CN110687098B - 一种基于聚氨酯的纳米银sers基底的制备方法 - Google Patents
一种基于聚氨酯的纳米银sers基底的制备方法 Download PDFInfo
- Publication number
- CN110687098B CN110687098B CN201911045971.7A CN201911045971A CN110687098B CN 110687098 B CN110687098 B CN 110687098B CN 201911045971 A CN201911045971 A CN 201911045971A CN 110687098 B CN110687098 B CN 110687098B
- Authority
- CN
- China
- Prior art keywords
- polyurethane
- silver
- nano
- preparation
- sers substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 63
- 239000004814 polyurethane Substances 0.000 title claims abstract description 63
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000000758 substrate Substances 0.000 title claims abstract description 43
- 238000004416 surface enhanced Raman spectroscopy Methods 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 22
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000013078 crystal Substances 0.000 claims abstract description 9
- 239000007864 aqueous solution Substances 0.000 claims description 30
- 239000000243 solution Substances 0.000 claims description 25
- 239000003292 glue Substances 0.000 claims description 16
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 14
- 238000001237 Raman spectrum Methods 0.000 claims description 10
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- 238000005187 foaming Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 3
- 238000009659 non-destructive testing Methods 0.000 claims description 2
- 238000002791 soaking Methods 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims 2
- 239000004332 silver Substances 0.000 claims 2
- 238000001514 detection method Methods 0.000 abstract description 7
- 239000002245 particle Substances 0.000 abstract description 6
- 239000000523 sample Substances 0.000 abstract description 5
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000004451 qualitative analysis Methods 0.000 abstract description 2
- 238000004445 quantitative analysis Methods 0.000 abstract description 2
- 238000001179 sorption measurement Methods 0.000 abstract description 2
- 238000000479 surface-enhanced Raman spectrum Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000004205 dimethyl polysiloxane Substances 0.000 description 7
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 7
- 239000002861 polymer material Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 241000143437 Aciculosporium take Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005288 electromagnetic effect Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002460 vibrational spectroscopy Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0066—Use of inorganic compounding ingredients
- C08J9/0071—Nanosized fillers, i.e. having at least one dimension below 100 nanometers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0061—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/36—After-treatment
- C08J9/40—Impregnation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
- C08L75/08—Polyurethanes from polyethers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
- C08J2375/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
- C08J2475/08—Polyurethanes from polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/14—Applications used for foams
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明公开了一种基于聚氨酯的纳米银SERS基底的制备方法,属于拉曼光谱技术领域。为了解决SERS基底制备过程复杂、灵敏度底等问题。该方法使用固化后的聚氨酯作为骨架,利用多孔表面结构以及吸附性,将纳米银颗粒吸附在其表面上,得到以结晶紫为探针分子的检测限低至10‑10M的SERS基底。该方法所制备的SERS基底,表面积大,吸附的目标分子数量多,基底易制备,灵敏度高,有利于SERS的定性定量分析。
Description
技术领域
本发明涉及一种基于聚氨酯的纳米银SERS基底的制备方法,属于拉曼光谱技术领域。
背景技术
拉曼光谱是识别生物分子最常用的振动光谱。拉曼光谱能提供有价值的信息,在生化分析中具有很大的潜力。此外,这是一种不需要对食品样品进行任何预处理的无损检测技术。由于水的存在不会干扰液体样品的分析,拉曼光谱是识别水样品中所需目标分析物的简单方法。表面增强拉曼散射(SERS)是一种很有应用前景的方法,该方法的灵敏度极高,甚至可以区分检测单个分子,与化学效应相比,电磁效应是增强拉曼信号的一个重要原理,由于局域表面等离子体共振(LSPR)的激发,在粗糙表面附近激发的大量的局部电磁场,对SERS的性能有着显著的影响。具有纳米结构的金属材料具有强烈的SPR效应、生物相容性和高的化学和热稳定性,被认为是SERS检测的可靠材料。高分子材料由于其可靠的稳定性,逐渐成为制作SERS基底的重要材料,但目前公开的利用高分子材料制备SERS基底的技术中,往往制备过程繁琐,因此,提供一种制备方法简单且检测性能优越的SERS基底是非常有必要的。
发明内容
本发明提供了一种基于聚氨酯的纳米银SERS基底的制备方法,本发明以简单易得的聚氨酯为衬底材料,使用固化后的聚氨酯作为骨架,利用其多孔表面性质以及吸附性,将纳米银颗粒吸附在其表面上,得到基于聚氨酯的纳米银SERS基底。
本发明的技术方案如下:
一种基于聚氨酯的纳米银SERS基底的制备方法,包括以下步骤:
(a)使用柠檬酸钠还原硝酸银,制备纳米银溶液;
(b)将聚氨酯A胶与聚氨酯B胶混合后搅拌均匀,静置发泡固化;
(c)将发泡固化后的聚氨酯切成小块浸泡在纳米银溶液中,得到基于聚氨酯的纳米银SERS基底。
在一种实施方式中,所述步骤(a)中,柠檬酸钠溶液的浓度为0.01g/mL。
在一种实施方式中,所述步骤(a)中,硝酸银溶液浓度为200mg/L。
在一种实施方式中,所述步骤(b)中,聚氨酯A胶的成分为异氰酸酯,聚氨酯B胶的成分为组合聚醚。
在一种实施方式中,所述步骤(b)中,聚氨酯A胶与聚氨酯B胶按质量比为1:1混合。
在一种实施方式中,所述步骤(b)中,发泡固化的温度为室温下固化,时间约为2~6h。
在一种实施方式中,所述步骤(c)中,聚氨酯块在纳米银溶液中的浸泡时间为6h以上。
本发明的有益效果:
1、本发明制备出的基于聚氨酯的纳米银SERS基底,能够为SERS信号的测量提供多孔表面结构,并吸附待测目标分子;
2、纳米银颗粒具有表面等离子体共振性能,起到增强拉曼信号的作用;
3、将海绵状的聚氨酯、纳米银结合使用,使其SERS增强优于单独使用聚氨酯或纳米银颗粒,以结晶紫为探针分子的检测限低至10-10M;
4、该方法所制备的SERS基底,表面积大,吸附的目标分子数量多,基底制备工艺简单,灵敏度高,有利于SERS的定性定量分析。
附图说明
图1为制备聚氨酯纳米银SERS基底的流程图。
图2为聚氨酯纳米银基底对不同浓度的CV水溶液的SERS光谱图。
图3为不同浓度的CV水溶液的拉曼光谱图。
图4为不含纳米银的聚氨酯对不同浓度的CV水溶液的SERS光谱图。
图5为纳米银溶液对不同浓度的CV水溶液的SERS光谱图。
图6为使用PDMS代替聚氨酯制备基底对不同浓度的CV水溶液的SERS光谱图。
具体实施方式
本发明使用的聚氨酯A胶和聚氨酯B胶购于博盛科技,聚氨酯A胶的成分为异氰酸酯,聚氨酯B胶的成分为组合聚醚。
实施例1
本发明制备聚氨酯纳米银SERS基底的流程图,如图1所示。
1、制备聚氨酯纳米银SERS基底
