CN110676980A - Cooling device, stator and wind driven generator - Google Patents
Cooling device, stator and wind driven generator Download PDFInfo
- Publication number
- CN110676980A CN110676980A CN201911063448.7A CN201911063448A CN110676980A CN 110676980 A CN110676980 A CN 110676980A CN 201911063448 A CN201911063448 A CN 201911063448A CN 110676980 A CN110676980 A CN 110676980A
- Authority
- CN
- China
- Prior art keywords
- cooling
- liquid
- stator
- pipeline
- wind turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/08—Arrangements for cooling or ventilating by gaseous cooling medium circulating wholly within the machine casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
- H02K9/197—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Motor Or Generator Cooling System (AREA)
Abstract
本发明公开了一种冷却装置、定子及风力发电机。冷却装置包括空冷系统和液冷管路;空冷系统包括使气态介质在风力发电机的内部流通的气态介质流动路径和设于气态介质流动路径上的第一换热装置;液冷管路包括位于第一换热装置内部的第一部分和位于定子内部或外表面上的第二部分;其中液冷管路中的冷却液先后流经第一部分、第二部分。本发明利用风冷系统及液冷管路相结合,不仅提升了风力发电机的冷却效率,减小了风力发电机的内部温升和温度梯度,更使得冷却装置具有可靠性高、易维护及成本低的优点。
The invention discloses a cooling device, a stator and a wind generator. The cooling device includes an air cooling system and a liquid cooling pipeline; the air cooling system includes a gaseous medium flow path for allowing the gaseous medium to circulate inside the wind turbine and a first heat exchange device arranged on the gaseous medium flow path; the liquid cooling pipeline includes a The first part inside the first heat exchange device and the second part located on the inside or the outer surface of the stator; wherein the cooling liquid in the liquid cooling pipeline flows through the first part and the second part successively. The invention utilizes the combination of the air cooling system and the liquid cooling pipeline, which not only improves the cooling efficiency of the wind turbine, but also reduces the internal temperature rise and temperature gradient of the wind turbine, and also makes the cooling device have high reliability, easy maintenance and high reliability. The advantage of low cost.
Description
技术领域technical field
本发明涉及风力发电领域,特别涉及一种冷却装置、定子及风力发电机。The invention relates to the field of wind power generation, in particular to a cooling device, a stator and a wind generator.
背景技术Background technique
风力发电机运行时产生的铜耗和铁耗会造成风力发电机各部件温升,过高的温升将会直接影响到风力发电机的寿命甚至导致其无法正常运行。在电机各部件中,受温升影响最为明显的是绕组绝缘,绕组绝缘温度每升高10℃将导致绕组绝缘减少大约一半的寿命,风力发电机运行时由于冷却系统失效等原因造成绝缘温度远超限制范围,更严重的,还可能造成绝缘彻底击穿、电机损毁。对于永磁风力发电机,永磁体温度也需要控制在一定限制一下,防止由不可逆退磁引起的电机性能永久性下降。因此,冷却设计是风力发电机设计中非常重要的一环,是保障风力发电机可靠性的必要条件。The copper consumption and iron consumption generated during the operation of the wind turbine will cause the temperature rise of various components of the wind turbine. Excessive temperature rise will directly affect the life of the wind turbine and even cause it to fail to operate normally. Among the various components of the motor, the winding insulation is most affected by the temperature rise. Every 10°C increase in the winding insulation temperature will reduce the life of the winding insulation by about half. When the wind turbine is running, due to the failure of the cooling system, the insulation temperature will be far Exceeding the limit range, more serious, may also cause complete breakdown of the insulation and damage to the motor. For permanent magnet wind turbines, the temperature of the permanent magnets also needs to be controlled to a certain limit to prevent the permanent degradation of motor performance caused by irreversible demagnetization. Therefore, cooling design is a very important part of wind turbine design and a necessary condition to ensure the reliability of wind turbines.
现有风力发电机冷却技术中,空冷技术相对比较成熟,其具有可靠性高、易维护、成本低等优点,因此对于可靠性要求较高、维护难度较大的场合,例如海上风力发电机组,空冷相对于其他冷却技术有着明显优势。但是,空冷最大的劣势则是冷却效率低,这个劣势在近年来风力发电机体积增大、转矩密度提升的趋势下显得尤为明显。现有6-8MW级别的风力发电机采用空冷技术尚能满足冷却要求,随着发电机容量的进一步增大,其产热进一步增加,依靠提高风量来增强空冷系统的散热能力的效果带来的效果非常有限。特别是对于海上机组,其防腐要求决定了机舱必须实施成封闭式。由此,空冷只能依靠热交换装置将风力发电机内部循环空气的热量传递至外界,因此电机内部冷却空气的温度必然高于外界,也导致空冷效率进一步的降低。Among the existing wind turbine cooling technologies, air cooling technology is relatively mature, and has the advantages of high reliability, easy maintenance, and low cost. Therefore, for occasions with high reliability requirements and difficult maintenance, such as offshore wind turbines, Air cooling has obvious advantages over other cooling technologies. However, the biggest disadvantage of air cooling is the low cooling efficiency, which is particularly obvious in recent years when the volume of wind turbines increases and the torque density increases. The existing 6-8MW wind turbines can still meet the cooling requirements with air cooling technology. The effect is very limited. Especially for offshore units, the anti-corrosion requirements determine that the engine room must be implemented as a closed type. Therefore, the air cooling can only rely on the heat exchange device to transfer the heat of the circulating air inside the wind turbine to the outside world, so the temperature of the cooling air inside the motor must be higher than the outside world, which further reduces the air cooling efficiency.
另一种具有一定可行性的方式是液冷技术,比如采用水套冷,即将液冷装置布置在定子铁芯外侧,也包括将液冷装置布置在定子铁芯内部但不与定子绕组直接接合的冷却结构,该技术在部分机型上已经得到了应用。相对于水内冷,水套冷由于不与绕组直接接合,因此可以通过合理的设计,彻底避免在冷却液回路上设置绝缘装置、冷却液电导率控制装置,从而大大增强其可行性、可靠性、经济性。水套冷技术虽然在过去的风力发电机应用上起到了良好的效果,但是对于未来大兆瓦风力发电机的冷却效果也是有限的。这是因为液冷装置设置在绕组外的一侧时,绕组线圈内部产生的绝大部分热量将通过该侧达到液冷装置,在这个路径需要穿过导热率在0.2W/mK级别的多层绝缘,导致热量传递路径上的产生较大温度梯度,同时意味着绕组线圈内部局部温度较高。Another feasible method is liquid cooling technology, such as using water jacket cooling, that is, arranging the liquid cooling device outside the stator core, and also arranging the liquid cooling device inside the stator core but not directly engaging with the stator windings The cooling structure has been applied in some models. Compared with internal water cooling, since water jacket cooling is not directly connected to the windings, it is possible to completely avoid installing insulating devices and cooling liquid conductivity control devices on the cooling liquid circuit through reasonable design, thereby greatly enhancing its feasibility and reliability. , economy. Although the water jacket cooling technology has played a good role in the application of wind turbines in the past, the cooling effect for the future large-megawatt wind turbines is also limited. This is because when the liquid cooling device is arranged on one side outside the winding, most of the heat generated inside the winding coil will reach the liquid cooling device through this side, and this path needs to pass through the multi-layers with a thermal conductivity of 0.2W/mK. Insulation, resulting in a large temperature gradient on the heat transfer path, which also means that the local temperature inside the winding coil is high.
综上所述,现有的风力发电机中空冷技术、液冷技术的冷却效率相对偏低,无法很好的适应未来海上的风力发电机组大型化趋势,造成海上机组成本过高。To sum up, the cooling efficiency of the existing air-cooled and liquid-cooled technologies for wind turbines is relatively low, and cannot well adapt to the trend of large-scale offshore wind turbines in the future, resulting in high cost of offshore units.
发明内容SUMMARY OF THE INVENTION
本发明要解决的技术问题是为了克服现有技术风力发电机中空冷技术、液冷技术的冷却效率相对偏低的上述缺陷,提供一种冷却装置、定子及风力发电机。The technical problem to be solved by the present invention is to provide a cooling device, a stator and a wind generator in order to overcome the above-mentioned defects of relatively low cooling efficiency of the air cooling technology and liquid cooling technology in the prior art wind turbine.
本发明是通过下述技术方案来解决上述技术问题:The present invention solves the above-mentioned technical problems through the following technical solutions:
一种风力发电机的冷却装置,所述风力发电机包括定子、转子、位于所述定子和所述转子之间的气隙、以及用于冷却所述风力发电机的冷却装置,其特点在于,所述冷却装置包括空冷系统和液冷管路;所述空冷系统包括使气态介质在所述风力发电机的内部流通的气态介质流动路径和设于所述气态介质流动路径上的第一换热装置;所述液冷管路包括位于所述第一换热装置内部的第一部分和位于所述定子内部或外表面上的第二部分;其中所述液冷管路中的冷却液先后流经所述第一部分、所述第二部分。在本实施例中,通过采用以上结构,利用空冷系统将风力发电机产生的热量传递至第一换热装置,并利用第一换热装置将热量传递至外部;再利用液冷管路的第二部分将定子的热量传递至第一换热装置,同时,液冷管路的第一部分先流经第一换热装置,有利于降低第一换热装置的温度,进而有利于提高冷却装置的换热效率。本实施例利用风冷系统及液冷管路相结合,不仅提升了风力发电机的冷却效率,减小了风力发电机的内部温升和温度梯度,更使得冷却装置具有可靠性高、易维护及成本低的优点。A cooling device for a wind generator, the wind generator comprising a stator, a rotor, an air gap between the stator and the rotor, and a cooling device for cooling the wind generator, characterized in that: The cooling device includes an air-cooling system and a liquid-cooling pipeline; the air-cooling system includes a gaseous medium flow path for allowing the gaseous medium to circulate inside the wind turbine and a first heat exchange provided on the gaseous medium flow path device; the liquid cooling pipeline includes a first part located inside the first heat exchange device and a second part located inside or on the outer surface of the stator; wherein the cooling liquid in the liquid cooling pipeline flows through the the first part, the second part. In this embodiment, by adopting the above structure, the air cooling system is used to transfer the heat generated by the wind turbine to the first heat exchange device, and the first heat exchange device is used to transfer the heat to the outside; The second part transfers the heat of the stator to the first heat exchange device, and at the same time, the first part of the liquid cooling pipeline first flows through the first heat exchange device, which is beneficial to reduce the temperature of the first heat exchange device, thereby improving the cooling device. heat transfer efficiency. This embodiment uses the combination of the air cooling system and the liquid cooling pipeline, which not only improves the cooling efficiency of the wind turbine, but also reduces the internal temperature rise and temperature gradient of the wind turbine, and makes the cooling device more reliable and easy to maintain. and low cost.
较佳地,所述第一换热装置为具有气侧和液侧的空水热交换器,所述空冷系统与所述气侧连通,所述液冷管路与所述液侧连通,且所述液侧包括所述液冷管路的第二部分。Preferably, the first heat exchange device is an air-water heat exchanger having a gas side and a liquid side, the air cooling system is communicated with the gas side, the liquid cooling pipeline is communicated with the liquid side, and The liquid side includes a second portion of the liquid cooling line.
在本实施例中,通过采用以上结构,利用具有气侧和液侧的空水热交换器,使得第一换热装置能够及时的吸收空冷系统的热量,有利于有效地降低气态介质的温度。利用液冷管路的与液侧相连通,使得液冷管路能够有效地与第一换热装置发生热量交换,有利于有效地降低第一换热装置的温度,温度较低的第一换热装置也有利于更加高效的降低空冷系统中气体介质的温度,进而有利于提高空冷系统的冷却效率,最终,有利于提高冷却装置的冷却效率。In this embodiment, by adopting the above structure and using an air-water heat exchanger having a gas side and a liquid side, the first heat exchange device can absorb the heat of the air cooling system in time, which is beneficial to effectively reduce the temperature of the gaseous medium. The liquid cooling pipeline is connected to the liquid side, so that the liquid cooling pipeline can effectively exchange heat with the first heat exchange device, which is beneficial to effectively reduce the temperature of the first heat exchange device. The thermal device is also beneficial to more efficiently lowering the temperature of the gas medium in the air cooling system, thereby helping to improve the cooling efficiency of the air cooling system, and finally, helping to improve the cooling efficiency of the cooling device.
较佳地,所述空水热交换器位于所述定子的径向内侧,所述气隙位于所述定子的径向外侧,其中所述径向外侧与所述径向内侧相对。Preferably, the air-water heat exchanger is located at the radial inner side of the stator, and the air gap is located at the radial outer side of the stator, wherein the radial outer side is opposite to the radial inner side.
较佳地,所述空冷系统还包括用于驱动所述气态介质在所述风力发电机内部流动的风扇,所述风扇设于所述气态介质流动路径上。Preferably, the air cooling system further comprises a fan for driving the gaseous medium to flow inside the wind turbine, and the fan is arranged on the flow path of the gaseous medium.
在本实施例中,通过采用以上结构,利用风扇驱动气态介质的流动,有利于降低冷却装置的成本,提高冷却装置的寿命。In this embodiment, by adopting the above structure, the fan is used to drive the flow of the gaseous medium, which is beneficial to reduce the cost of the cooling device and improve the life of the cooling device.
较佳地,所述空冷系统为封闭式系统,所述气态介质在所述风力发电机内部循环流动。Preferably, the air cooling system is a closed system, and the gaseous medium circulates inside the wind turbine.
在本实施例中,通过采用以上结构,通过将空冷系统设计为封闭式系统,有利于降低外部气体对风力发电机的内部的影响,特别是对于海上风力发电机,利用封闭式系统能够有效地避免海风对风力发电机内部的腐蚀。In this embodiment, by adopting the above structure, by designing the air cooling system as a closed system, it is beneficial to reduce the influence of external gas on the interior of the wind turbine, especially for offshore wind turbines, the closed system can effectively Avoid the corrosion of the inside of the wind turbine by the sea breeze.
较佳地,所述风扇设于所述第一换热装置内部或设于所述第一换热装置上。Preferably, the fan is provided inside the first heat exchange device or on the first heat exchange device.
较佳地,所述风扇上还设有开关装置和/或变频装置,用于调节所述风扇的开关和/或通过所述风扇的气态介质流量。Preferably, the fan is further provided with a switch device and/or a frequency conversion device for adjusting the switch of the fan and/or the flow rate of the gaseous medium passing through the fan.
在本实施例中,通过采用以上结构,通过在风扇上设置开关装置和/或变频装置,有利于灵活地控制风扇的工作状态。In this embodiment, by adopting the above structure, and by arranging a switch device and/or a frequency conversion device on the fan, it is beneficial to flexibly control the working state of the fan.
较佳地,所述气态介质的流动路径包括:位于所述定子轴向至少一侧的端部空间,位于所述定子径向外侧的所述气隙,位于所述定子内部的径向通风槽,位于所述定子径向内侧的内部空腔,位于所述定子径向内侧的、且位于所述内部空腔内的第一换热装置,所述气态介质先后流经所述端部空间、所述气隙、所述径向通风槽、所述内部空腔、所述第一换热装置。Preferably, the flow path of the gaseous medium includes: an end space located on at least one side of the stator axial direction, the air gap located on the radial outer side of the stator, and a radial ventilation slot located inside the stator. , the inner cavity located on the inner side of the stator radial direction, the first heat exchange device located on the inner side of the stator radial direction and located in the inner cavity, the gaseous medium successively flows through the end space, the air gap, the radial ventilation slot, the inner cavity, the first heat exchange device.
在本实施例中,通过采用以上结构,利用风力发电机内部的空间作为气态介质的流动路径,简化了流动路径的设计形式,有利于气态介质直接将风力发电机内的热量传送至第一换热装置,进而提高冷却装置的换热效率。In this embodiment, by adopting the above structure, the space inside the wind turbine is used as the flow path of the gaseous medium, which simplifies the design form of the flow path, which is beneficial for the gaseous medium to directly transfer the heat in the wind turbine to the first heat exchanger. heat device, thereby improving the heat exchange efficiency of the cooling device.
较佳地,所述定子的轭部设有沿轴向延伸的通孔,所述液冷管路的第二部分至少部分的设于所述通孔内。Preferably, the yoke of the stator is provided with a through hole extending in the axial direction, and the second part of the liquid cooling pipeline is at least partially provided in the through hole.
在本实施例中,通过采用以上结构,通过将液冷管路的第二部分设置在定子的通孔内,避免了冷却液直接接触定子,也避免了冷却液对定子的腐蚀。同时,也降低了对冷却液的要求,使得冷却液不需要进行特殊的去离子处理。也有利于降低冷却装置的使用成本有利于提高液冷管路与定子之间热量传递的效率,进而有利于快速的降低定子的温度。In this embodiment, by adopting the above structure, by disposing the second part of the liquid cooling pipeline in the through hole of the stator, the direct contact of the cooling liquid with the stator is avoided, and the corrosion of the stator by the cooling liquid is also avoided. At the same time, the requirements for the cooling liquid are also reduced, so that the cooling liquid does not need special deionization treatment. It is also beneficial to reduce the use cost of the cooling device, to improve the efficiency of heat transfer between the liquid cooling pipeline and the stator, and thus to rapidly reduce the temperature of the stator.
较佳地,所述液冷管路的第二部分包括多个U型管,所述U型管插入安装至所述通孔内,所述U型管之间通过连接装置相连通。Preferably, the second part of the liquid cooling pipeline includes a plurality of U-shaped tubes, the U-shaped tubes are inserted and installed into the through holes, and the U-shaped tubes are communicated with each other through a connecting device.
在本实施例中,通过采用以上结构,利用U型管简化了液冷管路的第二部分的安装工序,有利于降低冷却装置的制造成本。In this embodiment, by adopting the above structure, the U-shaped tube is used to simplify the installation process of the second part of the liquid cooling pipeline, which is beneficial to reduce the manufacturing cost of the cooling device.
较佳地,所述连接装置为卡箍、焊接接头、引水盒及螺纹接头中的至少一种。Preferably, the connecting device is at least one of a clamp, a welded joint, a water diversion box and a threaded joint.
在本实施例中,通过采用以上结构,利用卡箍、焊接接头、引水盒及螺纹接头等作为连接装置,提高了U型管之间连接的牢固性。In this embodiment, by adopting the above structure and using clamps, welded joints, water diversion boxes and threaded joints as connection devices, the firmness of the connection between U-shaped pipes is improved.
较佳地,所述液冷管路通过主管路与外部管路连通,所述主管路连通所述第一部分的一个或多个进液口和所述外部管路,所述主管路连通所述第二部分的一个或多个出液口和所述外部管路。Preferably, the liquid cooling pipeline is communicated with an external pipeline through a main pipeline, the main pipeline is connected with one or more liquid inlets of the first part and the external pipeline, and the main pipeline is connected with the external pipeline. The one or more liquid outlets of the second part and the external piping.
在本实施例中,通过采用以上结构,利用主管路实现液冷管路与外部管路的连通,有利于提高布置液冷管路的灵活性。In this embodiment, by adopting the above structure, the main pipeline is used to realize the communication between the liquid cooling pipeline and the external pipeline, which is beneficial to improve the flexibility of arranging the liquid cooling pipeline.
较佳地,所述外部管路的冷却液流动路径上还设有泵,用于驱动冷却液流动,所述外部管路的冷却液流动路径上还设有第二换热装置,用于将冷却液中的热量耗散至外界。Preferably, a pump is also provided on the cooling liquid flow path of the external pipeline for driving the cooling liquid to flow, and a second heat exchange device is also provided on the cooling liquid flow path of the external pipeline for transferring the cooling liquid to the cooling liquid. The heat in the coolant is dissipated to the outside.
在本实施例中,通过采用以上结构,利用泵实现了液冷管路内冷却液的流动,也有利于降低冷却装置的成本,提高冷却装置的寿命。利用第二换热装置将热量传递至外界或其他介质,有利于进一步的降低液冷管路中冷却液的温度,进而有利于提高冷却装置的冷却效率。优选的,第二换热装置设置在风力发电机的外部;更优选的,第二换热装置设置在风力发电机组的外部。In this embodiment, by adopting the above structure, the flow of the cooling liquid in the liquid cooling pipeline is realized by the pump, which is also beneficial to reduce the cost of the cooling device and improve the life of the cooling device. The use of the second heat exchange device to transfer heat to the outside or other media is beneficial to further reduce the temperature of the cooling liquid in the liquid cooling pipeline, thereby improving the cooling efficiency of the cooling device. Preferably, the second heat exchange device is arranged outside the wind turbine; more preferably, the second heat exchange device is arranged outside the wind turbine.
较佳地,所述液冷管路还包括支路管,所述支路管连通所述第一部分的一个或多个出液口和所述第二部分的一个或多个进液口。Preferably, the liquid cooling pipeline further includes a branch pipe, and the branch pipe communicates with one or more liquid outlets of the first part and one or more liquid inlets of the second part.
较佳地,所述液冷管路上还设有旁通管和流量调节阀,用于调整流经所述第二部分的冷却液流量。Preferably, the liquid cooling pipeline is further provided with a bypass pipe and a flow regulating valve for adjusting the flow of the cooling liquid flowing through the second part.
在本实施例中,通过采用以上结构,利用旁通管和流量调节阀,有利于提高控制液冷管路内冷却液流动方向的灵活性。In this embodiment, by adopting the above structure and utilizing the bypass pipe and the flow regulating valve, it is beneficial to improve the flexibility of controlling the flow direction of the cooling liquid in the liquid cooling pipeline.
一种风力发电机,其特点在于,所述风力发电机包括如上所述的风力发电机的冷却装置。A wind power generator is characterized in that the wind power generator comprises the above-mentioned cooling device of the wind power generator.
在本实施例中,通过采用以上结构,利用含有冷却装置的风力发电机,有利于风力发电机保持相对适宜的温度,有利于提高风力发电机的稳定性,有利于提高风力发电机的发电效率。In this embodiment, by adopting the above structure and using a wind turbine with a cooling device, it is beneficial to maintain a relatively suitable temperature of the wind turbine, improve the stability of the wind turbine, and improve the power generation efficiency of the wind turbine. .
一种定子,其特点在于,所述定子包括如上所述的风力发电机的冷却装置,所述定子为模块化定子且包括多个沿周向分布的定子模块,每个所述定子模块对应至少一个所述第一换热装置和至少一个所述液冷管路的第二部分。A stator, characterized in that the stator includes the above-mentioned cooling device for a wind turbine, the stator is a modular stator and includes a plurality of stator modules distributed along the circumferential direction, each of the stator modules corresponds to at least A second portion of the first heat exchange device and at least one of the liquid cooling lines.
在本实施例中,通过采用以上结构,利用冷却装置,使得定子模块产生的热量被高效的转移,有利于降低定子模块的温度,有利于提高风力发电机的稳定性。In this embodiment, by adopting the above structure and using the cooling device, the heat generated by the stator module is efficiently transferred, which is beneficial to reduce the temperature of the stator module and improve the stability of the wind turbine.
较佳地,至少一个所述定子模块包括多个由并联构成的所述液冷管路的第二部分。Preferably, at least one of the stator modules includes a plurality of second parts of the liquid cooling pipelines formed in parallel.
较佳地,所有所述定子模块具有相同尺寸,所有所述定子模块对应相同数量的所述第一换热装置和相同数量的所述液冷管路的第二部分。Preferably, all the stator modules have the same size, and all the stator modules correspond to the same number of the first heat exchange devices and the same number of the second parts of the liquid cooling pipeline.
在本实施例中,通过采用以上结构,有利于提高定子模块的标准化水平,有利于缩短风力发电机的制作周期,有利于降低风力发电机的制作成本。In this embodiment, by adopting the above structure, it is beneficial to improve the standardization level of the stator module, to shorten the production cycle of the wind turbine, and to reduce the production cost of the wind turbine.
一种风力发电机,其特点在于,所述风力发电机包括如上所述的定子。A wind power generator is characterized in that the wind power generator comprises the stator as described above.
在本实施例中,通过采用以上结构,利用含有冷却装置的定子,有利于风力发电机保持相对适宜的温度,有利于提高风力发电机的稳定性,有利于提高风力发电机的发电效率。In this embodiment, by adopting the above structure and using the stator including the cooling device, it is helpful for the wind turbine to maintain a relatively suitable temperature, which is beneficial to improve the stability of the wind turbine and the power generation efficiency of the wind turbine.
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。On the basis of conforming to common knowledge in the art, the above preferred conditions can be combined arbitrarily to obtain preferred examples of the present invention.
本发明的积极进步效果在于:The positive progressive effect of the present invention is:
本发明的冷却装置利用空冷系统将风力发电机产生的热量传递至第一换热装置,并利用第一换热装置将热量传递至外部;再利用液冷管路的第二部分将定子的热量传递至第一换热装置,同时,液冷管路的第一部分先流经第一换热装置,有利于降低第一换热装置的温度,进而有利于提高冷却装置的换热效率。本发明利用风冷系统及液冷管路相结合,不仅提升了风力发电机的冷却效率,减小了风力发电机的内部温升和温度梯度,更使得冷却装置具有可靠性高、易维护及成本低的优点。The cooling device of the present invention uses the air cooling system to transfer the heat generated by the wind turbine to the first heat exchange device, and uses the first heat exchange device to transfer the heat to the outside; and then uses the second part of the liquid cooling pipeline to transfer the heat of the stator. It is transferred to the first heat exchange device, and at the same time, the first part of the liquid cooling pipeline first flows through the first heat exchange device, which is beneficial to reduce the temperature of the first heat exchange device, and further helps to improve the heat exchange efficiency of the cooling device. The invention utilizes the combination of the air cooling system and the liquid cooling pipeline, which not only improves the cooling efficiency of the wind turbine, but also reduces the internal temperature rise and temperature gradient of the wind turbine, and further enables the cooling device to have high reliability, easy maintenance and high reliability. The advantage of low cost.
附图说明Description of drawings
图1为本发明实施例1的冷却装置的原理示意图。FIG. 1 is a schematic diagram of the principle of the cooling device according to Embodiment 1 of the present invention.
图2为本发明实施例1的冷却装置的结构示意图。FIG. 2 is a schematic structural diagram of a cooling device according to Embodiment 1 of the present invention.
图3为本发明实施例1的冷却装置中定子模块的U型管的连接示意图。FIG. 3 is a schematic diagram of the connection of U-shaped tubes of the stator module in the cooling device according to Embodiment 1 of the present invention.
图4为本发明实施例1的冷却装置中的另一结构示意图。FIG. 4 is another schematic structural diagram of the cooling device according to Embodiment 1 of the present invention.
附图标记说明:Description of reference numbers:
冷却装置 100
第一换热装置 11The first
进口 111
出口 112
轴流扇 12
气隙 13
径向通风槽 14
定子内部空腔 15Internal cavity of
端部空间 16
主管路 21
U型管 22
卡箍 23
支管路 24
转子 30
定子模块 40
固定装置 41
气态介质流向 AFGaseous medium flows to AF
冷却液流向 CFCoolant flows to CF
具体实施方式Detailed ways
下面通过实施例的方式并结合附图来更清楚完整地说明本发明,但并不因此将本发明限制在的实施例范围之中。The present invention will be more clearly and completely described below by means of the embodiments and in conjunction with the accompanying drawings, but the present invention is not limited to the scope of the embodiments.
实施例1Example 1
如图1-4所示,本实施例为一种风力发电机的冷却装置100,风力发电机包括定子、转子30、位于定子和转子30之间的气隙13、以及用于冷却风力发电机的冷却装置100,冷却装置100包括空冷系统和液冷管路;空冷系统包括使气态介质在风力发电机的内部流通的气态介质流动路径和设于气态介质流动路径上的第一换热装置11;液冷管路包括位于第一换热装置11内部的第一部分和位于定子内部或外表面上的第二部分;其中液冷管路中的冷却液先后流经第一部分、第二部分。在本实施例中,通过采用以上结构,利用空冷系统将风力发电机产生的热量传递至第一换热装置11,并利用第一换热装置11将热量传递至外部;再利用液冷管路的第二部分将定子的热量传递至第一换热装置11,同时,液冷管路的第一部分先流经第一换热装置11,有利于降低第一换热装置11的温度,进而有利于提高冷却装置100的换热效率。本实施例利用风冷系统及液冷管路相结合,不仅提升了风力发电机的冷却效率,减小了风力发电机的内部温升和温度梯度,更使得冷却装置100具有可靠性高、易维护及成本低的优点。说明:液冷管路的第一部分位于第一换热装置11内部,图1-图4中未显示,液冷管路的第二部分包括图1-图4中显示的管路。As shown in FIGS. 1-4 , the present embodiment is a
作为一种实施方式地,第一换热装置11还可以设计为具有气侧和液侧的空水热交换器,空冷系统与气侧连通,液冷管路与液侧连通,且液侧包括液冷管路的第二部分。本实施例利用具有气侧和液侧的空水热交换器,使得第一换热装置11能够及时的吸收空冷系统的热量,有利于有效地降低气态介质的温度。利用液冷管路的与液侧相连通,使得液冷管路能够有效地与第一换热装置11发生热量交换,有利于有效地降低第一换热装置11的温度,温度较低的第一换热装置11也有利于更加高效的降低空冷系统中气体介质的温度,进而有利于提高空冷系统的冷却效率,最终,有利于提高冷却装置100的冷却效率。As an embodiment, the first
作为一种优选的实施方式,空水热交换器还可以位于定子的径向内侧,气隙13位于定子的径向外侧,其中径向外侧与径向内侧相对。As a preferred embodiment, the air-water heat exchanger may also be located on the radial inner side of the stator, and the
为了提高气态介质的流动速度,空冷系统还包括用于驱动气态介质在风力发电机内部流动的风扇,风扇设于气态介质流动路径上。本实施例利用风扇驱动气态介质的流动,有利于降低冷却装置100的成本,提高冷却装置100的寿命。In order to improve the flow speed of the gaseous medium, the air cooling system further includes a fan for driving the gaseous medium to flow inside the wind turbine, and the fan is arranged on the flow path of the gaseous medium. In this embodiment, a fan is used to drive the flow of the gaseous medium, which is beneficial to reduce the cost of the
作为一种较佳的实施方式,空冷系统还可以为封闭式系统,气态介质在风力发电机内部循环流动。本实施例通过将空冷系统设计为封闭式系统,有利于降低外部气体对风力发电机的内部的影响,特别是对于海上风力发电机,利用封闭式系统能够有效地避免海风对风力发电机内部的腐蚀。As a preferred embodiment, the air cooling system can also be a closed system, and the gaseous medium circulates inside the wind turbine. In this embodiment, by designing the air cooling system as a closed system, it is beneficial to reduce the influence of external gas on the interior of the wind turbine, especially for offshore wind turbines, the use of a closed system can effectively prevent the sea breeze from affecting the interior of the wind turbine. corrosion.
作为一种优选的实施方式,风扇还可以设于第一换热装置11内部或设于第一换热装置11上。As a preferred embodiment, the fan may also be provided inside the first
在其他实施例中,风扇上还可以设有开关装置和/或变频装置,用于调节风扇的开关和/或通过风扇的气态介质流量。本实施例通过在风扇上设置开关装置和/或变频装置,有利于灵活地控制风扇的工作状态。In other embodiments, the fan may also be provided with a switch device and/or a frequency conversion device for adjusting the switch of the fan and/or the flow of gaseous medium passing through the fan. In this embodiment, by arranging a switch device and/or a frequency conversion device on the fan, it is beneficial to flexibly control the working state of the fan.
作为一种实施方式,具体的,如图1所示,气态介质的流动路径包括:位于定子轴向至少一侧的端部空间16,位于定子径向外侧的气隙13,位于定子内部的径向通风槽14,位于定子径向内侧的内部空腔,位于定子径向内侧的、且位于内部空腔内的第一换热装置11,气态介质先后流经端部空间16、气隙13、径向通风槽14、内部空腔、第一换热装置11。气态介质在流动路径内流通,形成气态介质流向AF。本实施例利用风力发电机内部的空间作为气态介质的流动路径,简化了流动路径的设计形式,有利于气态介质直接将风力发电机内的热量传送至第一换热装置11,进而提高冷却装置100的换热效率。As an embodiment, specifically, as shown in FIG. 1 , the flow path of the gaseous medium includes: an
在其他实施例中,定子的轭部还可以设有沿轴向延伸的通孔,液冷管路的第二部分至少部分的设于通孔内。本实施例通过将液冷管路的第二部分设置在定子的通孔内,避免了冷却液直接接触定子,也避免了冷却液对定子的腐蚀。同时,也降低了对冷却液的要求,使得冷却液不需要进行特殊的去离子处理。也有利于降低冷却装置100的使用成本有利于提高液冷管路与定子之间热量传递的效率,进而有利于快速的降低定子的温度。In other embodiments, the yoke of the stator may further be provided with a through hole extending in the axial direction, and the second part of the liquid cooling pipeline is at least partially provided in the through hole. In this embodiment, by arranging the second part of the liquid cooling pipeline in the through hole of the stator, the direct contact of the cooling liquid with the stator is avoided, and the corrosion of the stator by the cooling liquid is also avoided. At the same time, the requirements for the cooling liquid are also reduced, so that the cooling liquid does not need special deionization treatment. It is also beneficial to reduce the use cost of the
作为一种较佳的实施方式,液冷管路的第二部分还可以包括多个U型管22,U型管22插入安装至通孔内,U型管22之间通过连接装置相连通。本实施例利用U型管22简化了液冷管路的第二部分的安装工序,有利于降低冷却装置100的制造成本。与采用直管相比,本实施例减少使用了大约一半的连接装置。As a preferred embodiment, the second part of the liquid cooling pipeline may further include a plurality of
为了提高U型管22连接的牢固性,连接装置还可以为卡箍23、焊接接头、引水盒及螺纹接头中的至少一种。本实施例利用卡箍23、焊接接头、引水盒及螺纹接头等作为连接装置,提高了U型管22之间连接的牢固性。In order to improve the firmness of the connection of the
作为一种实施方式,液冷管路通过主管路21还可以与外部管路连通,主管路21连通第一部分的一个或多个进液口和外部管路,主管路21连通第二部分的一个或多个出液口和外部管路。本实施例利用主管路21实现液冷管路与外部管路的连通,有利于提高布置液冷管路的灵活性。As an embodiment, the liquid cooling pipeline can also be communicated with the external pipeline through the
为了提高冷却液的流动性,外部管路的冷却液流动路径上还可以设有泵,用于驱动冷却液流动,外部管路的冷却液流动路径上还设有第二换热装置,用于将冷却液中的热量耗散至外界或其他介质。本实施例利用泵实现了液冷管路内冷却液的流动,也有利于降低冷却装置100的成本,提高冷却装置100的寿命。本实施例利用第二换热装置将热量传递至外界或其他介质,有利于进一步的降低液冷管路中冷却液的温度,进而有利于提高冷却装置100的冷却效率。优选的,第二换热装置设置在风力发电机的外部;更优选的,第二换热装置设置在风力发电机组的外部。In order to improve the fluidity of the cooling liquid, a pump may also be provided on the cooling liquid flow path of the external pipeline to drive the flow of the cooling liquid, and a second heat exchange device may also be provided on the cooling liquid flow path of the external pipeline for Dissipate the heat in the coolant to the outside or other medium. In this embodiment, the pump is used to realize the flow of the cooling liquid in the liquid cooling pipeline, which is also beneficial to reduce the cost of the
如图1所示,作为一种实施方式,液冷管路还可以包括主管路21,主管路21顺次穿过第一换热装置的出口112、定子模块40及第一换热装置的进口111。如图1所示,冷却液在主管路21内流动,形成冷却液流向CF。As shown in FIG. 1 , as an embodiment, the liquid cooling pipeline may further include a
作为一种实施方式,液冷管路还包括支路管,支路管连通第一部分的一个或多个出液口和第二部分的一个或多个进液口。As an embodiment, the liquid cooling pipeline further includes a branch pipe, and the branch pipe communicates with one or more liquid outlets of the first part and one or more liquid inlets of the second part.
作为一种优选的实施方式,液冷管路上还设有旁通管和流量调节阀,用于调整流经第二部分的冷却液流量。本实施例利用旁通管和流量调节阀,有利于提高控制液冷管路内冷却液流动方向的灵活性。As a preferred embodiment, the liquid cooling pipeline is further provided with a bypass pipe and a flow regulating valve, which are used to adjust the flow rate of the cooling liquid flowing through the second part. This embodiment utilizes the bypass pipe and the flow regulating valve, which is beneficial to improve the flexibility of controlling the flow direction of the cooling liquid in the liquid cooling pipeline.
作为一种优选的实施方式,液冷回路还可以包括支管路24,支管路24的一端与U型管22的入口相连通,支管路24的另一端与U型管22的出口相连通,支管路24用于调整U型管22内的冷却液的流量。如图4所示,第一换热装置11及定子模块40固定在固定装置41上。支管路24设置在进口111与出口112之间。本实施例利用支管路24,实现了U型管22内冷却液流量的调节,能够根据定子模块40的实际的温度,相应的调整U型管22内冷却液的流量,避免了定子模块40的温度过高或过低,提高了风力发电机的稳定性。在其他实施例中,每个定子模块40还可以至少设有一条支管路24。当然,作为一种可选的实施方式,每个定子模块40也可以至少设有一套冷却装置100。本实施例有利于提高冷却装置100的冷却效率。作为一种优选的实施方式,支管路24的进口位置设置在定子模块40的周向中部,而支管路24的出口设置在定子模块40的周向端部,这样周向端部的温度可能略高于中部,有利于相邻两个定子模块40膨胀后的充分接合。当然,支管路24的进口位置也可以设置在定子模块40的周向端部。另外,通过设置支管路24,从而实现风力发电机整体的冷却效果可调,有利于在低温工况下避免风力发电机的结构件因过度收缩而产生变形及疲劳损伤。As a preferred embodiment, the liquid cooling circuit may further include a
作为一种优选的实施方式,冷却液也可以包括乙二醇溶液。本实施例利用乙二醇溶液作为冷却液,有利于提高冷却装置的防冻性能,也有利于提高冷却装置100的冷却效率,降低冷却装置100的使用成本。在其他实施例中,也可以将水作为冷却液,也能保证冷却装置100的冷却效率。As a preferred embodiment, the cooling liquid may also include ethylene glycol solution. In this embodiment, the ethylene glycol solution is used as the cooling liquid, which is beneficial to improve the antifreeze performance of the cooling device, improve the cooling efficiency of the
在其他实施例中,冷却液还可以包括添加液,添加液用于防腐或者用于将冷却液的PH值调至中性或弱碱性。In other embodiments, the cooling liquid may further include an additive liquid, which is used for anticorrosion or for adjusting the pH value of the cooling liquid to neutral or weakly alkaline.
本实施例的空冷系统的空气流量还可以通过风扇调节,液冷管路的冷却液流量可以通过支管路24,从而实现风力发电机的整体冷却效果可调。由此,在低温工况下,本实施例能够有效的降低风力发电机的结构件因过度收缩产生变形及疲劳损伤。此外,本实施例还可以实现分别控制空冷系统及液冷管路,从而在保证风力发电机各部件温度控制在允许的范围内的前提下,尽可能的减少风扇的运行功率及风扇的运行数量,从而减少能耗。The air flow of the air cooling system in this embodiment can also be adjusted by a fan, and the cooling liquid flow of the liquid cooling pipeline can pass through the
作为一种优选的实施方式,冷却装置100的第二换热装置还可以设置在风力发电机的机舱的外部,第二换热装置与液冷管路相连通,第二换热装置设置在液冷管路中的热源与第一换热装置11之间。本实施例利用第二换热装置,进一步的降低了液冷回路中冷却液的温度;同时,将第二换热装置设置在热源与第一换热装置11之间,使得经第二换热装置冷却后的冷却液首先进入第一换热装置11,有利于降低第一换热装置11的温度,从而使得第一换热装置11更加高效的降低空冷系统中气态介质的温度。位于第一热交换装置上游的气态介质的温度往往低于定子模块40的温度,冷却液先行冷却较冷的空气再冷却较热的定子模块40,其散热能力更佳。本实施例有利于提高空冷系统的冷却效率,进而有利于提高冷却装置100的冷却效率。作为一种实施方式,第二换热装置也可以选为空水热交换器。As a preferred embodiment, the second heat exchange device of the
在本实施例中,通过将空冷系统及液冷管路串联连接。在保证两者兼容性的前提下,使得整个冷却装置100更加简洁、紧凑;也降低了相关设备的空间占用。本实施例避免了空冷系统及液冷管路分别需要冷却而导致的冷却液流量增加的问题。本实施例的冷却液在经过第二换热装置后,先经过第一换热装置11,然后再进入主管路21,有利于增强冷却装置100的冷却效率。理由如下:液冷管路的冷却效率虽然较高,但是液冷管路只位于定子模块40的绕组的一侧,从而造成液冷管路的有效散热路径少于空冷系统。因此,在定子模块40的轭部,液冷管路这种布置方式的整体冷却效果不如利用径向通风槽14的空冷系统,本实施例的冷却装置100强化空冷系统的效果极为明显。也就是说,在同时采用空冷系统和液冷管路的情况下,空冷系统的进风温度和液冷管路的进液温度降低相同的度数,前者对于风力发电机的冷却效果增加更加明显。In this embodiment, the air cooling system and the liquid cooling pipeline are connected in series. On the premise of ensuring the compatibility of the two, the
实施例2Example 2
本实施例为一种定子,为便于说明,本实施例继续引用实施例1中的附图标记。本实施例的定子包括如上的风力发电机的冷却装置100,定子为模块化定子且包括多个沿周向分布的定子模块40,每个定子模块40对应至少一个第一换热装置11和至少一个液冷管路的第二部分。本实施例利用冷却装置100,使得定子模块40产生的热量被高效的转移,有利于降低定子模块40的温度,有利于提高风力发电机的稳定性。This embodiment is a kind of stator. For convenience of description, this embodiment continues to refer to the reference numerals in Embodiment 1. FIG. The stator of this embodiment includes the above-mentioned
作为一种实施方式,至少一个定子模块40包括多个由并联构成的液冷管路的第二部分。在其他实施例中,所有定子模块40具有相同尺寸,所有定子模块40对应相同数量的第一换热装置11和相同数量的液冷管路的第二部分。本实施例有利于提高定子模块40的标准化水平,有利于缩短风力发电机的制作周期,有利于降低风力发电机的制作成本。As an embodiment, at least one
实施例3Example 3
本实施例为一种风力发电机,其包括实施例1中的冷却装置100或者包括实施例2中的定子。为便于说明,本实施例继续引用实施例1中的附图标记。This embodiment is a wind power generator, which includes the
本实施例的风力发电机可以包括实施例1中的冷却装置100,利用含有冷却装置100的风力发电机,有利于风力发电机保持相对适宜的温度,有利于提高风力发电机的稳定性,有利于提高风力发电机的发电效率。The wind turbine in this embodiment may include the
本实施例的风力发电机可以包括实施例2中的定子,利用含有冷却装置100的定子,有利于风力发电机保持相对适宜的温度,有利于提高风力发电机的稳定性,有利于提高风力发电机的发电效率。The wind power generator in this embodiment may include the stator in Embodiment 2. Using the stator including the
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。Although the specific embodiments of the present invention are described above, those skilled in the art should understand that this is only an illustration, and the protection scope of the present invention is defined by the appended claims. Those skilled in the art can make various changes or modifications to these embodiments without departing from the principle and essence of the present invention, but these changes and modifications all fall within the protection scope of the present invention.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911063448.7A CN110676980B (en) | 2019-10-31 | 2019-10-31 | Cooling devices, stators and wind turbines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911063448.7A CN110676980B (en) | 2019-10-31 | 2019-10-31 | Cooling devices, stators and wind turbines |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110676980A true CN110676980A (en) | 2020-01-10 |
CN110676980B CN110676980B (en) | 2020-11-27 |
Family
ID=69085838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911063448.7A Active CN110676980B (en) | 2019-10-31 | 2019-10-31 | Cooling devices, stators and wind turbines |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110676980B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112039235A (en) * | 2020-07-31 | 2020-12-04 | 西安中车永电捷力风能有限公司 | Water-cooling structure concentrated winding direct-drive permanent magnet wind driven generator stator |
CN112928837A (en) * | 2021-01-28 | 2021-06-08 | 浙江大学 | Baffling air-cooled generator stator and generator with high torque density |
CN113659241A (en) * | 2021-09-14 | 2021-11-16 | 上海禾徐科技发展有限公司 | an energy storage system |
CN113726042A (en) * | 2020-05-25 | 2021-11-30 | 乌鲁木齐金风天翼风电有限公司 | Cooling device, generator and wind generating set |
CN114665662A (en) * | 2020-12-23 | 2022-06-24 | 新疆金风科技股份有限公司 | Generators and Wind Turbines |
EP4102683A1 (en) * | 2021-06-08 | 2022-12-14 | Siemens Gamesa Renewable Energy A/S | Cooling of an electric generator |
EP4387055A1 (en) | 2022-12-15 | 2024-06-19 | Siemens Gamesa Renewable Energy A/S | Electric generator for a wind turbine and wind turbine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100237727A1 (en) * | 2009-03-23 | 2010-09-23 | Abb Oy | Arrangement and method for cooling an electrical machine |
CN102377286A (en) * | 2011-09-29 | 2012-03-14 | 江苏金风风电设备制造有限公司 | Motor and cooling systeem thereof |
CN102939700A (en) * | 2010-06-11 | 2013-02-20 | 西门子公司 | Motor-generator with air-liquid cooling |
CN103887913A (en) * | 2012-12-20 | 2014-06-25 | 株式会社安川电机 | Rotating electrical machine and housing for rotating electrical machine |
CN204761212U (en) * | 2015-08-05 | 2015-11-11 | 北京三力新能科技有限公司 | Water -cooled empty water mixed cooling generator of tape unit seat |
-
2019
- 2019-10-31 CN CN201911063448.7A patent/CN110676980B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100237727A1 (en) * | 2009-03-23 | 2010-09-23 | Abb Oy | Arrangement and method for cooling an electrical machine |
CN102939700A (en) * | 2010-06-11 | 2013-02-20 | 西门子公司 | Motor-generator with air-liquid cooling |
CN102377286A (en) * | 2011-09-29 | 2012-03-14 | 江苏金风风电设备制造有限公司 | Motor and cooling systeem thereof |
CN103887913A (en) * | 2012-12-20 | 2014-06-25 | 株式会社安川电机 | Rotating electrical machine and housing for rotating electrical machine |
CN204761212U (en) * | 2015-08-05 | 2015-11-11 | 北京三力新能科技有限公司 | Water -cooled empty water mixed cooling generator of tape unit seat |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113726042A (en) * | 2020-05-25 | 2021-11-30 | 乌鲁木齐金风天翼风电有限公司 | Cooling device, generator and wind generating set |
CN113726042B (en) * | 2020-05-25 | 2023-09-08 | 乌鲁木齐金风天翼风电有限公司 | Cooling units, generators and wind turbines |
CN112039235A (en) * | 2020-07-31 | 2020-12-04 | 西安中车永电捷力风能有限公司 | Water-cooling structure concentrated winding direct-drive permanent magnet wind driven generator stator |
CN114665662A (en) * | 2020-12-23 | 2022-06-24 | 新疆金风科技股份有限公司 | Generators and Wind Turbines |
CN112928837A (en) * | 2021-01-28 | 2021-06-08 | 浙江大学 | Baffling air-cooled generator stator and generator with high torque density |
EP4102683A1 (en) * | 2021-06-08 | 2022-12-14 | Siemens Gamesa Renewable Energy A/S | Cooling of an electric generator |
CN113659241A (en) * | 2021-09-14 | 2021-11-16 | 上海禾徐科技发展有限公司 | an energy storage system |
EP4387055A1 (en) | 2022-12-15 | 2024-06-19 | Siemens Gamesa Renewable Energy A/S | Electric generator for a wind turbine and wind turbine |
Also Published As
Publication number | Publication date |
---|---|
CN110676980B (en) | 2020-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110676980B (en) | Cooling devices, stators and wind turbines | |
CN111864992B (en) | Cooling device, motor and wind generating set | |
CN101330819A (en) | System for integrated thermal management and method for the same | |
CN109756058B (en) | Integrated motor electric control system | |
CN101728896A (en) | Arrangement for cooling of an electrical machine | |
CN111864991A (en) | Cooling systems, motors and wind turbines | |
CN205960892U (en) | An inlet and outlet pipeline circulation water cooling system for a permanent magnet wind power generator | |
WO2020220835A1 (en) | Cooling system, motor and wind turbine generator set | |
CN205638814U (en) | Cooling system and wind generating set | |
CN102158013A (en) | Forced circulation evaporation-cooled device for stator winding of wind driven generator | |
CN201381955Y (en) | Air-water cooling device for wind turbine | |
KR20100026867A (en) | Cooling system of wind turbine generator | |
WO2025129989A1 (en) | Highly-efficient cooling structure applicable to semi-direct-drive permanent magnet wind turbine generator | |
CN110417188B (en) | Cooling device for motor | |
CN112104166B (en) | Stator core yoke portion water cooling plant | |
JP5295203B2 (en) | Transformer cooling method | |
CN102427284B (en) | Wind-driven generator | |
CN110535260B (en) | Stator assembly of electric machine | |
CN210839234U (en) | Motor cooling system | |
CN113660836A (en) | Converter internal heat dissipation system | |
CN201733180U (en) | Cooling system of motor | |
CN205895404U (en) | Series connection water -cooling power generation system | |
CN220342177U (en) | Motor cooling system of electric excavator and electric excavator | |
CN221103147U (en) | Rotor cooling structure of motor equipment and motor equipment | |
CN215672423U (en) | Cooling water heat exchange system of emergency diesel generating set |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |