CN110690639B - High Efficiency Injection Locked Fiber Taper Laser - Google Patents
High Efficiency Injection Locked Fiber Taper Laser Download PDFInfo
- Publication number
- CN110690639B CN110690639B CN201810732153.3A CN201810732153A CN110690639B CN 110690639 B CN110690639 B CN 110690639B CN 201810732153 A CN201810732153 A CN 201810732153A CN 110690639 B CN110690639 B CN 110690639B
- Authority
- CN
- China
- Prior art keywords
- fiber
- earth
- doped
- laser
- active rare
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 196
- 238000002347 injection Methods 0.000 title description 3
- 239000007924 injection Substances 0.000 title description 3
- 238000005253 cladding Methods 0.000 claims abstract description 100
- 230000003287 optical effect Effects 0.000 claims abstract description 25
- 238000009826 distribution Methods 0.000 claims abstract description 9
- 239000013307 optical fiber Substances 0.000 claims description 21
- 238000002310 reflectometry Methods 0.000 claims description 21
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 238000005086 pumping Methods 0.000 abstract description 37
- 230000000694 effects Effects 0.000 abstract description 5
- 230000017525 heat dissipation Effects 0.000 abstract description 3
- 150000002500 ions Chemical class 0.000 description 11
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 150000002910 rare earth metals Chemical class 0.000 description 10
- -1 erbium ions Chemical class 0.000 description 5
- KWMNWMQPPKKDII-UHFFFAOYSA-N erbium ytterbium Chemical compound [Er].[Yb] KWMNWMQPPKKDII-UHFFFAOYSA-N 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009022 nonlinear effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003685 thermal hair damage Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06708—Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
- H01S3/06729—Peculiar transverse fibre profile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/0675—Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
本发明涉及一种高效率注入锁定光纤锥激光器,由泵浦源1,光隔离器2,单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4构成。双包层有源掺稀土锥形光纤由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内外包层折射率分别为n1,n2,n3且n1>n2>n3,这种折射率分布能使高阶模激光更有效耦合到内包层,抑制模式跳变效应。在单模有源掺稀土光纤3的两端写入高反射光栅31与部分反射光栅32,在双包层有源掺稀土锥形光纤4的粗端写入低反射光栅5,在其锥形区上下部分写入倾斜角光栅52和53,保证激光从纤芯中心输出,降低光在锥形区的光泄漏问题。该激光器泵浦效率高,散热性好,能抑制模式跳变效应,拥有高质量高功率的输出光。
The invention relates to a high-efficiency injection-locked fiber tapered laser, which is composed of a pump source 1, an optical isolator 2, a single-mode active rare-earth-doped fiber 3, and a double-clad active rare-earth-doped tapered fiber 4. The double-clad active rare-earth-doped tapered fiber consists of an active rare-earth-doped core 41, a core, an inner cladding 42, and an outer cladding 43. The refractive indices of the core and the inner and outer cladding are n1, n2, and n3, respectively, and n1>n2 >n3, this refractive index distribution enables the high-order mode laser to be coupled to the inner cladding more efficiently, suppressing the mode hopping effect. The high reflection grating 31 and the partial reflection grating 32 are written on both ends of the single-mode active rare-earth-doped fiber 3, and the low-reflection grating 5 is written on the thick end of the double-clad active rare-earth-doped tapered fiber 4. The tilt angle gratings 52 and 53 are written in the upper and lower parts of the region to ensure that the laser is output from the center of the fiber core and reduce the problem of light leakage in the tapered region. The laser has high pumping efficiency, good heat dissipation, can suppress the mode hopping effect, and has high-quality and high-power output light.
Description
技术领域technical field
本发明涉及一种高效率注入锁定光纤锥激光器,属于高功率高效率光纤激光器领域。The invention relates to a high-efficiency injection-locked fiber cone laser, which belongs to the field of high-power and high-efficiency fiber lasers.
背景技术Background technique
光纤激光器于1963年发明,到20世纪80年代末第一批商用光纤激光器面市,经历了20多年的发展历程。光纤激光器被人们视为一种超高速光通信用放大器。光纤激光器技术在高速率大容量波分复用光纤通信系统、高精度光纤传感技术和大功率激光等方面呈现出广阔的应用前景和巨大的科技优势。光纤激光器有很多独特的优点,比如:激光阈值低、高增益、良好的散热、可调谐参数多、宽的吸收和辐射以及与其他光纤设备兼容、体积小等。基于这些优点,光纤激光器正在逐步取代传统固体激光器在各个领域中的地位,发挥着越来越重要的作用。近年来光纤激光器的输出功率得到迅速提高,已达到10‐100kW。作为工业用激光器,现已成为输出功率最高的激光器。光纤激光器的技术研究受到世界各国的普遍重视,已成为国际学术界的热门前沿研究课题。其应用领域也已从目前最为成熟的光纤通讯网络方面迅速地向其他更为广阔的激光应用领域扩展。Fiber lasers were invented in 1963, and by the end of the 1980s, the first commercial fiber lasers had gone on the market for more than 20 years. Fiber lasers are regarded as a kind of amplifier for ultra-high-speed optical communication. Fiber laser technology presents broad application prospects and huge technological advantages in high-speed and large-capacity wavelength-division multiplexing fiber-optic communication systems, high-precision fiber-optic sensing technology, and high-power lasers. Fiber lasers have many unique advantages, such as: low laser threshold, high gain, good heat dissipation, many tunable parameters, wide absorption and radiation, compatibility with other fiber devices, and small size. Based on these advantages, fiber lasers are gradually replacing the status of traditional solid-state lasers in various fields, playing an increasingly important role. In recent years, the output power of fiber lasers has been rapidly increased, reaching 10-100kW. As an industrial laser, it has become the laser with the highest output power. The technical research of fiber lasers has received widespread attention from countries all over the world, and has become a hot frontier research topic in the international academic community. Its application field has also rapidly expanded from the most mature optical fiber communication network to other broader laser application fields.
随着双包层掺杂光纤制造工艺和高亮度泵浦源技术的发展,光纤激光器的输出功率以惊人的速度迅速提高,目前,单模光纤激光器的输出功率已经突破万瓦级。在高功率光纤激光器中,由于激光功率密度极高,光纤中发生的各种非线性效应成为了限制激光功率提升的关键因素,因此需要考虑色散和非线性的联合作用。而超短脉冲输出的峰值功率很高,由此产生的非线性效应还会导致脉冲形状的恶化。由于非线性效应、热损伤以及泵浦源亮度等因素的影响,普通双包层光纤超短脉冲激光输出功率受到了限制,单模有源光纤激光器纤芯连续波损坏阈值为1W/μm^2[J.Nilsson,J.K.Sahu,Y.Jeong,W.A.Clarkson,R.Selvas,A.B.Grudinin,and S.U.Alam,”High Power Fiber Lasers:NewDevelopments”,Proceedings of SPIEVol.4974,50-59(2003)],其光学损坏危险成为实现大功率单模光纤激光器的一大挑战。除了光学损坏外,由于大功率光产生的热也会损坏光纤,甚至会最终融化纤芯。有文献报道,铒镱共掺光纤激光器每米可产生100W热[J.Nilsson,S.U.Alam,J.A.Alavarez-Chavez,P.W.Turner,W.A.Clakson,and A>B.Grudinin,”High-power and tunable operation of erbium-ytterbium co-dopedcladding-pumped fiber laser”,IEEE J.Quantum Electron.39,987-994(2003)]。With the development of double-clad doped fiber manufacturing technology and high-brightness pump source technology, the output power of fiber lasers has increased rapidly at an alarming rate. At present, the output power of single-mode fiber lasers has exceeded 10,000 watts. In high-power fiber lasers, due to the extremely high laser power density, various nonlinear effects in the fiber have become a key factor limiting the increase of laser power. Therefore, the combined effect of dispersion and nonlinearity needs to be considered. The peak power of ultrashort pulse output is very high, and the resulting nonlinear effect will also lead to the deterioration of the pulse shape. Due to the influence of nonlinear effects, thermal damage, and the brightness of the pump source, the output power of the ultrashort pulse laser of ordinary double-clad fibers is limited, and the continuous wave damage threshold of the single-mode active fiber laser core is 1W/μm^2 [J.Nilsson, J.K.Sahu, Y.Jeong, W.A.Clarkson, R.Selvas, A.B.Grudinin, and S.U.Alam, "High Power Fiber Lasers: New Developments", Proceedings of SPIE Vol.4974, 50-59 (2003)], which The danger of optical damage has become a major challenge in realizing high-power single-mode fiber lasers. In addition to optical damage, the heat generated by the high-power light can damage the fiber and even eventually melt the core. It has been reported in the literature that erbium-ytterbium co-doped fiber lasers can generate 100W heat per meter [J.Nilsson,S.U.Alam,J.A.Alavarez-Chavez,P.W.Turner,W.A.Clakson,and A>B.Grudinin,"High-power and tunable operation of erbium-ytterbium co-doped cladding-pumped fiber laser", IEEE J. Quantum Electron. 39, 987-994 (2003)].
为了克服已有的传统双包层单模光纤激光器的输出单模激光功率有限以及随着光功率的增加,其输出光束质量变差,抗热等方面的缺陷,授权公告号:CN201282264Y,公告日:2009.7.29,提供了“多根多模光纤组束超大功率单模激光器”;授权公告号:CN100589295C,公告日:2010.2.10,提供了“种子激光注入式有源光纤棒单模激光器”,这些都用来实现大功率单模激光输出。然而,这些光纤激光器中多根有源掺稀土纤芯之间的耦合,与多根有源掺稀土纤芯之间的距离有关,要求多根有源掺稀土纤芯之间的距离在一定范围内,因此增加了有源光纤的制作难度,成品率低。同时为了保持纤芯间耦合条件,这些激光器对外界环境稳定性要求较高,不具有适用性。种子激光注入式有源光纤棒单模激光器因为其有源光纤棒模场面积较小以及其泵浦方式,使得泵浦光—输出光转换效率较低,其输出光功率也相应下降,输出光质量较低。In order to overcome the existing traditional double-clad single-mode fiber lasers with limited output single-mode laser power and with the increase of optical power, the output beam quality deteriorates, and the defects in heat resistance, etc., authorized announcement number: CN201282264Y, announcement date : 2009.7.29, provided "multiple multi-mode fiber bundles of ultra-high power single-mode lasers"; Authorization announcement number: CN100589295C, announcement date: 2010.2.10, provided "seed laser injection type active fiber rod single-mode laser" , which are used to achieve high-power single-mode laser output. However, the coupling between the multiple active rare earth doped cores in these fiber lasers is related to the distance between the multiple active rare earth doped cores, and the distance between the multiple active rare earth doped cores is required to be within a certain range. Therefore, the manufacturing difficulty of the active fiber is increased, and the yield is low. At the same time, in order to maintain the coupling conditions between the cores, these lasers have high requirements on the stability of the external environment and are not applicable. The seed laser injection type active fiber rod single-mode laser has low pump light-output light conversion efficiency due to its small active fiber rod mode field area and its pumping method, and its output optical power also decreases accordingly. lower quality.
发明内容SUMMARY OF THE INVENTION
为了克服已有的传统双包层单模光纤激光器的制作工艺复杂,对外界环境稳定性要求较高,泵浦光—输出光转换效率较低,输出单模激光功率有限以及随着光功率的增加,其输出光束质量变差,抗热等方面的缺陷,提出一种高效率注入锁定光纤锥激光器。In order to overcome the complex manufacturing process of the existing traditional double-clad single-mode fiber laser, the requirement for the stability of the external environment is high, the conversion efficiency of pump light to output light is low, the output single-mode laser power is limited, and with the increase of optical power With the increase of the output beam quality, the quality of the output beam is deteriorated, and the defects such as heat resistance, etc., are presented. A high-efficiency injection-locked fiber taper laser is proposed.
本发明的目的是通过以下技术方案实现的:The purpose of this invention is to realize through the following technical solutions:
一种高效率注入锁定光纤锥激光器,它包括泵浦源、隔离器、普通单模有源掺稀土光纤和双包层有源掺稀土锥形光纤;双包层有源掺稀土锥形光纤由有源掺稀土纤芯、内包层与外包层构成,其折射率分别为n1,n2,n3,并且有n1>n2>n3,此种光纤折射率分布不同于传统双包层有源光纤n1>n2=n3的折射率分布,这种折射率分布能确保使得光传输过程所激发的高阶模更有效的耦合到内包层,获得较高的信号吸收率,同时还能够在一定程度上抑制模式不稳定效应。A high-efficiency injection-locked fiber taper laser includes a pump source, an isolator, a common single-mode active rare-earth-doped fiber, and a double-clad active rare-earth-doped tapered fiber; the double-clad active rare-earth-doped tapered fiber is composed of Active rare-earth-doped core, inner cladding and outer cladding are composed of refractive indices n1, n2, and n3, respectively, and n1>n2>n3. The refractive index distribution of this fiber is different from that of traditional double-clad active fiber n1> The refractive index distribution of n2=n3, this refractive index distribution can ensure that the higher-order modes excited by the optical transmission process are more effectively coupled to the inner cladding, and obtain a higher signal absorption rate, and can also suppress the mode instability to a certain extent. effect.
使用紫外激光器或者飞秒激光器在双包层有源掺稀土锥形光纤的锥形区域的上下半区写入对应激光波长的高反射率倾斜角光栅,这样降低了光纤锥形区的光泄露,使得在激光腔中来回振荡的激光经倾斜角光纤光栅反射和散射后重新耦合至纤芯中心,限制了激光输出区域,大大提高了泵浦效率,同时也极大提升了输出激光功率和质量。Using an ultraviolet laser or a femtosecond laser to write a high-reflectivity tilt-angle grating corresponding to the laser wavelength in the upper and lower half of the tapered region of the double-clad active rare-earth-doped tapered fiber, which reduces the light leakage in the tapered region of the fiber, The laser oscillating back and forth in the laser cavity is reflected and scattered by the inclined fiber grating and then recoupled to the center of the fiber core, which limits the laser output area, greatly improves the pumping efficiency, and also greatly improves the output laser power and quality.
泵浦光经普通单模有源掺稀土光纤谐振腔后产生种子源激光,种子源激光进入双包层有源掺稀土锥形光纤后可以实现主动锁相和激光放大,从而得到高功率高质量的激光输出。The pump light passes through the common single-mode active rare-earth-doped fiber resonator to generate the seed source laser. After the seed source laser enters the double-clad active rare-earth-doped tapered fiber, active phase locking and laser amplification can be achieved, thereby obtaining high power and high quality. laser output.
所发明激光器特征为:在普通单模有源掺稀土光纤的两端写入对应激光波长的高反射光栅与对应激光波长的部分反射光栅;利用紫外激光器或者飞秒激光器在双包层有源掺稀土锥形光纤的粗端写入对应激光波长的部分反射光栅,或在双包层有源掺稀土锥形光纤的粗端端面镀对应激光波长的部分反射膜;利用紫外激光器或者飞秒激光器在双包层有源掺稀土锥形光纤的锥形区的上下半区写入对应激光波长的高反射倾斜角光栅;将普通单模有源掺稀土光纤部分反射光栅对应末端与双包层有源掺稀土锥形光纤的细端连接构成谐振腔。The characteristics of the invented laser are: writing a high reflection grating corresponding to the laser wavelength and a partial reflection grating corresponding to the laser wavelength on both ends of an ordinary single-mode active rare-earth-doped fiber; using an ultraviolet laser or a femtosecond laser to perform active doping on the double-cladding layer. Write a partial reflection grating corresponding to the laser wavelength on the thick end of the rare earth tapered fiber, or coat the thick end face of the double-clad active rare earth doped tapered fiber with a partial reflection film corresponding to the laser wavelength; use an ultraviolet laser or a femtosecond laser to High reflection tilt angle grating corresponding to the laser wavelength is written into the upper and lower half of the tapered region of the double-clad active rare-earth-doped tapered fiber; The thin ends of the rare-earth-doped tapered fibers are connected to form the resonant cavity.
泵浦源采用的泵浦方式分为前向端面泵浦、后向端面泵浦、侧面泵浦、同时进行前向端面泵浦和后向端面泵浦、同时进行前向端面泵浦和侧面泵浦、同时进行后向端面泵浦和侧面泵浦、同时进行前向端面泵浦、后向端面泵浦和侧面泵浦。The pumping methods used by the pump source are divided into forward end-face pumping, backward end-face pumping, side pumping, simultaneous forward end-face pumping and backward end-face pumping, and simultaneous forward end-face pumping and side pumping. pumping, simultaneous backward end pumping and side pumping, simultaneous forward end pumping, backward end pumping and side pumping.
本发明的有益效果具体如下:所述光纤激光器,采用的双包层有源掺稀土锥形光纤的折射率分布与传统的双包层有源掺稀土光纤折射率分布不同,其有源掺稀土纤芯、内包层与外包层折射率分别为n1,n2,n3,并且有n1>n2>n3,而传统双包层有源掺稀土光纤折射率分布为n1>n2=n3,双包层有源掺稀土锥形光纤的这种折射率分布好处在于能确保使得光传输过程所激发的高阶模更有效的耦合到内包层,获得较高的信号吸收率,因此可使得入射泵浦光的波长适当往短波长方向移动,同时还能够在一定程度上抑制模式不稳定效应,获得高质量大功率的输出光。The beneficial effects of the invention are as follows: the optical fiber laser adopts a double-clad active rare-earth-doped tapered optical fiber whose refractive index distribution is different from that of a traditional double-clad active rare-earth-doped fiber. The refractive indices of the core, inner cladding and outer cladding are n1, n2, and n3, respectively, and n1>n2>n3, while the refractive index distribution of the traditional double-clad active rare-earth-doped fiber is n1>n2=n3, and the double cladding has The advantage of this refractive index distribution of the source rare-earth-doped tapered fiber is that it can ensure that the higher-order modes excited by the optical transmission process are more efficiently coupled to the inner cladding to obtain a higher signal absorption rate, so that the wavelength of the incident pump light can be appropriate. By moving to the short wavelength direction, the mode instability effect can be suppressed to a certain extent, and the output light of high quality and high power can be obtained.
同时,利用倾斜角光纤光栅对于入射光的反射和散射效应,使用紫外激光器或者飞秒激光器在双包层有源掺稀土锥形光纤的锥形区域的上下半区写入对应激光波长的高反射倾斜角光栅,这样降低了光纤锥形区的光泄露,使得在激光腔中来回振荡的激光经倾斜角光纤光栅反射和散射后重新耦合至纤芯中心,保证激光在较小区域输出,从而提高了泵浦效率,大大提升了输出光功率和激光质量。而且,双包层有源掺稀土锥形光纤的大模场面积可以使激光器拥有更好的散热性,该光纤激光器结构简单,对外界环境条件要求低,有很好的实际应用性。At the same time, using the reflection and scattering effects of the tilt-angle fiber grating on the incident light, use an ultraviolet laser or a femtosecond laser to write high reflection corresponding to the laser wavelength in the upper and lower half of the tapered region of the double-clad active rare-earth-doped tapered fiber. The tilt angle grating reduces the light leakage in the tapered area of the fiber, so that the laser oscillating back and forth in the laser cavity is reflected and scattered by the tilt angle fiber grating and then recoupled to the center of the fiber core, ensuring that the laser is output in a smaller area, thereby improving the The pump efficiency is greatly improved, and the output optical power and laser quality are greatly improved. Moreover, the large mode field area of the double-clad active rare-earth-doped tapered fiber can make the laser have better heat dissipation. The fiber laser has a simple structure, low requirements for external environmental conditions, and good practical application.
附图说明Description of drawings
图1为前向端面泵浦,双包层有源掺稀土锥形光纤粗端末尾写入反射光栅的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 1 is a schematic longitudinal cross-sectional view of a high-efficiency injection-locked fiber tapered laser with forward end-pumping and double-clad active rare-earth-doped tapered fiber butt end with a reflection grating written at the end.
图2为侧面泵浦,普通单模有源掺稀土光纤一端端面镀高反射膜,双包层有源掺稀土锥形光纤粗端末尾端面镀反射膜的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 2 is a longitudinal section of a side-pumped, high-efficiency injection-locked fiber taper laser with a high-efficiency injection-locked fiber taper laser coated on one end of an ordinary single-mode active rare-earth-doped fiber with a high-reflection coating, and a double-clad active rare-earth-doped tapered fiber with a thick end coated with a reflective coating on the end. Schematic.
图3为后向端面泵浦,双包层有源掺稀土锥形光纤粗端末尾写入反射光栅的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 3 is a schematic longitudinal cross-section of a back-end-pumped, double-clad active rare-earth-doped tapered fiber with a high-efficiency injection-locked fiber tapered laser with a reflection grating written at the end of the thick end.
图4为多个泵浦源前向端面泵浦,双包层有源掺稀土锥形光纤粗端末尾写入反射光栅的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 4 is a schematic longitudinal cross-sectional view of a high-efficiency injection-locked fiber taper laser with multiple pump sources forwarding end-face pumping and a double-clad active rare-earth-doped tapered fiber with a reflection grating written at the end of the thick end.
图5为多个泵浦源前向端面泵浦与侧面泵浦,双包层有源掺稀土锥形光纤粗端末尾写入反射光栅的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 5 is a schematic longitudinal cross-sectional view of a high-efficiency injection-locked fiber taper laser with multiple pump sources forward end-pumping and side-pumping, and a double-clad active rare-earth-doped tapered fiber with a reflection grating written at the end of the thick end.
图6为多个泵浦源前向端面泵浦与后向端面泵浦,双包层有源掺稀土锥形光纤粗端末尾端面镀反射膜的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 6 is a longitudinal cross-sectional schematic diagram of a high-efficiency injection-locked fiber taper laser with multiple pump sources forward end-face pumping and backward end-face pumping, double-clad active rare-earth-doped tapered fiber butt end face coated with reflective film.
图7为后向端面泵浦和侧面泵浦,双包层有源掺稀土锥形光纤粗端末尾端面镀反射膜的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 7 is a schematic longitudinal cross-section of a back-end-pumped and side-pumped, double-clad active rare-earth-doped tapered fiber butt end face coated with a reflective film on the end face of a high-efficiency injection-locked fiber taper laser.
图8为多个泵浦源前向端面泵浦、后向端面泵浦和侧面泵浦,双包层有源掺稀土锥形光纤粗端末尾端面镀反射膜的高效率注入锁定光纤锥激光器的纵截面示意图。Figure 8 shows the high-efficiency injection-locked fiber taper laser with multiple pump sources forward end-pumped, backward end-pumped and side-pumped, double-clad active rare-earth-doped tapered fiber butt end with reflective coating on the end face Schematic diagram of longitudinal section.
具体实施方式Detailed ways
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
实施例一Example 1
本实例中,一种高效率注入锁定光纤锥激光器,如图1所示,该激光器包括:泵浦源1,光隔离器2,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子均为铒离子,普通单模有源掺稀土光纤3纤芯直径为9μm,包层直径125μm;双包层有源掺稀土锥形光纤4细端纤直径d1=9μm,内包层直径d2=90μm,外包层直径d3=125μm;粗端纤芯直径d1=700μm,内包层直径d2=900μm,外包层直径d3=4500μm,光纤长度为10米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32。在双包层有源掺稀土锥形光纤4粗端末尾利用飞秒激光器写入反射率为5%-8%的光栅5,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为45°、反射率为99%的光栅52和53。泵浦源1进行前向端面泵浦。In this example, a high-efficiency injection-locked fiber taper laser, as shown in Figure 1, includes: a
实施例二
本实例中,一种高效率注入锁定光纤锥激光器,如图2所示,该激光器包括:泵浦源13,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子类型为镱离子,普通单模有源掺稀土光纤3纤芯纤芯直径为6μm,包层直径125μm;双包层有源掺稀土锥形光纤4细端纤直径d1=6μm,内包层直径d2=80μm,外包层直径d3=125μm;粗端纤芯直径d1=300μm,内包层直径d2=400μm,外包层直径d3=500μm,光纤长度为2米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32,并在光栅31一侧光纤前端端面镀一层反射率为100%的反射膜8。在双包层有源掺稀土锥形光纤4粗端末尾端面镀一层反射率为5%-8%的反射膜51,在双包层有源掺稀土锥形光纤4锥形区域上下半区除开纤芯中心利用紫外激光器全部写入光栅倾斜角为80°、反射率为99%的光栅54和55。在双包层有源掺稀土锥形光纤4的粗端的外包层43与内包层42刻上V字形,凹字形或任意形状的槽,泵浦源13利用这种槽进行侧面泵浦。In this example, a high-efficiency injection-locked fiber tapered laser, as shown in FIG. 2 , includes: a
实施例三
本实例中,一种高效率注入锁定光纤锥激光器,如图3所示,该激光器包括:泵浦源12,二分镜62,反射镜61,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子类型为钬离子,普通单模有源掺稀土光纤3纤芯直径为2μm,包层直径400μm;双包层有源掺稀土锥形光纤4细端纤直径d1=2μm,内包层直径d2=350μm,外包层直径d3=400μm;粗端纤芯直径d1=800μm,内包层直径d2=1000μm,外包层直径d3=1600μm,光纤长度为5米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32,并在光栅31一侧光纤前端端面镀一层反射率为100%的反射膜8。在双包层有源掺稀土锥形光纤4粗端末尾写入反射率为5%-8%的光栅5,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为10°、反射率为99%的光栅52和53。泵浦源12通过二分镜62与反射镜61对激光腔进行后向端面泵浦。In this example, a high-efficiency injection-locked fiber taper laser, as shown in FIG. 3, includes: a
实施例四
本实例中,一种高效率注入锁定光纤锥激光器,如图4所示,该激光器包括:泵浦源1,泵浦源14,…,泵浦源1N,光合束器7,光隔离器2,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。光合束器7将多个泵浦光耦合进传输光纤中。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子均为铥离子,普通单模有源掺稀土光纤3纤芯直径为1μm,包层直径80μm;双包层有源掺稀土锥形光纤4细端纤直径d1=1μm,内包层直径d2=60μm,外包层直径d3=80μm;粗端纤芯直径d1=700μm,内包层直径d2=800μm,外包层直径d3=1000μm,光纤长度为2米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32。在双包层有源掺稀土锥形光纤4粗端末尾利用紫外激光器或者飞秒激光器写入反射率为5%-8%的光栅5,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为20°、反射率为99%的光栅52和53。泵浦源1,泵浦源14,…,泵浦源1N进行前向端面泵浦。In this example, a high-efficiency injection-locked fiber cone laser, as shown in FIG. 4 , the laser includes: a
实施例五Embodiment 5
本实例中,一种高效率注入锁定光纤锥激光器,如图5所示,该激光器包括:泵浦源1,泵浦源13,泵浦源14,…,泵浦源1N,光合束器7,光隔离器2,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。光合束器7将多个泵浦光耦合进传输光纤中。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子均为钕离子,普通单模有源掺稀土光纤3纤芯直径为3μm,包层直径125μm;双包层有源掺稀土锥形光纤4细端纤直径d1=3μm,内包层直径d2=100μm,外包层直径d3=125μm;粗端纤芯直径d1=150μm,内包层直径d2=210μm,外包层直径d3=255μm,光纤长度为1米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32。在双包层有源掺稀土锥形光纤4粗端末尾利用紫外激光器或者飞秒激光器写入反射率为5%-8%的光栅5,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为30°、反射率为99%的光栅52和53。泵浦源1,泵浦源14,…,泵浦源1N进行前向端面泵浦,泵浦源13进行侧面泵浦。在双包层有源掺稀土锥形光纤4的粗端的外包层43与内包层42刻上V字形,凹字形或任意形状的槽,泵浦源13利用这种槽进行侧面泵浦。In this example, a high-efficiency injection-locked fiber cone laser, as shown in FIG. 5 , the laser includes: a
实施例六Embodiment 6
本实例中,一种高效率注入锁定光纤锥激光器,如图6所示,该激光器包括:泵浦源1,泵浦源12,泵浦源14,…,泵浦源1N,光合束器7,光隔离器2,二分镜62,反射镜61,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。光合束器7将多个泵浦光耦合进传输光纤中。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子均为铒镱共掺离子,普通单模有源掺稀土光纤3纤芯直径为20μm,包层直径400μm;双包层有源掺稀土锥形光纤4细端纤直径d1=20μm,内包层直径d2=350μm,外包层直径d3=400μm;粗端纤芯直径d1=2000μm,内包层直径d2=3000μm,外包层直径d3=3800μm,光纤长度为8米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32。在双包层有源掺稀土锥形光纤4粗端末尾端面镀一层反射率为5%-8%的反射膜51,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为55°、反射率为99%的光栅52和53。泵浦源1,泵浦源14,…,泵浦源1N进行前向端面泵浦,泵浦源12通过二分镜62与反射镜61对激光腔进行后向端面泵浦。In this example, a high-efficiency injection-locked fiber taper laser, as shown in FIG. 6 , the laser includes: a
实施例七
本实例中,一种高效率注入锁定光纤锥激光器,如图7所示,该激光器包括:泵浦源12,泵浦源13,二分镜62,反射镜61,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子类型为掺铒或掺镱或掺钬或掺铥或掺钕或铒镱共掺离子,普通单模有源掺稀土光纤3纤芯直径为10μm,包层直径125μm;双包层有源掺稀土锥形光纤4细端纤直径d1=10μm,内包层直径d2=100μm,外包层直径d3=125μm;粗端纤芯直径d1=500μm,内包层直径d2=800μm,外包层直径d3=1000μm,光纤长度为4米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32,并在光栅31一侧光纤前端端面镀一层反射率为100%的反射膜8。在双包层有源掺稀土锥形光纤4粗端末尾端面镀一层反射率为5%-8%的反射膜51,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为60°、反射率为99%的光栅52和53。泵浦源12通过二分镜62与反射镜61对激光腔进行后向端面泵浦;在双包层有源掺稀土锥形光纤4的粗端的外包层43与内包层42刻上V字形,凹字形或任意形状的槽,泵浦源13利用这种槽进行侧面泵浦。In this example, a high-efficiency injection-locked fiber taper laser, as shown in Figure 7, includes: a
实施例八
本实例中,一种高效率注入锁定光纤锥激光器,如图8所示,该激光器包括:泵浦源1,泵浦源12,泵浦源13,泵浦源14,…,泵浦源1N,光合束器7,光隔离器2,二分镜62,反射镜61,普通单模有源掺稀土光纤3,双包层有源掺稀土锥形光纤4。双包层有源掺稀土锥形光纤4由有源掺稀土纤芯41、纤芯与内包层42、外包层43构成,纤芯、内包层和外包层折射率分别为n1,n2,n3且n1>n2>n3。光合束器7将多个泵浦光耦合进传输光纤中。普通单模有源掺稀土光纤3和双包层有源掺稀土锥形光纤4的掺杂离子均为掺铒或掺镱或掺钬或掺铥或掺钕或铒镱共掺离子,普通单模有源掺稀土光纤3纤芯直径为30μm,包层直径1000μm;双包层有源掺稀土锥形光纤4细端纤直径d1=30μm,内包层直径d2=800μm,外包层直径d3=1000μm;粗端纤芯直径d1=2500μm,内包层直径d2=3000μm,外包层直径d3=4500μm,光纤长度为7米,内包层结构可以为圆形,也可以为D形、矩形、六边形、八边形、偏芯圆形、星形或梅花形。在普通单模有源掺稀土光纤3的两端分别写入反射系数超过99%的光栅31与反射系数为80%光栅32。在双包层有源掺稀土锥形光纤4粗端末尾端面镀一层反射率为5%-8%的反射膜51,在双包层有源掺稀土锥形光纤4锥形区域上下半区利用紫外激光器或者飞秒激光器分别写入光栅倾斜角为70°、反射率为99%的光栅52和53。泵浦源1,泵浦源14,…,泵浦源1N进行前向端面泵浦;泵浦源12通过二分镜62与反射镜61对激光腔进行后向端面泵浦;在双包层有源掺稀土锥形光纤4的粗端的外包层43与内包层42刻上V字形,凹字形或任意形状的槽,泵浦源13利用这种槽进行侧面泵浦。In this example, a high-efficiency injection-locked fiber taper laser, as shown in Figure 8, includes: a
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810732153.3A CN110690639B (en) | 2018-07-05 | 2018-07-05 | High Efficiency Injection Locked Fiber Taper Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810732153.3A CN110690639B (en) | 2018-07-05 | 2018-07-05 | High Efficiency Injection Locked Fiber Taper Laser |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110690639A CN110690639A (en) | 2020-01-14 |
CN110690639B true CN110690639B (en) | 2020-12-01 |
Family
ID=69106833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810732153.3A Active CN110690639B (en) | 2018-07-05 | 2018-07-05 | High Efficiency Injection Locked Fiber Taper Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110690639B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111740313A (en) * | 2020-07-09 | 2020-10-02 | 江苏师范大学 | Mid-infrared all-fiber laser oscillator based on tapered double-clad Raman gain fiber and method for generating mid-infrared laser |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5657339A (en) * | 1994-12-27 | 1997-08-12 | Fuji Photo Film Co. Ltd. | Integrated optics semiconductor laser device |
CN1543023A (en) * | 2003-08-14 | 2004-11-03 | 中国科学院长春光学精密机械与物理研 | Double-clad fiber single-mode laser with large mode area and preparation method |
EP2690724A2 (en) * | 2012-07-25 | 2014-01-29 | UAB "Ekspla" | Saturable absorber for fiber laser mode-locking, fiber Bragg grating with a saturable absorption property and mode-locked fiber laser |
CN105659446A (en) * | 2013-08-20 | 2016-06-08 | Ipg光子公司 | Ultra high power single mode fiber laser system |
CN205656127U (en) * | 2016-04-13 | 2016-10-19 | 中国计量大学 | Reflective SPR refracting index sensor based on tapered fiber long period grating |
CN106970442A (en) * | 2017-05-12 | 2017-07-21 | 深圳大学 | Phase-shifted grating based on tapered fiber and preparation method thereof |
CN108155547A (en) * | 2018-01-31 | 2018-06-12 | 北京交通大学 | Injection locking optical taper laser |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050114117A (en) * | 2004-05-31 | 2005-12-05 | 엘지전자 주식회사 | Integrated optic true-time delay apparatus and manufacturing method thereof |
-
2018
- 2018-07-05 CN CN201810732153.3A patent/CN110690639B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5657339A (en) * | 1994-12-27 | 1997-08-12 | Fuji Photo Film Co. Ltd. | Integrated optics semiconductor laser device |
CN1543023A (en) * | 2003-08-14 | 2004-11-03 | 中国科学院长春光学精密机械与物理研 | Double-clad fiber single-mode laser with large mode area and preparation method |
EP2690724A2 (en) * | 2012-07-25 | 2014-01-29 | UAB "Ekspla" | Saturable absorber for fiber laser mode-locking, fiber Bragg grating with a saturable absorption property and mode-locked fiber laser |
CN105659446A (en) * | 2013-08-20 | 2016-06-08 | Ipg光子公司 | Ultra high power single mode fiber laser system |
CN205656127U (en) * | 2016-04-13 | 2016-10-19 | 中国计量大学 | Reflective SPR refracting index sensor based on tapered fiber long period grating |
CN106970442A (en) * | 2017-05-12 | 2017-07-21 | 深圳大学 | Phase-shifted grating based on tapered fiber and preparation method thereof |
CN108155547A (en) * | 2018-01-31 | 2018-06-12 | 北京交通大学 | Injection locking optical taper laser |
Also Published As
Publication number | Publication date |
---|---|
CN110690639A (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107623246B (en) | Fiber core co-band pumping fiber laser | |
CN108879301B (en) | Stochastic distributed Rayleigh feedback fiber laser based on double-clad weakly ytterbium-doped fiber | |
CN106356704A (en) | 0.9-micron waveband high-power and single-frequency optical fiber laser device | |
CN108155547A (en) | Injection locking optical taper laser | |
CN113823990A (en) | Short-gain fiber oscillation amplification co-pumping high-power narrow linewidth laser | |
CN103474868B (en) | Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser | |
CN104852261A (en) | High-power all-fiber MOPA structure superfluorescence fiber light source based on tandem pumping | |
CN216251600U (en) | Oscillation amplification integrated optical fiber laser | |
CN110690639B (en) | High Efficiency Injection Locked Fiber Taper Laser | |
Tao et al. | Cross relaxation in Tm-doped fiber lasers | |
CN100581010C (en) | Spiral-Coupled Active Doped Fiber Rod Single-Mode Output Laser | |
CN202059039U (en) | Double cladding photonic crystal fiber laser of 980nm | |
CN101276988A (en) | Single-mode active fiber companion coupled multimode active fiber ultra-brightness single-mode laser | |
CN101764344A (en) | Super-luminance single-mode laser for realizing outer cavity coupling between single-mode active fibre core and multi-mode active fibre core | |
CN110112637A (en) | A kind of 1.0 mu m waveband multikilowatt polarization-maintaining single-frequency phosphate optical fiber lasers | |
CN201282264Y (en) | Ultra high-power single-mode laser for multi-root multi-mode fibre-optical set beam | |
Li et al. | Large-mode-area double-cladding photonic crystal fiber laser in the watt range at 980 nm | |
CN102931573A (en) | Parameter mismatch fiber laser | |
CN102437501B (en) | Mode-locked laser based on doped fiber array | |
CN103618204A (en) | 976nm ytterbium-doped optical fiber Q-switching mode-locking laser system | |
CN115173198A (en) | All-fiber amplifier for inhibiting nonlinear effect | |
CN112769029A (en) | DBR short-cavity single-frequency fiber laser of multimode semiconductor pump source cladding pumping | |
CN108471040A (en) | Parameter-mismatchedfiber fiber laser | |
CN204651672U (en) | Based on the high power all-fiber MOPA structure superfluorescent fiber sources with band pumping | |
CN114594544B (en) | A Distributed Co-doped Microstructure Optical Fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |