将2mmol十二硫醇滴加进入反应装置进行反应。重复加入油酸镉和油酸锌以及滴加硫醇4次,每次反应时间为2小时范围内,形成多层梯度CdS/CdxZn1-xS量子点。其中,CdxZn1-xS是一个逐步梯度层结构,CdxZn1-xS层结构由于Zn元素随着反应时间和温度的变化,进行不同速率的扩散,导致每层Cd和Zn元素的比例在不断变化,每层结构中x的取值范围为0≤x≤1。2) Add 0.1 g of purified CdS seed nanocrystals and 5 ml of solvent octadecene into the reaction device, remove air and water vapor, and fill in inert gas. The CdS seed nanocrystals and the solvent in an inert gas environment were heated to 200 ° C to 320 ° C, 0.5 mmol of cadmium oleate and 1.5 mmol of zinc oleate were added, and 2 mmol of dodecanethiol was added at a drop rate of 1 ml per minute. Add dropwise into the reaction device for reaction. The addition of cadmium oleate and zinc oleate and the dropwise addition of thiol were repeated 4 times, and each reaction time was within the range of 2 hours to form multilayer gradient CdS/Cd x Zn 1-x S quantum dots. Among them, the Cd x Zn 1-x S is a stepwise gradient layer structure, and the Cd x Zn 1-x S layer structure is due to the Zn element diffusing at different rates with the reaction time and temperature, resulting in Cd and Zn elements in each layer. The ratio of x is constantly changing, and the value range of x in each layer structure is 0≤x≤1.
3)将反应体系中加入4mol的油酸锌,再以每分钟1ml的滴速度将硫源(4mmol单质硫溶解在2ml有机磷TOP)滴加进入反应装置反应,即可得到核壳纳米晶体CdS/CdxZn1-xS/ZnS。去掉加热装置,降温至室温,然后提纯。3) adding 4mol of zinc oleate to the reaction system, then adding the sulfur source (4mmol elemental sulfur is dissolved in 2ml organophosphorus TOP) dropwise into the reaction device at a dropping speed of 1ml per minute, and then the core-shell nanocrystal CdS can be obtained. /Cd x Zn 1-x S/ZnS. Remove the heating device, cool down to room temperature, and then purify.
本实施例所得多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS的能带示意图如图2所示。The schematic diagram of the energy band of the multi-component gradient energy level core-shell structure quantum dot CdS/Cd x Zn 1-x S/ZnS obtained in this example is shown in FIG. 2 .
本实施例所得多组分梯度能级核壳结构量子点CdS/CdxZn1-xS/ZnS在高倍电镜下的形貌与尺寸图如图3所示。Figure 3 shows the morphology and size of the multi-component gradient energy level core-shell structure quantum dots CdS/Cd x Zn 1-x S/ZnS obtained in this example under a high magnification electron microscope.
实施例2Example 2
本实施例的一种合成多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS的方法,包括:A method for synthesizing multi-component gradient energy level core-shell quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS in this embodiment includes:
1)合成CdSySe1-y种子晶体。将1mmol的Cd前躯体醋酸镉和10ml溶剂辛烷混合,排出空气填入氮气,加热到180℃~300℃,快速注入硫源0.5mmol单质硫溶解在5ml十八烯中)和硒源0.5mmol单质硒粉溶解在5ml十八烯中),形成纳米晶晶核。其中,S和Se元素比为1:1。在180℃~300℃范围内保温30秒到20分钟,用于晶核的长大。根据不同反应时间和温度,取样测试吸收,判断纳米晶种子尺寸。当反应系统中的纳米晶种子生长达到了3nm时,去掉加热装置,降温到室温,提纯后得到CdSySe1-y种子纳米晶,其中CdSySe1-y种子纳米晶由于反应过程中的不同温度和阴离子的反应速率等原因,导致不种子纳米晶的比例在不断变化,形成CdSySe1-y逐步梯度层结构,每层结构中y的取值范围为0≤y≤1。所得CdSySe1-y种子纳米晶的光致发光谱如图4所示。1) Synthesis of CdS y Se 1-y seed crystals. Mix 1mmol of Cd precursor cadmium acetate and 10ml of solvent octane, exhaust air and fill with nitrogen, heat to 180℃~300℃, quickly inject sulfur source (0.5mmol elemental sulfur dissolved in 5ml octadecene) and selenium source 0.5mmol Elemental selenium powder was dissolved in 5ml of octadecene) to form nanocrystalline nuclei. Among them, the element ratio of S and Se is 1:1. In the range of 180°C to 300°C, the temperature is kept for 30 seconds to 20 minutes for the growth of crystal nuclei. According to different reaction times and temperatures, samples were taken to test the absorption to determine the size of the nanocrystal seeds. When the growth of the nanocrystal seeds in the reaction system reaches 3 nm, the heating device is removed, the temperature is lowered to room temperature, and CdS y Se 1-y seed nanocrystals are obtained after purification. The CdS y Se 1-y seed nanocrystals are Due to different temperatures and reaction rates of anions, the proportion of non-seed nanocrystals is constantly changing, forming a CdS y Se 1-y stepwise gradient layer structure. The value of y in each layer structure ranges from 0≤y≤1. The photoluminescence spectra of the obtained CdS y Se 1-y seed nanocrystals are shown in Fig. 4 .
2)将0.1g的CdSySe1-y种子纳米晶和10ml的有机溶剂十六烯加入反应装置中,排除空气和水蒸气,然后填入惰性气体。将整个反应装置加热到200℃~310℃,加入0.5mol的Cd前躯体油酸镉,再以每分钟1ml的滴加速度,将0.5mmol十二硫醇滴加进入反应体系。滴加完之后,反应体系保温30分钟到2小时,得到CdS壳层。2) Add 0.1 g of CdS y Se 1-y seed nanocrystals and 10 ml of organic solvent hexadecene into the reaction device, remove air and water vapor, and then fill in inert gas. The entire reaction device was heated to 200°C to 310°C, 0.5 mol of Cd precursor cadmium oleate was added, and 0.5 mmol of dodecanethiol was added dropwise into the reaction system at a rate of 1 ml per minute. After the dropwise addition, the reaction system was kept for 30 minutes to 2 hours to obtain a CdS shell layer.
3)上述反应结束后,进一步提高温度到300℃~320℃范围内,加入1mmol的油酸镉和4mmol的油酸锌,再以每分钟1ml的滴速度将2.5mmol十二硫醇滴加进入反应装置。重复加入油酸镉和油酸锌以及滴加硫醇的过程3次,每次约2小时范围内,可得到核壳纳米晶体CdSySe1-y/CdS/CdxZn1-xS,其中,CdxZn1-xS是一个逐步梯度层结构,CdxZn1-xS层结构由于Zn元素随着反应时间和温度的变化,进行不同速率的扩散,导致每层Cd和Zn元素的比例在不断变化,每层结构中x的取值范围为0≤x≤1。3) after above-mentioned reaction finishes, further increase the temperature to within the scope of 300 ℃~320 ℃, add the cadmium oleate of 1mmol and the zinc oleate of 4mmol, then with the dripping speed of 1ml per minute, 2.5mmol dodecanethiol is added dropwise into. reaction device. Repeat the process of adding cadmium oleate and zinc oleate and dropping thiol three times, each time within the range of about 2 hours, to obtain core-shell nanocrystals CdS y Se 1-y /CdS/Cd x Zn 1-x S, Among them, the Cd x Zn 1-x S is a stepwise gradient layer structure, and the Cd x Zn 1-x S layer structure is due to the Zn element diffusing at different rates with the reaction time and temperature, resulting in Cd and Zn elements in each layer. The ratio of x is constantly changing, and the value range of x in each layer structure is 0≤x≤1.
4)将反应体系中加入4mmol的Zn源油酸锌,再以每分钟1ml的滴速度将硫源(4mmol单质硫溶解在2ml有机磷TOP)滴加进入反应装置,即可得到核壳纳米晶体CdSySe1-y/CdS/CdxZn1-xS/ZnS。去掉加热装置,降温至室温,然后提纯。去掉加热装置,降温至室温,然后提纯。4) adding the Zn source zinc oleate of 4mmol in the reaction system, then adding the sulfur source (4mmol elemental sulfur is dissolved in 2ml organophosphorus TOP) dropwise into the reaction device at a dripping speed of 1ml per minute and entering the reaction device, the core-shell nanocrystals can be obtained. CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS. Remove the heating device, cool down to room temperature, and then purify. Remove the heating device, cool down to room temperature, and then purify.
本实施例所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS的能带示意图如图5所示。The schematic diagram of the energy band of the multi-component gradient energy level core-shell structure quantum dot CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in this example is shown in FIG. 5 .
本实施例所得多组分梯度能级核壳结构量子点CdSySe1-y/CdS/CdxZn1-xS/ZnS在高倍电镜下的形貌与尺寸图如图6所示。Figure 6 shows the morphology and size of the multi-component gradient core-shell structure quantum dots CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in this example under a high magnification electron microscope.
实施例3Example 3
本实施例的一种合成多组分梯度能级核壳结构量子点CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS的方法,包括:A method for synthesizing a multi-component gradient energy level core-shell structure quantum dot CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS of this embodiment includes:
1)合成CdSe种子晶体。将1mmol的Cd前辈躯体辛酸镉和10ml有机溶剂十二烷混合,排出空气填入氮气,加热到180℃~300℃,注入1mmol硒源(1mol的硒溶解在1ml有机磷TOP中),保温30秒到20分钟在180℃~300℃温度范围内。然后去掉加热装置,降温到室温,提纯后得到CdSe种子纳米晶。1) Synthesis of CdSe seed crystals. Mix 1mmol of Cd predecessor body cadmium octanoate and 10ml of organic solvent dodecane, exhaust air and fill with nitrogen, heat to 180℃~300℃, inject 1mmol of selenium source (1mol of selenium is dissolved in 1ml of organic phosphorus TOP), keep the temperature for 30 Seconds to 20 minutes in the temperature range of 180°C to 300°C. Then, the heating device is removed, the temperature is lowered to room temperature, and CdSe seed nanocrystals are obtained after purification.
2)将0.1g的CdSe种子纳米晶和10ml的有机溶剂十二烷加入反应装置中,排除空气和水蒸气,填入惰性气体。将1mmol的Cd前辈躯体十二酸镉和2ml有机溶剂十二烷,排出空气填入惰性气体,加热到180℃~250℃,以每分钟1ml的滴加速度滴入S源(0.5mmol单质硫溶解在1ml有机磷TOP中)和Se源(0.5mol硒溶解1ml有机磷TOP中)的混合物,在2小时内滴加完成,然后保温20分钟促进生长,形成CdSe/CdSySe1-y核壳结构,其中其中CdSySe1-y层由于反应过程中的不同温度和阴离子的反应速率等原因,导致不种子纳米晶的比例在不断变化,形成CdSySe1-y逐步梯度层结构,每层结构中y的取值范围为0≤y≤1。2) Add 0.1 g of CdSe seed nanocrystals and 10 ml of organic solvent dodecane into the reaction device, remove air and water vapor, and fill in inert gas. Put 1mmol of Cd predecessor body cadmium dodecanoate and 2ml of organic solvent dodecane, exhaust air and fill in inert gas, heat to 180℃~250℃, drop in S source (0.5mmol elemental sulfur dissolved in 1ml per minute) In 1ml of organophosphorus TOP) and Se source (0.5mol selenium dissolved in 1ml of organophosphorus TOP), the mixture was added dropwise within 2 hours, and then incubated for 20 minutes to promote growth, forming CdSe/CdS y Se 1-y core-shell structure, in which the CdS y Se 1-y layer is constantly changing due to the different temperatures during the reaction process and the reaction rate of anions, etc., resulting in the constant change of the proportion of non-seed nanocrystals, forming a CdS y Se 1-y stepwise gradient layer structure, each The value range of y in the layer structure is 0≤y≤1.
3)将整个反应装置加热到200℃~310℃,加入2mmol的Cd前躯体油酸镉,再以每分钟1ml的滴加速度,将2mmol十二硫醇滴加进入反应体系。滴加完之后,反应体系保温2小时,形成CdSe/CdSySe1-y/CdS核壳结构。3) Heating the entire reaction device to 200°C to 310°C, adding 2mmol of Cd precursor cadmium oleate, and then adding 2mmol of dodecanethiol dropwise into the reaction system at a rate of 1ml per minute. After the dropwise addition, the reaction system was kept for 2 hours to form a CdSe/CdS y Se 1-y /CdS core-shell structure.
4)上述反应结束后,进一步提高温度到300℃~320℃范围内,加入2mmol的油酸镉和2mmol的油酸锌,再以每分钟1ml的滴速度将4mmol十二硫醇滴加进入反应装置。重复加入油酸镉和油酸锌以及滴加硫醇的过程3次,每次约2小时范围内,可得到核壳纳米晶体CdSe/CdSySe1-y/CdS/CdxZn1-xS,其中,CdxZn1-xS是一个逐步梯度层结构,CdxZn1-xS层结构由于Zn元素随着反应时间和温度的变化,进行不同速率的扩散,导致每层Cd和Zn元素的比例在不断变化,每层结构中x的取值范围为0≤x≤1。4) after above-mentioned reaction finishes, further increase the temperature to within the scope of 300 ℃~320 ℃, add the cadmium oleate of 2mmol and the zinc oleate of 2mmol, then 4mmol dodecyl mercaptan is added dropwise to the reaction with the dripping speed of 1ml per minute device. Repeat the process of adding cadmium oleate and zinc oleate and adding thiol dropwise three times, each time within the range of about 2 hours, to obtain core-shell nanocrystals CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S, among which, Cd x Zn 1-x S is a stepwise gradient layer structure, and the Cd x Zn 1-x S layer structure is due to the Zn element diffusing at different rates with the reaction time and temperature, resulting in each layer of Cd and The ratio of Zn elements is constantly changing, and the value of x in each layer structure is in the range of 0≤x≤1.
5)将反应体系中加入4mmol Zn源油酸锌,再以每分钟1ml的滴速度将硫源(4mol单质硫溶解在有机磷TOP中)滴加进入反应装置反应,即可得到核壳纳米晶体CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS。去掉加热装置,降温至室温,然后提纯。5) 4mmol Zn source zinc oleate is added in the reaction system, and the sulfur source (4mol elemental sulfur is dissolved in the organophosphorus TOP) is added dropwise at the dripping speed of 1ml per minute and enters the reaction device to react, and the core-shell nanocrystals can be obtained. CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS. Remove the heating device, cool down to room temperature, and then purify.
本实施例所得多组分梯度能级核壳结构量子点CdSe/CdSySe1-y/CdS/CdxZn1-xS/ZnS的能带示意图如图7所示。其吸收与荧光光谱图如图8所示。其在高倍电镜下的形貌与尺寸图如图9所示。The schematic diagram of the energy band of the multi-component gradient energy level core-shell structure quantum dots CdSe/CdS y Se 1-y /CdS/Cd x Zn 1-x S/ZnS obtained in this example is shown in FIG. 7 . Its absorption and fluorescence spectra are shown in Figure 8. Its morphology and size under high magnification electron microscope are shown in Figure 9.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910976232.3A CN110699066A (en) | 2019-10-15 | 2019-10-15 | Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910976232.3A CN110699066A (en) | 2019-10-15 | 2019-10-15 | Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110699066A true CN110699066A (en) | 2020-01-17 |
Family
ID=69198777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910976232.3A Pending CN110699066A (en) | 2019-10-15 | 2019-10-15 | Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110699066A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507525A (en) * | 2022-03-10 | 2022-05-17 | 河南大学 | A kind of fully gradient alloy quantum dot and preparation method thereof |
CN115873598A (en) * | 2022-12-10 | 2023-03-31 | 福州大学 | PN junction ZnS/Cu2Se/ZnS quantum well photoelectric material with nanocube structure and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108841373A (en) * | 2018-05-11 | 2018-11-20 | 纳晶科技股份有限公司 | A kind of red light quantum point, its synthetic method and light emitting diode with quantum dots |
CN108865111A (en) * | 2018-07-02 | 2018-11-23 | 中国科学院广州能源研究所 | A kind of ZnCuInSe/ZnSe core-shell structure fluorescence quantum and preparation method thereof |
CN111269238A (en) * | 2018-12-05 | 2020-06-12 | 乐金显示有限公司 | Organic compound, light-emitting diode and light-emitting device having the same |
-
2019
- 2019-10-15 CN CN201910976232.3A patent/CN110699066A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108841373A (en) * | 2018-05-11 | 2018-11-20 | 纳晶科技股份有限公司 | A kind of red light quantum point, its synthetic method and light emitting diode with quantum dots |
CN108865111A (en) * | 2018-07-02 | 2018-11-23 | 中国科学院广州能源研究所 | A kind of ZnCuInSe/ZnSe core-shell structure fluorescence quantum and preparation method thereof |
CN111269238A (en) * | 2018-12-05 | 2020-06-12 | 乐金显示有限公司 | Organic compound, light-emitting diode and light-emitting device having the same |
Non-Patent Citations (2)
Title |
---|
王胜: "高质量蓝绿色发光合金核壳纳米晶的制备及其LED应用", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
蔡晓军等: "核壳结构CdS/ZnS 荧光量子点的制备与荧光性能研究", 《功能材料》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507525A (en) * | 2022-03-10 | 2022-05-17 | 河南大学 | A kind of fully gradient alloy quantum dot and preparation method thereof |
CN115873598A (en) * | 2022-12-10 | 2023-03-31 | 福州大学 | PN junction ZnS/Cu2Se/ZnS quantum well photoelectric material with nanocube structure and preparation method thereof |
CN115873598B (en) * | 2022-12-10 | 2023-10-31 | 福州大学 | PN junction ZnS/Cu2Se/ZnS quantum well photoelectric material with nanocube structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI790375B (en) | II-II-VI alloy quantum dots, devices including the same, quantum dot compositions, and preparation methods thereof | |
US10581008B2 (en) | Method of manufacturing quantum dot having tunable and narrow light emission wavelength for achieving high color purity and a method of manufacturing film | |
Anc et al. | Progress in non-Cd quantum dot development for lighting applications | |
KR101739751B1 (en) | Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same | |
Chen et al. | Pure colors from core–shell quantum dots | |
CN107629783B (en) | Core-shell quantum dot, preparation method and application thereof | |
CN104560033B (en) | A kind of preparation method of High Efficiency Luminescence Mn doped quantum dot | |
CN110951477B (en) | Core-shell quantum dot and preparation method thereof | |
KR102075626B1 (en) | Red light emitting quantumdot having a light emitting wavelength and a narrow half-value width for high color puritydisplay application and a method for manufacturing the same | |
KR101942304B1 (en) | Method of manufacturing quantum dot having tunable and narrow-band luminescence and manufacturing film using the same | |
CN109504367B (en) | A kind of preparation method of large-scale core-shell structure quantum dots | |
KR20190055390A (en) | MANUFACTURING METHOD OF InP/ZnS CORE/SHELL QUATUM DOTS | |
CN111484845A (en) | Preparation method of blue light core-shell quantum dots | |
CN110699066A (en) | Multi-component gradient energy level core-shell structure quantum dot and preparation method thereof | |
KR20160103366A (en) | InP-BASED QUANTUM DOT AND METHOD FOR PRODUCING THE SAME | |
WO2022134044A1 (en) | Preparation method of znse quantum dot, znse quantum dot, znse structure, and display device | |
CN112940712B (en) | A blue fluorescent core-shell quantum dot and its preparation method | |
CN103059839B (en) | There is the preparation of the nanoparticle of narrow luminescence | |
KR20190068242A (en) | ZnTe/ZnSe CORE/SHELL QUANTUM DOT AND MANUFACTURING METHOD THEREOF | |
KR101645195B1 (en) | Manufacturing method of alloy-shell quantum dot, alloy-shell quantum dot and backlight unit including same | |
CN109896507B (en) | A kind of crystal form control method of blue-light CdSe nanosheets | |
CN107384405A (en) | A kind of alloy quantum dot preparation method | |
Han et al. | Enhanced Luminescence Properties of ZnS Nanoparticles for LEDs Applications via Doping and Phase Control | |
CN117062895B (en) | Quantum dot preparation method, quantum dot and display device | |
EP2844718A1 (en) | Synthesis of semiconductor nanoparticles using metal precursors comprising non- or weakly coordinating anions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200117 |