(1)使用柠檬酸钠还原硝酸银制备纳米银溶液
a.配制浓度为0.01g/ml的柠檬酸钠水溶液,200mg/L的硝酸银水溶液;
b.取100ml硝酸银溶液,加热至沸腾。迅速滴加3ml柠檬酸钠溶液,边加边搅拌,冷却至室温。
(2)制备聚氨酯
a.取5g聚氨酯A胶与5g聚氨酯B胶,迅速剧烈搅拌;
b.置于室温下2~6h,切成小块后备用。
(3)制备聚氨酯纳米银SERS基底
a.将切好的聚氨酯小块浸泡在制备好的纳米银溶液中,聚氨酯会吸附溶液中的纳米银颗粒;
b.聚氨酯块需在纳米应溶液中浸泡6h以上。
2、使用聚氨酯纳米银基底对不同浓度的CV水溶液进行拉曼测试
使用结晶紫(CV)作为拉曼探针,配制浓度分别为10-10、10-9、10-8、10-7、10-6、10-5、10-4、10-3、10-2摩尔每升的结晶紫(CV)水溶液。将制备好的聚氨酯纳米银基底浸入结晶紫水溶液中数分钟,取出基底后,使用inVia共聚焦拉曼光谱仪获得拉曼光谱,激光光源532nm,功率12.5mw,物镜50倍长焦,曝光时间20s。光束通过显微镜的×50物镜聚焦在样品上,并从滤波片经由每毫米1800刻线的衍射光栅分光后进入到CCD中,拉曼光谱如图2所示,随着浓度的降低,CV的特征峰强度逐渐降低。当CV水溶液的浓度低至10-10摩尔每升时,仍然可以观察到CV的特征峰。
对比例1
直接使用拉曼方法对不同浓度的CV水溶液进行拉曼测试,得到不同浓度的CV水溶液的拉曼光谱图。使用inVia共聚焦拉曼光谱仪获得拉曼光谱,激光光源532nm,功率12.5mw,物镜50倍长焦,曝光时间20s。光束通过显微镜的×50物镜聚焦在样品上,并从滤波片经由每毫米1800刻线的衍射光栅分光后进入到CCD中。如图3所示,随着浓度的降低,CV的特征峰强度逐渐降低。当CV水溶液的浓度低至10-5摩尔每升时,CV的特征峰已经不明显,说明直接使用拉曼方法测试CV水溶液,检测限只能达到10-5摩尔每升。
对比例2
使用没有纳米银溶液中浸泡的固化好的聚氨酯,对不同浓度的CV水溶液进行拉曼测试。将制备好的聚氨酯块浸入结晶紫水溶液中数分钟,取出聚氨酯后,使用inVia共聚焦拉曼光谱仪获得拉曼光谱得到不含纳米银的聚氨酯对不同浓度的CV水溶液的SERS光谱图。如图4所示,随着浓度的降低,CV的特征峰强度逐渐降低。虽然浓度较高时SERS光谱强度较CV水溶液的拉曼光谱有所提高,但当CV水溶液的浓度低至10-5摩尔每升时,CV的特征峰已经不明显。说明没有纳米银颗粒的聚氨酯基底,SERS检测限的提高没用贡献。
对比例3
使用纳米银溶液对不同浓度的CV水溶液进行拉曼测试,将制备好的纳米银溶液与CV水溶液以体积比1:1混合,使用inVia共聚焦拉曼光谱仪获得拉曼光谱,得到纳米银溶液对不同浓度的CV水溶液的SERS光谱图。如图5所示,随着浓度的降低,CV的特征峰强度逐渐降低。当CV水溶液的浓度低至10-6摩尔每升时,CV的特征峰已经不明显。说明了仅使用纳米银溶液作为基底,只能将检测限提高一个数量级。
对比例4
使用高分子材料聚二甲基硅氧烷(PDMS)来替代聚氨酯材料,将固化好的PDMS浸入纳米银溶液中浸泡6h,浸入不同浓度的结晶紫水溶液中数分钟,取出基底使用inVia共聚焦拉曼光谱仪获得拉曼光谱,得到基于高分子材料PDMS的纳米银基底对CV水溶液的SERS光谱图。如图6所示,随着浓度的降低,CV的特征峰强度逐渐降低。当CV水溶液的浓度低至10-6摩尔每升时,CV的特征峰已经不明显。而且PDMS本身具有自己的特征峰,会对CV水溶液的特征峰的观测产生干扰。说明了仅使用PDMS代替聚氨酯作为基底,效果不如聚氨酯纳米银SERS基底。
通过实施例1与对比文件2、3、4的对比可知,本发明中的聚氨酯纳米银基底当CV水溶液的浓度低至10-10摩尔每升时,仍然可以观察到CV的特征峰,说明了聚氨酯纳米银基底对CV的增强系数达到105以上,明显优于只使用纳米银溶液或只是用聚氨酯,或者使用其他的高分子材料。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。
Claims (10)
1.一种纳米银SERS基底的制备方法,其特征在于,该方法包括如下步骤:
将聚氨酯A胶与聚氨酯B胶混合后搅拌均匀,静置发泡固化;
将发泡固化后的聚氨酯切成小块浸泡在纳米银溶液中,得到基于聚氨酯的纳米银SERS基底。
2.根据权利要求1所述的制备方法,其特征在于,所述纳米银溶液的制备是:使用柠檬酸钠还原硝酸银,制备纳米银溶液;其中柠檬酸钠溶液的浓度为0.01g/mL,硝酸银溶液浓度为200mg/L。
3.根据权利要求1所述的制备方法,其特征在于,所述聚氨酯A胶与聚氨酯B胶按质量比为1:1混合。
4.根据权利要求1所述的制备方法,其特征在于,所述发泡固化的温度为室温下固化,时间为2~6h。
5.根据权利要求1所述的制备方法,其特征在于,所述聚氨酯块在纳米银溶液中的浸泡时间为6h以上。
6.按权利要求1-5任一项所述方法制备的基于聚氨酯的纳米银SERS基底。
7.一种检测结晶紫CV的方法,其特征在于,所述方法是利用权利要求6所述的基于聚氨酯的纳米银SERS基底。
8.根据权利要求7所述的方法,其特征在于,将制备好的聚氨酯纳米银基底浸入结晶紫水溶液中数分钟,取出基底后,使用inVia共聚焦拉曼光谱仪获得拉曼光谱,激光光源532nm,功率12.5mw,物镜50倍长焦,曝光时间20s。
9.权利要求6所述的基于聚氨酯的纳米银SERS基底在拉曼光谱技术领域的应用。
10.权利要求6所述的基于聚氨酯的纳米银SERS基底在无损检测技术领域的应用。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911045971.7A CN110687098B (zh) | 2019-10-30 | 2019-10-30 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
PCT/CN2020/124249 WO2021083169A1 (zh) | 2019-10-30 | 2020-10-28 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
US17/564,819 US20220119610A1 (en) | 2019-10-30 | 2021-12-29 | Preparation Method of Polyurethane-based Nano-silver SERS Substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911045971.7A CN110687098B (zh) | 2019-10-30 | 2019-10-30 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110687098A CN110687098A (zh) | 2020-01-14 |
CN110687098B true CN110687098B (zh) | 2020-09-08 |
Family
ID=69114902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911045971.7A Active CN110687098B (zh) | 2019-10-30 | 2019-10-30 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220119610A1 (zh) |
CN (1) | CN110687098B (zh) |
WO (1) | WO2021083169A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110687098B (zh) * | 2019-10-30 | 2020-09-08 | 江南大学 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
CN113564567B (zh) * | 2021-07-27 | 2023-06-06 | 宁波大学 | 一种sers薄膜的制备方法 |
CN113702355B (zh) * | 2021-09-24 | 2023-06-30 | 河南农业大学 | AgNPs@PDMS多孔洞微孔滤膜SERS检测平台的制备方法及应用 |
CN114486850B (zh) * | 2022-01-25 | 2023-06-16 | 中国地质大学(北京) | 一种Au/ND/C3N4复合材料及其制备方法和应用 |
CN114660043B (zh) * | 2022-03-24 | 2025-01-07 | 南通大学 | 基于弹力收缩的sers基底的制备方法、sers基底及其检测方法 |
CN115046980B (zh) * | 2022-05-24 | 2024-05-14 | 合肥工业大学 | 仿荷叶乳突结构银微/纳米阵列的制备及其在柔性sers传感器中的应用 |
CN115184334B (zh) * | 2022-07-08 | 2024-10-25 | 西安交通大学 | 一种基于胶体银梯度聚集效应的拉曼光谱检测方法 |
CN115201178B (zh) * | 2022-08-25 | 2024-11-05 | 中国农业大学 | 一种用于农药残留检测的柔性透明表面增强拉曼基底、其构筑方法及应用 |
CN115586169B (zh) * | 2022-09-26 | 2024-10-08 | 广西电网有限责任公司电力科学研究院 | 一种矿物绝缘油中苯并三氮唑含量的sers测定方法 |
CN116500014B (zh) * | 2023-05-08 | 2024-07-26 | 哈尔滨工业大学 | 一种基于纸色谱和表面增强拉曼散射技术在复杂基质中同时定量检测尿酸和肌酐浓度的方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104677882A (zh) * | 2015-03-26 | 2015-06-03 | 中国科学院重庆绿色智能技术研究院 | 一种sers衬底及其制备方法 |
CN105021589A (zh) * | 2015-06-18 | 2015-11-04 | 北京航空航天大学 | 一种利用丝网印刷技术制备疏水性sers基底的方法 |
CN105524452A (zh) * | 2015-10-27 | 2016-04-27 | 营口圣泉高科材料有限公司 | 一种碳纳米结构复合聚氨酯泡沫、制备方法和用途 |
CN106525813A (zh) * | 2016-11-01 | 2017-03-22 | 中国科学院合肥物质科学研究院 | 多孔石墨烯‑银纳米方块复合材料及其制备方法和用途 |
CN107478635A (zh) * | 2017-06-23 | 2017-12-15 | 中北大学 | 一种mof‑贵金属复合sers基底及其制备方法 |
CN108414496A (zh) * | 2018-01-29 | 2018-08-17 | 福州大学 | 一种快速制备表面增强拉曼活性基底的方法 |
CN109030456A (zh) * | 2018-08-25 | 2018-12-18 | 复旦大学 | 一种表面增强拉曼光谱检测基底及其制备方法和应用 |
CN109060762A (zh) * | 2018-07-27 | 2018-12-21 | 山东师范大学 | 基于银纳米颗粒的复合柔性表面增强拉曼基底及其制备方法 |
CN109932352A (zh) * | 2019-03-15 | 2019-06-25 | 上海如海光电科技有限公司 | 一种水产品中孔雀石绿和结晶紫的拉曼检测方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102775765B (zh) * | 2012-08-13 | 2014-03-12 | 宜兴丹森科技有限公司 | 一种具有离子交换功能的亲水性聚氨酯软质泡沫材料及其应用 |
CA3049659C (en) * | 2017-01-11 | 2021-10-19 | Baker Hughes, A Ge Company, Llc | Thin film substrates including crosslinked carbon nanostructures and related methods |
US11506610B2 (en) * | 2017-05-05 | 2022-11-22 | University Of Massachusetts | Dual functional substrates and methods of making the same |
US20190072493A1 (en) * | 2017-09-05 | 2019-03-07 | Oregon State University | Device and method for on-chip chemical separation and detection |
CN108709879B (zh) * | 2018-05-18 | 2020-09-18 | 浙江大学 | 基于介电高弹聚合物的表面增强拉曼散射活性薄膜及方法 |
CN110687098B (zh) * | 2019-10-30 | 2020-09-08 | 江南大学 | 一种基于聚氨酯的纳米银sers基底的制备方法 |
-
2019
- 2019-10-30 CN CN201911045971.7A patent/CN110687098B/zh active Active
-
2020
- 2020-10-28 WO PCT/CN2020/124249 patent/WO2021083169A1/zh active Application Filing
-
2021
- 2021-12-29 US US17/564,819 patent/US20220119610A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104677882A (zh) * | 2015-03-26 | 2015-06-03 | 中国科学院重庆绿色智能技术研究院 | 一种sers衬底及其制备方法 |
CN105021589A (zh) * | 2015-06-18 | 2015-11-04 | 北京航空航天大学 | 一种利用丝网印刷技术制备疏水性sers基底的方法 |
CN105524452A (zh) * | 2015-10-27 | 2016-04-27 | 营口圣泉高科材料有限公司 | 一种碳纳米结构复合聚氨酯泡沫、制备方法和用途 |
CN106525813A (zh) * | 2016-11-01 | 2017-03-22 | 中国科学院合肥物质科学研究院 | 多孔石墨烯‑银纳米方块复合材料及其制备方法和用途 |
CN107478635A (zh) * | 2017-06-23 | 2017-12-15 | 中北大学 | 一种mof‑贵金属复合sers基底及其制备方法 |
CN108414496A (zh) * | 2018-01-29 | 2018-08-17 | 福州大学 | 一种快速制备表面增强拉曼活性基底的方法 |
CN109060762A (zh) * | 2018-07-27 | 2018-12-21 | 山东师范大学 | 基于银纳米颗粒的复合柔性表面增强拉曼基底及其制备方法 |
CN109030456A (zh) * | 2018-08-25 | 2018-12-18 | 复旦大学 | 一种表面增强拉曼光谱检测基底及其制备方法和应用 |
CN109932352A (zh) * | 2019-03-15 | 2019-06-25 | 上海如海光电科技有限公司 | 一种水产品中孔雀石绿和结晶紫的拉曼检测方法 |
Non-Patent Citations (1)
Title |
---|
Rapid In Situ SERS Analysis of Pesticide Residues on Plant Surfaces Based on Micelle Extraction of Targets and Stabilization of Ag Nanoparticle Ag gregates;Yan Kang et al.;《Food Analytical Methods》;20180528;第11卷;3161-3169 * |
Also Published As
Publication number | Publication date |
---|---|
WO2021083169A1 (zh) | 2021-05-06 |
US20220119610A1 (en) | 2022-04-21 |
CN110687098A (zh) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110687098B (zh) | 一种基于聚氨酯的纳米银sers基底的制备方法 | |
Wei et al. | Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires | |
Shiohara et al. | Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing | |
Liu et al. | Highly uniform and reproducible surface enhanced Raman scattering on air-stable metallic glassy nanowire array | |
Chan et al. | SERS detection of biomolecules by highly sensitive and reproducible Raman-enhancing nanoparticle array | |
Péron et al. | Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS) | |
Meyer et al. | Quantifying resonant Raman cross sections with SERS | |
CN103398998A (zh) | 一种用于汞离子检测的拉曼探针及其制备方法 | |
Wang et al. | High-performance SERS substrate based on perovskite quantum dot–graphene/nano-Au composites for ultrasensitive detection of rhodamine 6G and p-nitrophenol | |
Chen et al. | Silver‐decorated carbon nanotube networks as SERS substrates | |
Tao et al. | Fiber optic SERS sensor with silver nanocubes attached based on evanescent wave for detecting pesticide residues | |
CN107976437B (zh) | 基于多枝状纳米颗粒检测汞离子的方法 | |
TWI612288B (zh) | 一種重金屬檢驗試片與其製備方法 | |
CN107607515A (zh) | 一种基于Au@AgNCs检测硫离子的方法 | |
Yang et al. | Ultrasensitive multiplex SERS immunoassay based on porous Au–Ag alloy nanoparticle–amplified Raman signal probe and encoded photonic crystal beads | |
Peng et al. | A copper foam-based surface-enhanced Raman scattering substrate for glucose detection | |
Xu et al. | Compact Ag nanoparticles anchored on the surface of glass fiber filter paper for SERS applications | |
Cai et al. | Reusable 3D silver superposed silica SERS substrate based on the Griess reaction for the ratiometric detection of nitrite | |
Shahine et al. | Nanoporous gold stacked layers as substrates for SERS detection in liquids or gases with ultralow detection limits and long-term stability | |
Alyami et al. | Fabrication of transparent composites for non-invasive Surface Enhanced Raman Scattering (SERS) analysis of modern art works | |
Farshchi et al. | Optimization of a silver-nanoprism conjugated with 3, 3′, 5, 5′-tetramethylbenzidine towards easy-to-make colorimetric analysis of acetaldehyde: a new platform towards rapid analysis of carcinogenic agents and environmental technology | |
TWI657166B (zh) | 攜帶式拉曼光學檢測試紙及其製法與使用方法 | |
Saini et al. | Axonic Au tips induced enhancement in Raman spectra and biomolecular sensing | |
Zhang et al. | Highly sensitive SERS performance and excellent durability of the ZIF-67@ Ag/TiN composite films substrate | |
Rani et al. | Investigation of hydrophobic bimetallic cost-effective Cu-Ag nanostructures as SERS sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |