CN110697438B - 基于神经网络的直落失重式物料下料机控制器 - Google Patents
基于神经网络的直落失重式物料下料机控制器 Download PDFInfo
- Publication number
- CN110697438B CN110697438B CN201910836277.0A CN201910836277A CN110697438B CN 110697438 B CN110697438 B CN 110697438B CN 201910836277 A CN201910836277 A CN 201910836277A CN 110697438 B CN110697438 B CN 110697438B
- Authority
- CN
- China
- Prior art keywords
- blanking
- neural network
- module
- bin
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 189
- 230000001537 neural effect Effects 0.000 title description 2
- 238000013528 artificial neural network Methods 0.000 claims abstract description 63
- 238000005303 weighing Methods 0.000 claims abstract description 55
- 230000004580 weight loss Effects 0.000 claims abstract description 49
- 238000012545 processing Methods 0.000 claims abstract description 24
- 208000016261 weight loss Diseases 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 33
- 230000008569 process Effects 0.000 claims description 18
- 230000009471 action Effects 0.000 claims description 11
- 230000003068 static effect Effects 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 3
- 238000013500 data storage Methods 0.000 claims description 2
- 238000003860 storage Methods 0.000 abstract description 13
- 238000009825 accumulation Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 abstract description 3
- 230000001186 cumulative effect Effects 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 description 73
- 210000000078 claw Anatomy 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 238000012549 training Methods 0.000 description 12
- 238000005520 cutting process Methods 0.000 description 10
- 238000013507 mapping Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000005056 compaction Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000011478 gradient descent method Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 230000000306 recurrent effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 244000062793 Sorghum vulgare Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 229940126678 chinese medicines Drugs 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000013409 condiments Nutrition 0.000 description 1
- 239000000109 continuous material Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000006386 memory function Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 235000019713 millet Nutrition 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229940126673 western medicines Drugs 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G65/00—Loading or unloading
- B65G65/005—Control arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G2201/00—Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
- B65G2201/04—Bulk
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Accessories For Mixers (AREA)
Abstract
本发明公开了基于神经网络的直落失重式物料下料机控制器,其包括信号采集模块、处理模块、神经网络模块、存储模块和输出模块。神经网络模块基于下料仓的料位、落料率、物料密度及下料阀开口孔径对物料失重值进行预测,从而对下料阀的关闭时间进行调节。基于神经网络对下料中的称重行为进行建模,本发明训练后的网络能对不同落料状态下的下落物料失重值进行准确预测,从而可实现直接精确下料控制且适用于小批量生产;还结合仓位传感器的检测和搅拌器的控制对下料仓内的物料堆积形态进行调节,减小了落料率波动;又通过对下料累积误差的控制,减小了批量下料的总误差。
Description
本申请为申请号201710863074.1、申请日2017年09月19日、发明名称“基于神经网络的直落失重式物料下料机及其控制器”的分案申请。
技术领域
本发明涉及定量下料领域,具体涉及一种基于神经网络的直落失重式物料下料机控制器。
背景技术
在工农业制造和商品包装中,有大量的粉粒物料,如铁精矿、煤粉等炼铁原料,聚丙烯、聚苯乙烯、聚氯乙烯、轻甲基纤维素、聚丙烯睛、环氧树脂粉末涂料等化工原料,石英砂、水泥等建材原料,洗衣粉等日用化工产品,小米、大豆等谷物豆类农产品,或粉、渣、粒状加工食品,饲料、化肥、农药等农业生产物料,以及粉粒状的保健品、中西药剂、调味品等均需要自动定量包装或者配料制造。
目前我国有很多企业仍然采用手工定量配料或者包装,一方面劳动强度大,速率慢,经济效益差;另一方面,食品、药品等手工定量往往不能满足卫生要求,有毒有害的物料,人工参与定量容易对人体造成伤害。因此对生产企业来说,急需提供价廉的具有较高速率和准确度的多组份自动定量下料设备或者装置,满足大量的物料定量包装或者配料制造要求。
目前国内外粉粒物料自动定量下料装置常用方法有两种,容积式和称重式。容积式定量依据物料容积进行计量充填或者投料,定量投料迅速,但定量物料质量受到物料密度变化而变化。如申请号为200920248298.2的中国专利考虑到快速下料时难以控制定量而通过先快后慢的方法来减小供料落差的影响,但其下料终值只能接近期望值,准确度不高。
称重式定量依据物料质量进行计量充填或者投料,从称重计量方法的不同其又可分为增量式与失重式两种。增量式对不断下落到计量斗中的物料进行称重,这种方式需要在下料过程中不断称重,根据称重结果反馈控制下料量,由于物料是连续下落的,当下料阀门关闭时,仍有部分物料在空中。为了补偿空中物料对计量精度的干扰,很多方案采用提前关闭阀门的技术,如申请号为201410230888.8的中国专利将配料称重过程划分为三个阶段,并在最后一个阶段采用迭代学习控制方式来计算关闭提前控制量。
相比于增量式,失重式称重方式通过不断称取料仓重量来计量下落物料的重量,从而避开了空中物料的问题。如申请号为200710142591.6、201010108011.3和201310178558.4的中国专利,均通过称重仓重量减小的计算来对下落物料进行计量,这些方案虽然无需考虑空中量,但由于未考虑物料从下料阀门落下时的失重效应而影响了称重计量的精度,不能满足高精度下料的要求,并且这些方案只能连续下料而不能直接应用于按批次的下料。
相比以往的失重式计量下料,如果能通过对影响下落物料失重等效值各种因素的分析来构造一种非线性映射,则可以基于这种映射对失重式称重过程中物料的实际下料量进行计量。
发明内容
传统的失重秤是通过在工作时控制重量损失的原理实现计量的,对出料装置和称重料斗进行称重,根据失重秤计量斗内每单位时间内物料重量的减少ΔG/Δt来计算失重秤的给料流量。以往的失重称重方法,虽然是通过差分方法来获得流量,但是在两次差分之间的落料流率变化、物料粘结、以及环境如振动等因素的影响,都会影响差分结果的准确性。
从下料方式来分析,普通失重称重计量一般采用螺旋输送机作为出料装置,只能动态调节连续运行时的下料速率,而无法直接进行分批次的间断式下料;失重式称重的称量精度和配料速度这两个参量是两个相互矛盾的控制量,要提高称量精度,希望秤体越稳定越好,即喂料速度越慢越好,但势必增加配料时间,效率低;反之,如果喂料速度过快,精度很难保证。
考虑到失重式称重不需要考虑空中量的优势,本发明方案将其结合到分批次下料的控制中。但由于下料过程中物料非零速度的下落会对称重计量造成影响,从而使得称重读数不同于静态称重。这种物料非零速度的下落造成的动态冲击,即下落物料失重值,其影响因素很多,如输送装置关闭速度、物料下落形态、流率等,因而通过动态称重来获取静态重量的转换方案难以通过离线实验一次性确定。
根据对失重式称重下料过程深入的测试与分析,总结出直落失重式物料下料机其下落物料失重值最主要的影响因素包括:下料仓料位、落料率、物料密度及下料阀开口孔径。下落物料失重值是这些物理量的复杂非线性映射,为了对下落物料失重值进行预测并进而通过调节阀门关闭时间来进行精确的下料,需要辨识并表达该映射关系。
基于线性系统理论对系统进行辩识并修正参数的方法能较好地应用于线性系统,但无法适用于复杂的非线性系统。人工神经网络是由大量处理单元广泛互连而成的网络,具有很强的自适应、自组织、自学习能力,在系统建模、辨识与控制中受到普遍重视,其所具有的非线性变换特性为系统辨识尤其是非线性系统的辨识提供了有效的方法。
目前,非线性系统辩识中应用最多的是多层前向网络,多层前向网络具有逼近任意连续非线性函数的能力,但这种网络结构一般是静态的,从物料下落过程分析可以看出,由于下料仓料位是逐渐变化的,因此,连续两个采样周期中下落物料失重值之间也有着紧密的联系。为此,本发明的控制器中采用动态递归神经网络来对系统进行建模。与静态前馈型神经网络不同,动态递归网络通过存储内部状态,使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。本发明方案中,基于动态递归Elman神经网络,对下落物料失重值与下料仓料位h、落料率d、物料密度ρ及下料阀开口孔径D之间的映射关系进行辨识,又在下料过程中对下料仓中的物料分布进行检测与动态调整,使得经训练的神经网络能对不同状态下的下落物料失重值进行准确预测,从而实现高精度下料。
本发明的技术解决方案是,提供一种以下结构的基于神经网络的直落失重式物料下料机,包括:机架、下料仓、下料阀、混料斗、称重模块、落料阀、混合料仓和控制器;
所述下料阀位于下料仓的底部开口处,所述下料仓和下料阀为2~6组,
所述下料仓安装在固定于机架的称重模块上,其内部有一个仓位传感器,
位于下料阀下方的所述混料斗,其底部开口受落料阀控制,且其内壁上安装有一个混料器;
所述混合料仓位于落料阀下方,且其底部有一个推板;
所述控制器含有采用动态递归E1man神经网络的神经网络模块,且每一个下料阀都有一个神经网络模块对应,每个神经网络模块将所对应下料仓的料位、落料率、物料密度及下料阀开口孔径4个输入量映射为下落物料失重值;控制器通过神经网络模块对下落物料失重值进行预测并基于该预测值修正下料量后对下料阀的关闭时间进行调节;
控制器依次控制各下料阀动作,在完成一次配方量下料后,打开落料阀,然后在检测到混合料仓中的物料累积到设定值后,打开推板,将混合均匀的物料排出。
作为优选,其还包括一个储料仓和进料泵,所述进料泵后端进料管的出口有一个物料喷头,所述物料喷头为球冠形,其表面分布有圆形小孔。
作为优选,所述仓位传感器安装在在下料仓近机架中心的一个顶角上,且其底部有一个旋转底座。
作为优选,所述仓位传感器采用距离传感器。
作为优选,所述下料仓的侧壁还安装有一个搅拌器,所述搅拌器包括依次相连的底座、两个支臂、连接两个支臂的支臂转轴、爪手转轴和爪手。
作为优选,所述混合料仓的侧壁上安装有一个混合料位传感器,其内部还有一个匀料器,所述匀料器采用螺旋形桨叶,所述推板下方还有一个输料管。
作为优选,所述混料器包括依次相连的混料底座、两个混料支臂、以及连接两个混料支臂的混料支臂转轴、混料爪手转轴和混料爪手。
作为优选,所述混料器包括混料转轴、安装在混料转轴上的混料转盘和螺旋叶片,以及支撑混料转轴的混料撑架。
作为优选,所述神经网络的模型为:
xck(t)=xk(t-mod(k,q)-1),
其中,mod为求余函数,f()函数取为sigmoid函数;xck(t)为承接层输出,xj(t)为隐含层输出,ui(t-1)和y(t)分别为输入层输入和输出层输出,ωj、ωjk和ωji分别为隐含层到输出层的连接权值、承接层到隐含层的连接权值和输入层到隐含层的连接权值,θ和θj分别为输出层和隐含层阈值;k=1,2...m,q为所选定的回归延时尺度,根据采样周期和下料速率优选,如可选q=3;j==1,2...m,i=1,2...4,隐含层及承接层节点数m可以在11~20之间选择,如优选为16。
作为优选,除了下落物料失重值的预测值,修正下料量时还要计入当前累积下料误差。
本发明的另一技术解决方案是,提供基于神经网络的直落失重式物料下料机控制器,其包括信号采集模块、处理模块、神经网络模块、迭代学习模块、存储模块、第一连接阵、第二连接阵和输出模块,所述信号采集模块分别通过下料仓中仓位传感器和承载下料仓的称重模块实时采集下料仓料位、下料仓重量的传感信号并传输给处理模块进行数据处理与分析,存储器用于数据保存;
所述神经网络模块采用动态递归Elman神经网络,其输入层分别从处理模块接收下料仓料位、落料率、物料密度及下料阀开口孔径4个输入量,输出层的输出量分别通过第一连接阵和第二连接阵传输至迭代学习模块和处理模块;
离线训练所述神经网络时,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的下落物料失重实际值和网络输出值,调整神经网络的连接权值;
在线控制下料时,第一连接阵断开,神经网络对下落物料失重值进行预测并经第二连接阵输出给处理模块,由处理模块处理分析后通过输出模块对下料仓底部开口处的下料阀进行关阀控制。
采用本发明方案,与现有技术相比,具有以下优点:本发明采用非线性网络对下落物料失重值与其影响因素间的关系进行建模,能根据动态称重读数预测出静态重量,从而可以通过调节下料阀的关闭时间实现准确下料。与传统失重秤方案相比,本方案能用来进行物料的分批次精确下料,适用于小批量生产;采用仓位传感器和搅拌器对下料仓内的物料堆积形态进行检测和调节,减小了落料率波动;还通过对下料累积误差的控制,减小了批量下料的总误差。
附图说明
图1为基于神经网络的直落失重式物料下料机的组成结构图;
图2为基于神经网络的直落失重式物料下料机外形结构图;
图3为物料下落失重效应示意图;
图4为控制器的组成结构示意图;
图5为Elman神经网络结构示意图;
图6为下料仓底局部结构示意图;
图7为下料仓中搅拌器结构示意图;
图8为储料仓及下料仓局部结构示意图;
图9为下料仓内物料流动层流示意图;
图10为混料斗内多组份物料分布示意图;
图11为实施例1中混料斗结构示意图;
图12为实施例2中混料斗结构示意图。
其中:1、下料仓2、下料阀3、混料斗4、称重模块5、落料阀6、混合料仓7、推板8、输料管9、控制器10、储料仓11、进料泵12、仓位传感器13、混料器14、振动器15、进料管16、物料喷头17、小孔18、搅拌器19、料位面20、停靠指向点21、扫描线22、匀料器23、混合料位传感器
30、机架
91、信号采集模块92、处理模块93、神经网络模块94、迭代学习模块95、存储模块96、第一连接阵97、第二连接阵98、输出模块
101、缓冲池102、伞状体103、阻尼器104、伞帽105、伞架
131、混料底座132、混料支臂133、混料支臂转轴134、混料爪手转轴135、混料爪手136、混料撑架137、混料转轴138、混料转盘139、螺旋叶片
181、底座182、支臂183、支臂转轴184、爪手转轴185、爪手
301、弧形楔块
具体实施方式
以下结合附图对本发明的优选实施例进行详细描述,但本发明并不仅仅限于这些实施例。本发明涵盖任何在本发明的精神和范围上做的替代、修改、等效方法以及方案。
为了使公众对本发明有彻底的了解,在以下本发明优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本发明。
在下列段落中参照附图以举例方式更具体地描述本发明。需说明的是,附图均采用较为简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例1:
如图1和图2所示,本发明基于神经网络的直落失重式物料下料机,其包括下料仓1、下料阀2、混料斗3、称重模块4、落料阀5、混合料仓6和控制器9,其中每种组份的物料都有一组下料仓1和下料阀2对应,常用的组份类别为2~6种,还可以根据需要增加组份类别。作为优选,下料仓1选用直角梯形和矩形组成的料仓形结构,下料阀2可采用闸阀等开关阀或其他直落式物料阀门,阀门动作部件安装在下料仓1的底部出口处。
机架30作为设备的框架,用来固定和支撑其他各个部件。称重模块4固定在机架30上,下料仓1安装在称重模块4上,混料斗3的底部有开口,所述开口的打开与关闭受落料阀5的控制。混料斗4位于下料仓1的下部,多个下料阀2的中心相对混料斗4的中心呈圆弧形分布。混料斗4内壁上安装有一个用来将多组份物料混合均匀的混料器13。
控制器9采用触摸式操作方式,其触摸屏上有人机界面可进行多组份物料的配方及其他参数的设置,配方包括一次下料的总重量和每个组份占该重量的百分比。结合图1和图4所示,控制器9分别通过信号采集模块91和输出模块98与各传感器和动作部件相连。
混合料仓6位于落料阀5下方,且其底部有一个推板7,推板下方连接有一个输料管8,后者将多组份的混合物料输送到包装袋或者生产设备。
作为优选,在混合料仓6的侧壁上安装有一个混合料位传感器23,其内部还有一个匀料器22,所述匀料器22采用螺旋形桨叶。混合料仓6的容量是混料斗3的若干如15倍,在完成多个一次量下料后,控制器9读取混合料位传感器23的状态,若检测到混合料的料位超过设定阈值,则控制匀料器22旋转将混合料再次搅拌均匀后,在控制器9的控制下,推板7打开,混合物料从输料管8输出。
图3示意了物料下落过程中物料失重效应对称重的影响,物料以速度v0从下料阀2中落下,下料阀2与下料仓1一起承载在称重模块4上,称重模块4测量出下料仓1中物料的质量当量变化可用下式表示:
其中,Gs为零时刻的初始重量,在t时刻,dm为下料阀出口的单位时间落料质量(g/s),v0为物料下落时的初始速度,Δm的物料在Δt时间内离开下料阀2。
结合图2和图3所示,控制器可实时动态读取称重模块的当前读数,但在下料过程中,其所读取的读数减小值并非真正下落到混料斗中物料的重量,而是包括了物料下落的反向冲击作用。因此,在计算物料下料量时要扣除这一冲击作用的影响。但在实际中如何准确获取冲击的等效重量值是必须解决的一个难题。
从式(1)可以看出,称重模块检测到的物料质量不但包括实际下落的物料即式中的第二项,同时其还受到物料非零速度下落引起的动量反向冲击即式中第三项的影响,其中第三项就是失重效应项。因此,传统失重秤中直接读取重量的方法不能获得下料仓中某确定时刻的实际重量。
为了获得当前时刻下料仓中物料的确切质量,需考虑这种失重效应的影响,先要获取式(1)中第三项值即等效的下落物料失重值。
通过对失重式下料过程进行反复实验测试和分析,总结出对直落失重式物料下料机,其下料过程中下落物料失重值最主要的影响因素包括:下料仓料位h、落料率d、物料密度ρ及下料阀开口孔径D。下落物料失重值是这些物理量的复杂非线性映射。为了准确预测不同状态下下落物料失重值,从而通过调节阀门关闭时间来进行准确的下料,需要辨识该映射关系。
基于该映射的复杂非线性特征,又考虑到连续两个采样周期中下落物料失重值之间存在的紧密联系,本发明采用动态递归Elman神经网络建模,对下落物料失重值与下料仓料位h、落料率d、物料密度ρ及下料阀开口孔径D之间的映射关系进行辨识。
如图4所示,本发明中的控制器包括信号采集模块91、处理模块92、神经网络模块93、迭代学习模块94、存储模块95、第一连接阵96、第二连接阵97和输出模块98。其中,神经网络模块93采用Elman神经网络,存储模块95即存储器用来保存数据。
如图5所示,所采用的Elman神经网络具有递归结构,相比BP神经网络,Elman神经网络除了输入层、隐含层和输出层之外,还包括一个承接层,承接层用于层间的反馈联结,使得其能够表达输入与输出之间在时间上的延迟及参数时序特征,使得网络具有了记忆功能。图5中,所建立的神经网络输入层有4个单元,隐含层及承接层节点数m可以在11~20之间选择,如选择为16,输出层只有一个单元。
所述神经网络的模型为:
xck(t)=xk(t-mod(k,q)-1) (2),
其中,mod为求余函数,f()函数取为sigmoid函数;xck(t)为承接层输出,xj(t)为隐含层输出,ui(t-1)和y(t)分别为输入层输入和输出层输出,ωj、ωjk和ωji分别为隐含层到输出层的连接权值、承接层到隐含层的连接权值和输入层到隐含层的连接权值,θ和θj分别为输出层和隐含层阈值;k=1,2...m,q为所选定的回归延时尺度,根据采样周期和下料速率优选,如可选q=3;j==1,2...m,i=1,2...4。
结合图2和图4所示,作为优选,本发明中的控制器9,还可以通过触摸屏操作来实现第一连接阵及第二连接阵的切换,从而使得控制器工作在离线训练或在线预测模式。
结合图4和图5所示,所建立的神经网络,输入层包括4个节点,其中物料密度ρ及下料阀开口孔径D是确定值,其他2个量则需要通过信号采集模块来动态实时采集。通过在网络中引入多个不同延时回归的承接层节点,使得网络结构与下料过程更为切合,从而使网络训练更快收敛。
离线训练所述神经网络时,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的下落物料失重实际值和网络输出值,调整神经网络的连接权值。
为了获取训练样本,在下料开始后,当物料从下料仓底部下料阀到混料斗之间形成连续的物料流时,持续下料一段时间,在关闭阀门时实时读取称重模块动态重量读数W,等待物料下落完毕后读取称重模块的静态重量读数WD,则在关闭阀门时刻的状态下的下落物料失重实际值为L=WD-W,此值即样本输出值y的实际值即期望值yd。
神经网络训练采用梯度下降法,训练中权值和阈值调整方法如下。
假设总共有P个训练样本,令误差函数为:
则隐含层到输出层连接权值的调整式如下式所示:
ωj(t+1)=ωj(t)+Δωj(t+1) (6),
δy=-(yd-y)·y·(1-y) (8),
输出层阈值的调整式为:
θ(t+1)=θ(t)+Δθ(t+1) (9),
类似地,输入层到隐含层连接权值的调整式为:
ωji(t+1)=ωji(t)+Δωji(t+1) (11),
δj=δy·ωj·xj(t)·(1-xj(t)) (13),
隐含层阈值的调整式为:
θj(t+1)=θj(t)+Δθj(t+1) (14),
不考虑xck(t)对连接权ωjk的依赖,承接层到隐含层连接权值的调整式为:
ωjk(t+1)=ωjk(t)+Δωjk(t+1) (16),
各权值的初始值域取为(-0.1,0.1)区间,学习速率η为小于1的小数,可采用固定速率或根据当前网络输出总误差来动态调整。
训练结束条件可以设定为总误差或其变化小于一个设定值或训练次数达到一定量。
作为优选,为了使得训练样本覆盖更多情况,每次关闭阀门时刻可以设定为从称重模块重量读数为某个确定值时刻之后的随机值。
在进行网络训练之前,对4个输入量和1个输出量进行归一化预处理:
r′=r-rmin/rmax-rmin (18),
其中,r为未经处理的物理量,r′为经过归一化后的物理量,rmax和rmin分别为样本数据集的最大和最小值。
计算下落物料失重预测值时,用下式将网络输出量换算回下落物料失重值:
r=rmin+r′·(rmax-rmin) (19)。
在线控制下料时,第一连接阵断开,神经网络对下落物料失重值yL进行预测并经第二连接阵输出给处理模块,由处理模块处理后通过输出模块对下料仓底部开口处的下料阀进行关阀控制:
假设当前组份的一次下料量为Ws,开始下料时,控制器通过读取称重模块的传感值,获得下料仓的初始静态重量为G0;那么,控制器不断读取称重模块的传感值,当动态重量读数达到(G0-Ws-yL)时,关闭下料阀。
作为优选,除了下落物料失重值预测值,还要对本组份物料当前累积下料误差进行补偿,即当检测到下料仓动态重量读数达到(G0-Ws-yL+E)时,关闭下料阀,其中E为本组份当前累积下料误差,且E为正时表示下料过多。
信号采集模块分别通过下料仓中仓位传感器、承载下料仓的称重模块来分别实时采集下料仓料位、下落物料重量的传感信号并传输给处理模块进行数据预处理,之后输入到神经网络,神经网络输出值和经处理模块预处理的期望输出值均通过第一连接阵传送至迭代学习模块,由迭代学习模块根据梯度下降法将调整后的权值回传给神经网络。
所述仓位传感器采用距离传感器,检测下料仓中物料的料位高度,通过周期性地不断采集称重模块信号,处理模块可以计算出单位时间内物料下落质量当量即落料率。
结合图2和图6所示,作为优选,为了减小下料阀2动作对称重的影响,在下料仓底部设置一个缓冲池101,其包括阻尼器103、伞状体102。阻尼器103采用软连接分段,可减小下料阀2动作时传递到称重模块的振动。伞状体102又包括伞帽104和支撑伞帽的伞架105。
从式(1)中还可以分析出,下落物料失重值与落料状况紧密相关,其受到下料仓1中物料形态分布的影响。
颗粒物质在重力作用下自下料仓流出形式主要有整体流和中心流两种类型。整体流的流动型式中料仓内整个颗粒层能够大致均匀地流出,且基本上每一个颗粒都在运动;而中心流的流动型式中则有些颗粒是静止的,在流动和静止颗粒间存在一个流动通道边界。整体流的整体下料速率比中心流大,并且下料速率的波动较小、流动稳定。在实际生产过程中,下料仓内物料可能会出现中心流的流动型式,使得当料口开始卸料时,由于仓压所产生的压实应力作用而造成物料结实成板。
结合图6~8所示,作为优选,为了减小下料仓中落料率的波动幅度,从而更好地进行下落物料失重值预测,下料机中采用距离传感器型仓位传感器和机械手形搅拌器对下料仓内的物料堆积形态进行检测和调节,使得下料口上方交替出现动态料拱的形成与坍塌,保证落料形态为稳定的整体流型式。
如图8所示,下料仓1不断出料,当仓内料位降低到一定值时,需要对其进行补料。为此,在下料仓1上方设置一个储料仓10,储料仓10中的物料通过进料泵11和进料管15进入下料仓1。为使得物料颗粒均匀下料,在进料管15的末端出口处设有一个物料喷头16,物料喷头16表面为球冠形,其表面分布有圆形小孔17,小孔孔径根据物料的粒度进行优选。进料泵11采用螺杆输送机,其动作由控制器进行控制。在下料仓1下料过程中,随着料位面19的降低,进料泵11在控制器的控制下动作,使得下料仓内物料顶面的料位保持在预设值附近。
图8中两图分别从下料仓1的侧视和俯视方向观察,如图8a和8b所示,在下料仓1近机架中心的一个顶角上安装有仓位传感器12,其有一个可旋转底座能进行俯仰和旋转,使得仓位传感器能在不同停靠指向点20的方向上进行物料检测,各停靠指向点20组成接近同心圆的扫描线21,从而判断出料位面19的分布。
如图7所示,控制器通过下料机在下料仓1侧壁上安装的一个搅拌器18来改善物料的分布。搅拌器18包括依次相连的底座181、两个支臂182、连接两个支臂的支臂转轴183、爪手转轴184和爪手185,其中底座181也含有一个旋转轴。
结合图7和图6所示,下料仓底部缓冲池中的伞状体,可承担上部仓压,削弱出料口附近较大压实力的作用,大大减小了伞帽下方的仓压,同时在其周边形成一个环状料流口,使得仓内物料趋于整体流动形式,能进一步防止物料的结拱堵塞。
下料过程中,控制器分别通过仓位传感器的检测和对单位时间下料率的跟踪来判断下料仓内物料的分布,使得下料仓内的料位面保持近似抛物线面形。结合图8~9所示,当物料均匀分布时,仓位传感器在不同方位检测到的物料距离值经射线与竖直方向倾角的几何变换后近似集中在一个较小的范围内。当物料局部发生板结或稳定的料拱时,检测到的距离值超出此范围。同时,通过称重模块对各下料仓的下料速率进行实时跟踪。当距离传感器检测到上述异常状态或者发现单位时间下料量波动超过设定阈值如5%后,控制器命令搅拌器动作,通过转轴的旋转,其爪手从起点开始经料位高点区域到料位低点区域,做螺旋形翻转,从而破除偶尔形成的板结或料拱,使物料恢复流动,保持整体流的层流态。
如图9所示,本发明通过距离传感器和搅拌器的检测与动作配合,大幅度地减弱了装料冲击所产生的压实力作用,有效地防止了仓内物料的粒度离析,使下部仓斗内的物料活化,改善了物料的流动。在连续的加料与下料过程中,所有的颗粒都在有序地流动着,随着仓内颗粒的流出,颗粒群呈现整体流的层流态。
图10补充了多组份物料下料过程的记录,其中所示为4种组份下料时混料斗内的物料分布示意图。
结合图2和图11所示,当多组份物料下落到混料斗3后,混料斗3内的混料器动作,将物料混匀。如图11所示,混料器13包括依次相连的混料底座131、两个混料支臂132、以及连接两个混料支臂132的混料支臂转轴133、混料爪手转轴134和混料爪手135,其中混料底座131也含有一个旋转轴。
在混料斗3底部开口处可开合组件的底内侧有一个弧形楔块301,混料爪手135采用半硬质的柔性材料。在控制器的作用下,混料器13的混料爪手135从混料斗左侧经底侧到右侧,从高到低再到高,反复做螺旋形翻转,混合搅拌多组份物料。在混料斗非开口一侧的外部,还有一个振动器14,在混料器13动作的同时控制器还控制振动器14起振,混料斗内的多组份物料在混料器13与振动器14的作用下,能被充分地均匀混合。
应用本发明下料机进行下料,先离线对各下料阀的下料行为进行分别建模,采集样本的过程中单独进行每组份物料的下料,从而可以回收所有物料而不会造成浪费。实际下料时周期性采集下料仓料位及落料率,能实时对当前下落物料失重值进行预报,因而从第一个批次开始,就能精确下料而避开了其他如在线迭代学习方案中的下料误差波动。
实施例2:
结合图2和图12所示,当多组份物料下落到混料斗3后,混料斗3内的混料器动作,将物料混匀。如图12所示,混料器13包括固定在混料斗中的混料转轴137、安装在混料转轴137上的混料转盘138和螺旋叶片139,固定在混料斗3内壁上的混料撑架136用来支撑混料转轴137。混料转盘138类似水轮车的环状,其外环上有与圆周呈基本垂直的矩形叶片,叶片上可开孔。螺旋叶片139采用非规则的螺旋形叶片,在叶片上分布有孔洞。
在混料斗3底部开口处可开合组件的底内侧有一个弧形楔块301,在控制器的作用下,混料器13的混料转轴137旋转,其内部的矩形叶片与螺旋叶片139一起对物料进行翻转。
在混料斗非开口一侧的外部,还有一个振动器14,在混料器13动作的同时控制器还控制振动器14起振,混料斗内的多组份物料在混料器13与振动器14的作用下,被充分地均匀混合。
实施例3:
结合图2所示,为对下料仓1进行失重计量,可从下料仓外侧壁引出两个水平支撑部;将称重模块水平放置,称重模块从两侧在垂直方向上支撑下料仓。或从下料仓1顶部引出两个悬吊部,将称重模块水平放置,称重模块从两侧在垂直方向上支撑下料仓。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。
Claims (6)
1.基于神经网络的直落失重式物料下料机控制器,其包括信号采集模块、处理模块、神经网络模块、存储模块和输出模块,所述信号采集模块分别通过下料仓中仓位传感器和承载下料仓的称重模块实时采集下料仓料位、下料仓重量的传感信号并传输给处理模块进行数据处理与分析,存储器用于数据保存;
所述神经网络模块采用动态递归Elman神经网络,其输入层分别从处理模块接收下料仓料位、落料率、物料密度及下料阀开口孔径4个输入量;
在线控制下料时,神经网络对下落物料失重值进行预测后输出给处理模块,由处理模块处理分析后通过输出模块对下料仓底部开口处的下料阀进行关阀控制:
不断读取称重模块的传感值,当动态重量读数达到(G0-Ws-yL)时,关闭下料阀;
其中,Ws为当前组份的一次下料量,G0为开始下料时下料仓的初始静态重量,yL为神经网络预测的下落物料失重值;
并且,当发现单位时间下料量波动超过设定阈值时,控制器命令下料仓侧壁上的搅拌器动作。
2.根据权利要求1所述的基于神经网络的直落失重式物料下料机控制器,其特征在于,其还包括迭代学习模块、第一连接阵和第二连接阵;
输出层的输出量分别通过第一连接阵和第二连接阵传输至迭代学习模块和处理模块;
离线训练所述神经网络时,迭代学习模块根据处理模块和神经网络分别通过第一连接阵输入的下落物料失重实际值和网络输出值,调整神经网络的连接权值;
在线控制下料时,第一连接阵断开,经训练的所述神经网络对下落物料失重值进行预测并经第二连接阵输出给处理模块。
3.根据权利要求1所述的基于神经网络的直落失重式物料下料机控制器,其特征在于,所述关阀控制中,还要对本组份物料当前累积下料误差进行补偿,在检测到下料仓动态重量读数达到(G0-Ws-yL+E)时,才关闭下料阀,其中E为本组份当前累积下料误差,且用正的E值表示下料过多。
4.根据权利要求1所述的基于神经网络的直落失重式物料下料机控制器,其特征在于,所述神经网络模块有多个,且每一个下料阀都有一个神经网络模块对应。
5.根据权利要求1所述的基于神经网络的直落失重式物料下料机控制器,其特征在于,当仓位传感器在不同方位检测到的物料距离值经几何变换后超出一个设定范围时,所述控制器命令搅拌器动作。
6.根据权利要求1所述的基于神经网络的直落失重式物料下料机控制器,其特征在于,所述控制器还控制进料泵动作,使得下料仓内物料顶面的料位保持在预设值附近。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910836277.0A CN110697438B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机控制器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710863074.1A CN107601064B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机及其控制器 |
CN201910836277.0A CN110697438B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机控制器 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710863074.1A Division CN107601064B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机及其控制器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110697438A CN110697438A (zh) | 2020-01-17 |
CN110697438B true CN110697438B (zh) | 2021-07-02 |
Family
ID=61060399
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710863074.1A Active CN107601064B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机及其控制器 |
CN201910836277.0A Active CN110697438B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机控制器 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710863074.1A Active CN107601064B (zh) | 2017-09-19 | 2017-09-19 | 基于神经网络的直落失重式物料下料机及其控制器 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107601064B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110615293B (zh) * | 2018-06-19 | 2021-09-14 | 佛山市顺德区美的电热电器制造有限公司 | 图像数据自动采集系统、自动采集方法以及自动识别系统 |
CN110577091B (zh) * | 2019-04-03 | 2021-07-06 | 上海宝信软件股份有限公司 | 基于人工智能稳定混匀矿质量的方法、系统及介质 |
CN115321209B (zh) * | 2022-09-15 | 2023-12-22 | 中煤科工智能储装技术有限公司 | 一种基于机器学习的溜槽高度控制方法 |
CN115879247B (zh) * | 2023-03-02 | 2023-06-30 | 中国航发四川燃气涡轮研究院 | 一种基于系统辨识的轮盘关键部位应力计算方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS574829A (en) * | 1980-06-09 | 1982-01-11 | Iseki & Co Ltd | Grain charge hopper in grain regulating and processing device |
JPS6357433A (ja) * | 1986-08-25 | 1988-03-12 | Sumitomo Heavy Ind Ltd | 石炭装入車における石炭圧密供給装置 |
DE19919206A1 (de) * | 1999-04-28 | 2000-11-02 | Buehler Ag | Verfahren zur Herstellung von Teigwaren |
CN2505920Y (zh) * | 2001-11-14 | 2002-08-14 | 西安交通大学 | 网络化的智能配料控制器 |
CN2589427Y (zh) * | 2002-11-10 | 2003-12-03 | 吕荣兴 | 排料均匀的叶轮给料机 |
DE102004020790A1 (de) * | 2004-04-28 | 2005-11-24 | Maschinenfabrik Gustav Eirich Gmbh & Co. Kg | Verfahren und Vorrichtung zum kontinuierlichen geregelten Austrag von Feststoffen |
CN101226377B (zh) * | 2008-02-04 | 2010-11-24 | 南京理工大学 | 沥青混凝土搅拌设备配料误差的鲁棒控制方法 |
CN101271016A (zh) * | 2008-05-15 | 2008-09-24 | 山西万立科技有限公司 | 基于速度补偿的动态称重方法及其称重系统 |
CN102636245B (zh) * | 2012-04-23 | 2013-11-06 | 中联重科股份有限公司 | 一种物料的称重测量方法、装置及称重测量系统 |
KR101680055B1 (ko) * | 2015-08-27 | 2016-11-29 | 서울대학교산학협력단 | 결합적 클러스터링 기법과 앙상블 모델링 기법을 이용한 인공신경망 모델 개발 방법 |
CN105734703B (zh) * | 2016-02-26 | 2017-11-07 | 常州灵达特种纤维有限公司 | 失重秤配料系统 |
-
2017
- 2017-09-19 CN CN201710863074.1A patent/CN107601064B/zh active Active
- 2017-09-19 CN CN201910836277.0A patent/CN110697438B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN107601064A (zh) | 2018-01-19 |
CN110697438A (zh) | 2020-01-17 |
CN107601064B (zh) | 2019-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110697449B (zh) | 一种基于神经网络的螺杆失重式物料下料机控制器 | |
CN107601083B (zh) | 基于神经网络的直落失重式物料下料方法 | |
CN110697438B (zh) | 基于神经网络的直落失重式物料下料机控制器 | |
CN107715727B (zh) | 螺杆式多组份物料配料装置及其控制器 | |
CN110697448B (zh) | 一种基于机器学习的螺杆式物料配料机控制器 | |
CN107684846B (zh) | 直落式多组份物料下料方法 | |
CN107694469B (zh) | 基于变速率学习的直落式多组份物料配料方法 | |
CN107673083B (zh) | 基于变速率学习的螺杆式物料下料装置及其控制器 | |
CN107661728B (zh) | 基于变速率学习的直落式物料配料装置及其控制器 | |
CN107684847B (zh) | 螺杆式多组份物料配料方法 | |
CN107697660B (zh) | 基于机器学习的螺杆式物料配料机控制方法 | |
CN107572016B (zh) | 直落式多组份物料下料装置及其控制器 | |
CN107512597B (zh) | 基于变速率学习的螺杆式多组份物料下料方法 | |
CN108002062B (zh) | 基于神经网络的螺杆失重式物料下料方法 | |
CN107544252B (zh) | 基于机器学习的直落式物料下料机控制器 | |
CN107741695B (zh) | 基于机器学习的直落式物料下料机控制方法 | |
JP3528119B2 (ja) | 粉粒体の計量方法 | |
CN209852617U (zh) | 一种颗粒物料包装计量设备 | |
CN214398649U (zh) | 一种精确计量振动式喂料机 | |
JPH10300560A (ja) | 粉体供給装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240926 Address after: 230000 B-1015, wo Yuan Garden, 81 Ganquan Road, Shushan District, Hefei, Anhui. Patentee after: HEFEI MINGLONG ELECTRONIC TECHNOLOGY Co.,Ltd. Country or region after: China Address before: 310018, No. 258, source street, Xiasha Higher Education Park, Hangzhou, Zhejiang Patentee before: China Jiliang University Country or region before: China |