CN110672914A - Method and device for detecting traction net pressure - Google Patents
Method and device for detecting traction net pressure Download PDFInfo
- Publication number
- CN110672914A CN110672914A CN201911002041.3A CN201911002041A CN110672914A CN 110672914 A CN110672914 A CN 110672914A CN 201911002041 A CN201911002041 A CN 201911002041A CN 110672914 A CN110672914 A CN 110672914A
- Authority
- CN
- China
- Prior art keywords
- data
- frequency
- voltage
- matrix
- power factor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/25—Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/24—Arrangements for preventing or reducing oscillations of power in networks
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
本发明公开了一种牵引网压的检测方法,所述方法包括:采集车载变压器的原边电压数据和副边电流数据;对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据;基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。本发明还同时公开了一种牵引网压的检测装置。
The invention discloses a method for detecting traction network voltage. The method comprises: collecting primary-side voltage data and secondary-side current data of a vehicle-mounted transformer; processing the primary-side voltage data and the secondary-side current data to obtain voltage RMS data and power factor data of the on-board transformer; based on the voltage RMS data and power factor data, obtain a first oscillation frequency of the voltage RMS data and a second oscillation frequency of the power factor data; When both the first oscillation frequency and the second oscillation frequency are within a preset frequency range, it is determined that the traction net is in a low frequency oscillation state. The invention also discloses a detection device for traction net pressure at the same time.
Description
技术领域technical field
本发明涉及牵引网压的检测技术,具体涉及一种牵引网压的检测方法及装置。The invention relates to a detection technology for traction network pressure, in particular to a detection method and device for traction network pressure.
背景技术Background technique
随着新型大功率高速列车的投入运营,高速列车和牵引供电系统二者之间动态交互时,一些复杂的系统兼容性问题开始凸显。其中,低频振荡现象是牵引供电系统稳定运行中备受关注的重要问题之一。多列车同时升弓轻载运行时,变电所电压和电流发生大幅度波动,相位时而同相时而交错时而完全反相,严重时可能导致列车牵引封锁、设备烧毁等故障。With the operation of new high-power high-speed trains, some complex system compatibility issues begin to emerge when the high-speed train and the traction power supply system interact dynamically. Among them, the phenomenon of low frequency oscillation is one of the important issues in the stable operation of the traction power supply system. When multiple trains are running at the same time with light loads, the voltage and current of the substation fluctuate greatly, and the phases are sometimes in the same phase, sometimes staggered, and sometimes completely reversed.
但目前,无法在牵引供电系统运行的情况下对牵引网压进行低频振荡的有效识别,只能在牵引网网压出现低频波动现象之后采用以下保护措施:However, at present, it is impossible to effectively identify the low-frequency oscillation of the traction network voltage when the traction power supply system is running, and the following protection measures can only be adopted after the low-frequency fluctuation of the traction network voltage:
1)改善供电环境,降低牵引网阻抗,例如:增加牵引变电所变压器的容量等;但这种方法往往投资大、施工期长、灵活性差;1) Improve the power supply environment and reduce the impedance of the traction network, such as increasing the capacity of the traction substation transformer; but this method often requires large investment, long construction period and poor flexibility;
2)对电力机车的网侧整流器的控制参数进行修改。但这种方法只能暂时解决问题,后续仍然会再次引发低频振荡。2) Modify the control parameters of the grid-side rectifier of the electric locomotive. However, this method can only solve the problem temporarily, and it will still cause low-frequency oscillations in the future.
因此,研究一种在牵引供电系统正常运行的情况下,对牵引网压低频振荡现象进行有效检测十分必要。Therefore, it is necessary to study a method to effectively detect the low-frequency oscillation of the traction network voltage under the normal operation of the traction power supply system.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明实施例期望提供一种牵引网压的检测方法及装置,能够在牵引供电系统正常运行的情况下,对牵引网压的低频振荡现象进行有效的检测,以便在牵引网压出现低频振荡现象时,及时进行低频振荡抑制,以保证牵引供电系统的正常稳定运行。In view of this, the embodiments of the present invention are expected to provide a method and device for detecting the traction network pressure, which can effectively detect the low-frequency oscillation phenomenon of the traction network pressure under the condition of the normal operation of the traction power supply system, so as to detect the low frequency oscillation phenomenon of the traction network pressure effectively. When low-frequency oscillation occurs, the low-frequency oscillation should be suppressed in time to ensure the normal and stable operation of the traction power supply system.
本发明实施例的技术方案是这样实现的:The technical solution of the embodiment of the present invention is realized as follows:
根据本发明实施例的一方面,提供一种牵引网压的检测方法,应用于电力机车,所述方法包括:According to an aspect of the embodiments of the present invention, a method for detecting traction network voltage is provided, which is applied to an electric locomotive, and the method includes:
采集车载变压器的原边电压数据和副边电流数据;Collect the primary side voltage data and secondary side current data of the on-board transformer;
对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据;processing the primary side voltage data and the secondary side current data to obtain the voltage RMS data and power factor data of the on-board transformer;
基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;Based on the voltage RMS data and the power factor data, obtain a first oscillation frequency of the voltage RMS data and a second oscillation frequency of the power factor data;
当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。When both the first oscillation frequency and the second oscillation frequency are within a preset frequency range, it is determined that the traction net is in a low frequency oscillation state.
上述方案中,在所述确定所述牵引网处于低频振荡状态之后,所述方法还包括:In the above solution, after determining that the traction net is in a low-frequency oscillation state, the method further includes:
获取所述牵引网处于低频振荡状态的持续时长;obtaining the duration that the traction net is in a low-frequency oscillation state;
基于所述牵引网处于低频振荡的持续时长,增大网侧变流器的电流环比例系数。Based on the duration of the low frequency oscillation of the traction grid, the current loop proportional coefficient of the grid-side converter is increased.
上述方案中,当所述第一振荡频率和/或所述第二振荡频率处于预设频率范围以外的情况下,确定所述牵引网不处于低频振荡状态。In the above solution, when the first oscillation frequency and/or the second oscillation frequency is outside the preset frequency range, it is determined that the traction net is not in a low frequency oscillation state.
上述方案中,在所述确定所述牵引网不处于低频振荡状态之后,所述方法还包括:In the above solution, after it is determined that the traction net is not in a low-frequency oscillation state, the method further includes:
调整网侧变流器的电流环比例系数为初始值。Adjust the current loop proportional coefficient of the grid-side converter to the initial value.
上述方案中,所述对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据,包括:In the above solution, the processing of the primary-side voltage data and the secondary-side current data to obtain the voltage RMS data and power factor data of the on-board transformer includes:
对所述原边电压数据进行均方根计算,得到所述原边电压数据的电压有效值数据;performing root mean square calculation on the primary side voltage data to obtain voltage RMS data of the primary side voltage data;
利用本地时钟获取正弦参考信号和余弦参考信号;对所述正弦参考信号、所述余弦参考信号、所述原边电压数据和所述副边电流数据进行计算,得到所述车载变压器的功率因数数据。Use the local clock to obtain the sine reference signal and the cosine reference signal; calculate the sine reference signal, the cosine reference signal, the primary voltage data and the secondary current data to obtain the power factor data of the on-board transformer .
上述方案中,所述基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率,包括;In the above solution, the obtaining of the first oscillation frequency of the voltage RMS data and the second oscillation frequency of the power factor data based on the voltage RMS data and the power factor data includes;
基于所述电压有效值数据构建第一汉克尔矩阵;对所述第一汉克尔矩阵进行奇异值分解,得到所述第一汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述电压有效值数据的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述电压有效值的第一振荡频率;Construct a first Hankel matrix based on the voltage RMS data; perform singular value decomposition on the first Hankel matrix to obtain an orthogonal matrix of the first order in the first Hankel matrix, wherein, The orthogonal matrix corresponds to the subspace of the voltage RMS data; singular value decomposition is performed on the orthogonal matrix to obtain an invertible matrix; the invertible matrix is calculated by the overall least squares method to obtain the invertible matrix The eigenvalue of ; calculate the eigenvalue of the reversible matrix to obtain the first oscillation frequency of the RMS voltage;
基于所述功率因数数据构建第二汉克尔矩阵;对所述第二汉克尔矩阵进行奇异值分解,得到所述第二汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述功率因数的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述功率因数的第二振荡频率。Construct a second Hankel matrix based on the power factor data; perform singular value decomposition on the second Hankel matrix to obtain an orthogonal matrix of the first order in the second Hankel matrix, wherein the The orthogonal matrix corresponds to the subspace of the power factor; the singular value decomposition of the orthogonal matrix is performed to obtain an invertible matrix; the eigenvalue of the invertible matrix is obtained by calculating the invertible matrix by the overall least squares method ; Calculate the eigenvalues of the invertible matrix to obtain the second oscillation frequency of the power factor.
上述方案中,在所述对所述原边电压数据和所述副边电流数据进行处理之前,所述方法还包括:In the above solution, before the processing of the primary-side voltage data and the secondary-side current data, the method further includes:
对所述原边电压数据和副边电流数据分别进行截至频率为100Hz的低通滤波,得到所述原边电压数据的低频数据和所述副边电流数据的低频数据。Low-pass filtering with a cut-off frequency of 100 Hz is performed on the primary-side voltage data and secondary-side current data, respectively, to obtain low-frequency data of the primary-side voltage data and low-frequency data of the secondary-side current data.
所述对所述原边电压数据和所述副边电流数据进行处理,包括:The processing of the primary side voltage data and the secondary side current data includes:
对所述原边电压数据的低频数据和所述副边电流数据的低频数据进行处理。The low-frequency data of the primary-side voltage data and the low-frequency data of the secondary-side current data are processed.
根据本发明实施例的第二方面,提供一种牵引网压的检测装置,所述检测装置包括:According to a second aspect of the embodiments of the present invention, there is provided a detection device for traction net pressure, the detection device comprising:
电压互感器,用于采集车载变压器的原边电压数据;The voltage transformer is used to collect the primary voltage data of the on-board transformer;
电流互感器,用于采集所述车载变压器的副边电流数据;a current transformer for collecting secondary current data of the on-board transformer;
处理器,用于对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据;基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。a processor, configured to process the primary side voltage data and the secondary side current data to obtain voltage RMS data and power factor data of the on-board transformer; based on the voltage RMS data and power factor data, obtain The first oscillation frequency of the voltage RMS data and the second oscillation frequency of the power factor data; when both the first oscillation frequency and the second oscillation frequency are within the preset frequency range, determine the The traction net is in a low-frequency oscillation state.
上述方案中,所述处理器还用于:获取所述牵引网处于低频振荡状态的持续时长;基于所述牵引网处于低频振荡的持续时长,增大网侧变流器的电流环比例系数。In the above solution, the processor is further configured to: obtain the duration that the traction network is in a low-frequency oscillation state; and increase the current loop proportional coefficient of the grid-side converter based on the duration of the traction network being in a low-frequency oscillation state.
上述方案中,所述处理器还用于:当所述第一振荡频率和/或所述第二振荡频率均不处于预设频率范围内的情况下,确定所述牵引网不处于低频振荡状态。In the above solution, the processor is further configured to: when the first oscillation frequency and/or the second oscillation frequency are not within a preset frequency range, determine that the traction net is not in a low-frequency oscillation state .
上述方案中,所述处理器还用于:当所述牵引网不处于低频振荡状态的情况下,调整网侧变流器的电流环比例系数调整为初始值。In the above solution, the processor is further configured to adjust the current loop proportional coefficient of the grid-side converter to an initial value when the traction grid is not in a low-frequency oscillation state.
根据本发明实施例的第三方面,提供一种牵引网压的检测装置,所述检测装置包括:According to a third aspect of the embodiments of the present invention, there is provided a detection device for traction net pressure, the detection device comprising:
采集单元,用于采集车载变压器的原边电压数据和副边电流数据;The acquisition unit is used to collect the primary voltage data and secondary current data of the on-board transformer;
处理单元,用于对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据,以及基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;a processing unit, configured to process the primary-side voltage data and the secondary-side current data to obtain voltage RMS data and power factor data of the on-board transformer, and based on the voltage RMS data and power factor data, obtaining the first oscillation frequency of the voltage RMS data and the second oscillation frequency of the power factor data;
确定单元,用于当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。A determination unit, configured to determine that the traction net is in a low-frequency oscillation state when both the first oscillation frequency and the second oscillation frequency are within a preset frequency range.
本发明实施例提供的一种牵引网压的检测方法和装置,通过采集车载变压器的原边电压数据和副边电流数据;对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据,以及基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。如此,通过充分考虑牵引供电系统低频振荡发生时电压大幅波动、电压电流相位不停变化的特点,给出了电压有效值、功率因数。能够在牵引供电系统正常运行的情况下,对牵引网压的低频振荡现象进行有效的检测,以提高牵引网压的低频振荡现象的精确度,从而在牵引网压出现低频振荡现象时,及时进行低频振荡抑制,以保证牵引供电系统的安全稳定运行。The method and device for detecting the traction grid voltage provided by the embodiments of the present invention collect primary voltage data and secondary current data of a vehicle-mounted transformer; and process the primary voltage data and the secondary current data to obtain The voltage RMS data and power factor data of the vehicle transformer, and based on the voltage RMS data and the power factor data, the first oscillation frequency of the voltage RMS data and the second oscillation frequency of the power factor data are obtained ; When the first oscillation frequency and the second oscillation frequency are both within the preset frequency range, it is determined that the traction net is in a low frequency oscillation state. In this way, the RMS voltage and power factor are given by fully considering the characteristics of the large voltage fluctuation and the constant change of the voltage and current phase when the low frequency oscillation occurs in the traction power supply system. Under the normal operation of the traction power supply system, the low-frequency oscillation phenomenon of the traction network pressure can be effectively detected, so as to improve the accuracy of the low-frequency oscillation phenomenon of the traction network pressure, so that when the low-frequency oscillation phenomenon of the traction network voltage occurs, the system can be carried out in time. Low-frequency oscillation suppression to ensure the safe and stable operation of the traction power supply system.
附图说明Description of drawings
图1为本申请中牵引网压的检测方法的实现流程示意图;Fig. 1 is the realization flow schematic diagram of the detection method of traction network pressure in the application;
图2为本申请中牵引网压的检测及抑制方法的实现流程示意图;Fig. 2 is the realization flow schematic diagram of the detection and suppression method of traction network pressure in the application;
图3为现有技术中采用传统电流dq解耦控制时牵引网压的波形示意图;Fig. 3 is the waveform schematic diagram of the traction grid voltage when the conventional current dq decoupling control is adopted in the prior art;
图4为采用本申请中牵引网压检测及抑制方法时牵引网压的波形示意图;Fig. 4 is the waveform schematic diagram of the traction grid pressure when adopting the traction grid pressure detection and suppression method in the present application;
图5为本申请中网侧变流器电流环比例系数自适应调节过程示意图;5 is a schematic diagram of the adaptive adjustment process of the current loop proportional coefficient of the grid-side converter in the application;
图6为本申请中牵引网压检测装置的结构组成示意图一;6 is a schematic diagram 1 of the structure and composition of the traction network pressure detection device in the application;
图7为本申请中牵引网压检测装置的结构组成示意图二。FIG. 7 is a second schematic diagram of the structure and composition of the traction network pressure detection device in the application.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。The specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be understood that the specific embodiments described herein are only used to illustrate and explain the present invention, but not to limit the present invention.
图1为本申请中牵引网压的检测方法的实现流程示意图,如图1所示,该方法包括:Fig. 1 is the realization flow schematic diagram of the detection method of traction network pressure in the application, as shown in Fig. 1, the method comprises:
步骤101,采集车载变压器的原边电压数据和副边电流数据;
本申请中,该牵引网压的检测方法主要应用于电力机车。该电力机车包括车载变压器和车载变流器。由于牵引网网压低频波动现象一般发生在多辆电力机车在同一供电区间内同时升弓整备的工况下,因此,在电力机车升弓整备时,该电力机车可以通过电压互感器采集车载变压器的原边电压数据,通过电流互感器采集车载变压器的副边电流数据。In this application, the detection method of the traction network voltage is mainly applied to electric locomotives. The electric locomotive includes an on-board transformer and an on-board converter. Because the low-frequency fluctuation of the traction network voltage generally occurs in the condition that multiple electric locomotives are raised and reconditioned at the same time in the same power supply interval, when the electric locomotive is raised and reconditioned, the electric locomotive can collect the on-board transformer through the voltage transformer. The primary side voltage data of the vehicle is collected, and the secondary side current data of the on-board transformer is collected through the current transformer.
这里,电压互感器和电流互感器在采集数据时,具体可以根据采样周期进行数据采集,例如采集周期可以为50us或10us等等。Here, when the voltage transformer and the current transformer collect data, the data collection may be specifically performed according to the sampling period, for example, the collection period may be 50us or 10us, and so on.
本申请中,电力机车在采集到车载变压器的原边电压数据和副边电流数据之后,还可以通过数字信号处理器(DSP,Digital Signal Processor)或现场可编程门阵列(FPGA,Filed Programmable Gate Array)处理器对该原边电压数据和副边电流数据分别进行截至频率为100Hz的低通滤波,以滤除采集信号中包含的高频分量,保留有效的低频分量,从而可以得到原边电压数据的低频数据和所述副边电流数据的低频数据。In this application, after collecting the primary side voltage data and secondary side current data of the on-board transformer, the electric locomotive can also use a digital signal processor (DSP, Digital Signal Processor) or a Field Programmable Gate Array (FPGA, Filed Programmable Gate Array). ) The processor performs low-pass filtering with a cut-off frequency of 100Hz on the primary side voltage data and secondary side current data respectively to filter out the high frequency components contained in the collected signal and retain the effective low frequency components, so that the primary side voltage data can be obtained. the low frequency data of the secondary side current data and the low frequency data of the secondary side current data.
步骤102,对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据;
本申请中,电力机车在得到原边电压数据的低频数据和所述副边电流数据的低频数据之后,可以对原边电压数据的低频数据和副边电流数据的低频数据进行处理,以得到所述车载变压器的电压有效值数据和功率因数数据。In this application, after obtaining the low-frequency data of the primary-side voltage data and the low-frequency data of the secondary-side current data, the electric locomotive may process the low-frequency data of the primary-side voltage data and the low-frequency data of the secondary-side current data to obtain the The voltage RMS data and power factor data of the on-board transformer are described.
本申请中,电力机车在对原边电压数据的低频数据进行处理时,具体可以采用周期为0.02s的滑动窗口方法逐个窗口的对该原边电压数据的低频数据进行均方根计算,以得到该原边电压数据的电压有效值。In the present application, when the electric locomotive processes the low-frequency data of the primary voltage data, specifically, a sliding window method with a period of 0.02s may be used to perform the root mean square calculation of the low-frequency data of the primary voltage data window by window to obtain The voltage RMS value of the primary voltage data.
这里,该原边电压数据的电压有效值又称该原边电压数据的均方根值。Here, the voltage effective value of the primary voltage data is also referred to as the root mean square value of the primary voltage data.
具体,求取原边电压数据的均方根值的数学表达式可以为:Specifically, the mathematical expression for obtaining the root mean square value of the primary voltage data can be:
其中,Ui为采集的第i个原边电压数据,N为滑动窗口时间内(0.02s)采集的原边电压数据的个数。Among them, U i is the i-th primary voltage data collected, and N is the number of primary voltage data collected within the sliding window time (0.02s).
本申请中,电力机车在对原边电压数据和副边电流数据进行处理时,还可以利用处理器上的本地时钟获取一个正弦参考信号和一个余弦参考信号;然后对该正弦参考信号、该余弦参考信号、该原边电压数据和该副边电流数据进行计算,得到原边电压的相位和副边电流的相位。In this application, when the electric locomotive processes the primary side voltage data and the secondary side current data, a local clock on the processor can also be used to obtain a sine reference signal and a cosine reference signal; The reference signal, the primary side voltage data and the secondary side current data are calculated to obtain the phase of the primary side voltage and the phase of the secondary side current.
具体,计算原边电压的相位,为:Specifically, the phase of the primary voltage is calculated as:
其中,sin(2πft)表示正弦参考信号,cos(2πft)表示余弦参考信号;N为滑动窗口时间内(0.02s)采集的原边电压数据的个数,Ui为采集的第i个原边电压数据。Among them, sin(2πft) represents the sine reference signal, cos(2πft) represents the cosine reference signal; N is the number of primary side voltage data collected within the sliding window time (0.02s), and U i is the ith primary side collected voltage data.
计算副边电流的相位,为:Calculate the phase of the secondary current as:
其中,sin(2πft)表示正弦参考信号,cos(2πft)表示余弦参考信号;N为滑动窗口时间内(0.02s)采集的原边电压数据的个数。Ii为采集的第i个副边电流数据。Among them, sin(2πft) represents the sine reference signal, cos(2πft) represents the cosine reference signal; N is the number of primary voltage data collected within the sliding window time (0.02s). I i is the ith secondary current data collected.
计算车载变压器的功率因数,为:Calculate the power factor of the on-board transformer as:
PF=cos(φU-φI);PF=cos(φU-φI);
其中,φU为电压的相位,φI为电压的相位,在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示。Among them, φU is the phase of the voltage, and φI is the phase of the voltage. In an AC circuit, the cosine of the phase difference (Φ) between the voltage and the current is called the power factor, which is represented by the symbol cosΦ.
步骤103,基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;
本申请中,电力机车在得到车载变压器的电压有效值数据和功率因数数据之后,还可以基于总体最小二乘法-旋转不变技术的信号参数估计算法对该电压有效值数据和该功率因数数据分别进行识别,以得到该电压有效值数据对应的第一振荡频率和该功率因数数据对应的第二振荡频率。In this application, after obtaining the RMS voltage data and the power factor data of the on-board transformer, the electric locomotive can also use the signal parameter estimation algorithm of the total least squares method-rotation invariance technology to obtain the RMS voltage data and the power factor data, respectively. Identifying is performed to obtain a first oscillation frequency corresponding to the voltage RMS data and a second oscillation frequency corresponding to the power factor data.
具体地,电力机车在对该电压有效值数据进行识别,得到该电压有效值数据对应的第一振荡频率时,具体可以先基于电压有效值数据构建第一汉克尔矩阵;接着对构建的第一汉克尔矩阵进行奇异值分解,得到该第一汉克尔矩阵中第一阶数的正交矩阵,其中,正交矩阵与电压有效值数据的子空间对应;接着再对正交矩阵进行奇异值分解,得到可逆矩阵;接着再通过总体最小二乘法对可逆矩阵进行计算,得到可逆矩阵的特征值;最后,对可逆矩阵的特征值进行计算,得到该电压有效值数据的第一振荡频率。Specifically, when the electric locomotive identifies the voltage RMS data and obtains the first oscillation frequency corresponding to the voltage RMS data, it may first construct a first Hankel matrix based on the voltage RMS data; Perform singular value decomposition on a Hankel matrix to obtain an orthogonal matrix of the first order in the first Hankel matrix, wherein the orthogonal matrix corresponds to the subspace of the voltage RMS data; Singular value decomposition to obtain an invertible matrix; then calculate the invertible matrix through the overall least squares method to obtain the eigenvalues of the invertible matrix; finally, calculate the eigenvalues of the invertible matrix to obtain the first oscillation frequency of the voltage RMS data .
具体计算电压有效值数据对应的第一振荡频率的过程如下:The specific process of calculating the first oscillation frequency corresponding to the voltage RMS data is as follows:
(1)记数据序列为X=[x(0),x(1),…,x(n-1)];(1) Record the data sequence as X=[x(0),x(1),...,x(n-1)];
其中,X为电压有效值数据,n为获取到的该电压有效值数据的个数;Among them, X is the voltage RMS data, and n is the number of the obtained voltage RMS data;
(2)基于该电压有效值数据构建r×m阶汉克尔(Hankel)矩阵H:(2) Construct an r×m-order Hankel matrix H based on the voltage RMS data:
其中,r和m均是阶数,且满足r+m-1=n。这里,r、m阶数可以是根据设定的拟合模型阶数P来确定,且r>p,m>p。Wherein, both r and m are orders, and r+m-1=n is satisfied. Here, the r and m orders may be determined according to the set fitting model order P, and r>p, m>p.
(3)对该汉克尔矩阵H进行奇异值分解:(3) Perform singular value decomposition on the Hankel matrix H:
其中,U为r阶正交矩阵;Σ为r×m阶对角阵,Σ对角元素由矩阵H的奇异值由大到小作递减排列得到;V为m阶正交矩阵,VT为V的共轭转置。Us Un表示r×r阶矩阵,∑s和∑n表示Σ的对角元素。Among them, U is an r-order orthogonal matrix; Σ is an r×m-order diagonal matrix, and the diagonal elements of Σ are obtained by descending the singular values of the matrix H from large to small; V is an m-order orthogonal matrix, and V T is V The conjugate transpose of . U s U n represents a matrix of order r×r, and ∑ s and ∑ n represent the diagonal elements of ∑.
这里,矩阵H的奇异值记作矩阵X的奇异值ξ1,ξ2,…,ξp,ξp+1,…,ξmax(r,m)。当信号仅由p个复正弦信号分量叠加而成时,Hankel矩阵的秩为p,此时ξ1>ξ2>…>ξp>ξp+1=…=ξmax(r,m)=0,但是当信号被噪声污染时,构造的Hankel矩阵是满秩的,所有的奇异值都不再等于零。Here, the singular values of the matrix H are denoted as the singular values of the matrix X ξ1, ξ2,...,ξp,ξp+1,...,ξmax(r,m). When the signal is only composed of p complex sinusoidal signal components, the rank of the Hankel matrix is p, at this time ξ1>ξ2>...>ξp>ξp+1=...=ξmax(r,m)=0, but when the signal When polluted by noise, the constructed Hankel matrix is full rank, and all singular values are no longer equal to zero.
为了从噪声污染的采样数据中估计出信号参数,可以把V分成2部分,即V=[Vs,Vn],其中Vs、Vn分别对应电压有效值数据的信号子空间和噪声子空间,Vs的列向量是对应于矩阵H的幅值最大的p个奇异值的特征向量,s表示信号,n表示噪声。In order to estimate the signal parameters from the noise-contaminated sampled data, V can be divided into two parts, namely V=[Vs, Vn], where Vs and Vn correspond to the signal subspace and noise subspace of the voltage RMS data, respectively. The column vector is the eigenvector corresponding to the p singular values with the largest magnitude of the matrix H, where s is the signal and n is the noise.
(4)对矩阵H中的正交矩阵Vs进行奇异值分解:(4) Perform singular value decomposition on the orthogonal matrix V s in the matrix H:
其中,V1表示矩阵Vs删除第1行后得到的新矩阵。V2表示矩阵Vs删除最后1行后得到的新矩阵。Among them, V 1 represents the new matrix obtained by deleting the first row of the matrix V s . V 2 represents the new matrix obtained by deleting the last 1 row of the matrix V s .
通过对正交矩阵Vs进行奇异值分解,可知存在可逆矩阵P,使得:By performing singular value decomposition on the orthogonal matrix V s , it can be known that there is an invertible matrix P such that:
V2=V1PV 2 =V 1 P
如此,可以得到满足V2=V1P关系的可逆矩阵P,其特征值可用来计算数据信号的频率。In this way, an invertible matrix P satisfying the relationship of V 2 =V 1 P can be obtained, and its eigenvalues can be used to calculate the frequency of the data signal.
具体地,设振荡信号x(n)可以表示为一系列幅值按指数规律变化的正弦信号与白噪声的组合,在采样时刻n,其表达式如下:Specifically, suppose that the oscillation signal x(n) can be expressed as a combination of a series of sinusoidal signals and white noise whose amplitude varies exponentially. At the sampling time n, its expression is as follows:
式中:Ts为采样周期;由于采样信号通常为实信号,模型阶数P通常为信号实际含有的实正弦分量个数的2倍;ap,φp,ωp,σp分别是第p个衰减分量的幅值、初始相位、角频率和衰减系数;fp为第p个衰减分量的频率,fp=ωp/(2π);w是均值为0的白噪声。In the formula: T s is the sampling period; since the sampling signal is usually a real signal, the model order P is usually twice the number of real sinusoidal components actually contained in the signal; a p , φ p , ω p , σ p are the first The amplitude, initial phase, angular frequency and attenuation coefficient of the p attenuation components; f p is the frequency of the p-th attenuation component, f p =ω p /(2π); w is the white noise with
令则信号可简写为:make Then the signal can be abbreviated as:
式中:zp称为信号极点。In the formula: z p is called the signal pole.
定义向量x(n)=[x(n),x(n+1),…,x(n+M-1)]T,其中M>P,则Define the vector x(n)=[x(n),x(n+1),...,x(n+M-1)] T , where M>P, then
式中:where:
c=[c1 c2 … cP]T c=[c 1 c 2 ... c P ] T
Φ=diag(z1 z2 … zP)Φ=diag(z 1 z 2 … z P )
ΓM=[τM(z1) τM(z2) … τM(zP)]Γ M = [τ M (z 1 ) τ M (z 2 ) … τ M (z P )]
w(n)=[w(n) w(n+1) … w(n+M-1)]T w(n)=[w(n) w(n+1) ... w(n+M-1)] T
可以发现:zp(p=1,2,…,P)确定了信号中各个分量的频率和阻尼系数,完全决定了Φ,因而可以设法通过Φ来间接求取信号极点,进而获得各信号分量的频率和阻尼系数等参数。It can be found that: z p (p=1,2,...,P) determines the frequency and damping coefficient of each component in the signal, and completely determines Φ, so we can try to indirectly obtain the signal pole through Φ, and then obtain each signal component. parameters such as frequency and damping coefficient.
为了表述方便,规定符号↑,↓分别表示矩阵删除第1行和最后1行后得到的新矩阵。例如:S↓表示矩阵S删除最后1行后得到的新矩阵,S↑表示矩阵S删除第1行后得到的新矩阵。For the convenience of expression, the symbols ↑ and ↓ are specified to represent the new matrix obtained by deleting the first row and the last row of the matrix, respectively. For example: S ↓ represents a new matrix obtained by deleting the last row of matrix S, and S ↑ means a new matrix obtained by deleting the first row of matrix S.
S↓=ΓM-1Φnc=J1cS ↓ =Γ M-1 Φ n c = J 1 c
S↑=ΓM-1Φn+1c=J2cS ↑ = Γ M-1 Φ n+1 c = J 2 c
J2=J1ΦJ 2 =J 1 Φ
此处,Φ即相当于上式中的可逆矩阵P。Here, Φ is equivalent to the reversible matrix P in the above formula.
(5)通过总体最小二乘法(TLS)对可逆矩阵P进行计算,得到可逆矩阵P的特征值λi,这里,该特征值λi用于估计电压有效值的振荡频率;(5) Calculate the reversible matrix P by the total least squares method (TLS) to obtain the eigenvalue λ i of the reversible matrix P, where the eigenvalue λ i is used to estimate the oscillation frequency of the voltage effective value;
具体地,令K=[V1,V2],对K做奇异值(SVD)分解:Specifically, let K=[V1, V2], and perform singular value (SVD) decomposition on K:
K=U3∑V3 T;K=U 3 ΣV 3 T ;
其中,U为r阶正交矩阵;Σ为r×m阶对角阵,且Σ的对角元素由矩阵K的奇异值由大到小作递减排列得到;V为m阶正交矩阵,VT为V的共轭转置。Σ的对角元素Σi即为K的奇异值。Among them, U is an r-order orthogonal matrix; Σ is an r×m-order diagonal matrix, and the diagonal elements of Σ are obtained by decreasing the singular values of the matrix K from large to small; V is an m-order orthogonal matrix, V T is the conjugate transpose of V. The diagonal element Σ i of Σ is the singular value of K.
然后,根据设定的拟合模型阶数p,将矩阵K中的矩阵V3分块成4个p×p的子矩阵:Then, according to the set fitting model order p, the matrix V 3 in the matrix K is divided into 4 sub-matrices of p × p:
其中,V11、V12、V2、V22分别表示对应的四个子矩阵的位置,例如,V11表示1行1列,V12表示1行2列,V21表示2行1列,V21表示2行2列。Among them, V 11 , V 12 , V 2 , and V 22 respectively represent the positions of the corresponding four sub-matrices. For example, V 11 represents 1 row and 1 column, V 12 represents 1 row and 2 columns, V 21 represents 2 rows and 1 column, and V 21 means 2 rows and 2 columns.
通过总体最小二乘法对矩阵V3的子矩阵进行计算,得到可逆矩阵P的总体最小二乘解:The submatrix of matrix V 3 is calculated by the overall least squares method, and the overall least squares solution of the invertible matrix P is obtained:
然后,求可逆矩阵P的总体最小二乘解Ptls的特征值λi(i=1,2,…,p),得到信号中所包含的正弦分量的振荡频率:Then, find the eigenvalue λ i (i=1,2,...,p) of the overall least squares solution P tls of the invertible matrix P, and obtain the oscillation frequency of the sinusoidal component contained in the signal:
其中,Ts为电压有效值的采样时间,λi为Ptls的特征值。Among them, T s is the sampling time of the voltage RMS, and λ i is the characteristic value of P tls .
这里,fi即为电压有效值的第一振荡频率,记为fU。Here, f i is the first oscillation frequency of the RMS voltage, denoted as f U .
本申请中,对功率因数数据进行识别,得到功率因数数据的第二振荡频率时,具体可以先获取该功率因数数据,然后基于获取到的功率因数数据构建第二汉克尔矩阵;接着对构建的第二汉克尔矩阵进行奇异值分解,得到该第二汉克尔矩阵中第一阶数的正交矩阵,其中,正交矩阵与功率因数数据的子空间对应;接着再对正交矩阵进行奇异值分解,得到可逆矩阵;接着再通过总体最小二乘法对可逆矩阵进行计算,得到可逆矩阵的特征值;最后,对可逆矩阵的特征值进行计算,得到该功率因数数据的第二振荡频率。In the present application, when the power factor data is identified and the second oscillation frequency of the power factor data is obtained, the power factor data can be obtained first, and then a second Hankel matrix can be constructed based on the obtained power factor data; Perform singular value decomposition on the second Hankel matrix to obtain an orthogonal matrix of the first order in the second Hankel matrix, where the orthogonal matrix corresponds to the subspace of the power factor data; Perform singular value decomposition to obtain an invertible matrix; then calculate the invertible matrix by the overall least squares method to obtain the eigenvalues of the invertible matrix; finally, calculate the eigenvalues of the invertible matrix to obtain the second oscillation frequency of the power factor data .
具体计算功率因数数据的第二振荡频率的过程如下:The specific process of calculating the second oscillation frequency of the power factor data is as follows:
(1)记数据序列为X=[x(0),x(1),…,x(n-1)];(1) Record the data sequence as X=[x(0),x(1),...,x(n-1)];
其中,X为功率因数数据,n为获取到的该功率因数数据的个数;Wherein, X is the power factor data, and n is the number of the obtained power factor data;
(2)基于该功率因数数据构建r×m阶汉克尔(Hankel)矩阵H:(2) Construct an r×m-order Hankel matrix H based on the power factor data:
其中,r和m均是阶数,且满足r+m-1=n。这里,r、m阶数均是根据设定的拟合模型阶数P来确定,且r>p,m>p。Wherein, both r and m are orders, and r+m-1=n is satisfied. Here, the r and m orders are determined according to the set fitting model order P, and r>p, m>p.
(3)对该汉克尔矩阵H进行奇异值分解,为:(3) The singular value decomposition of the Hankel matrix H is:
其中,U为r阶正交矩阵;Σ为r×m阶对角阵,且Σ的对角元素由矩阵H的奇异值由大到小作递减排列得到;V为m阶正交矩阵,VT为V的共轭转置。Us Un表示r×r阶矩阵,∑s和∑n表示Σ的对角元素。Among them, U is an r-order orthogonal matrix; Σ is an r×m-order diagonal matrix, and the diagonal elements of Σ are obtained by decreasing the singular values of the matrix H from large to small; V is an m-order orthogonal matrix, V T is the conjugate transpose of V. U s U n represents a matrix of order r×r, and ∑ s and ∑ n represent the diagonal elements of ∑.
矩阵H的奇异值记作矩阵X的奇异值ξ1,ξ2,…,ξp,ξp+1,…,ξmax(r,m)。当信号仅由p个复正弦信号分量叠加而成时,Hankel矩阵的秩为p,此时ξ1>ξ2>…>ξp>ξp+1=…=ξmax(r,m)=0,但是当信号被噪声污染时,构造的Hankel矩阵是满秩的,所有的奇异值都不再等于零。The singular values of the matrix H are denoted as the singular values of the matrix X ξ1, ξ2,...,ξp,ξp+1,...,ξmax(r,m). When the signal is only composed of p complex sinusoidal signal components, the rank of the Hankel matrix is p, at this time ξ1>ξ2>...>ξp>ξp+1=...=ξmax(r,m)=0, but when the signal When polluted by noise, the constructed Hankel matrix is full rank, and all singular values are no longer equal to zero.
为了从噪声污染的采样数据中估计出信号参数,可以把V分成2部分,即V=[Vs,Vn],其中Vs、Vn分别对应功率因数数据的信号子空间和噪声子空间,Vs的列向量是对应于矩阵H的幅值最大的p个奇异值的特征向量,s表示信号,n表示噪声。In order to estimate the signal parameters from the noise-contaminated sampled data, V can be divided into two parts, namely V=[Vs, Vn], where Vs and Vn correspond to the signal subspace and noise subspace of the power factor data, respectively, and the column of Vs The vector is the eigenvector corresponding to the p singular values with the largest magnitude of the matrix H, where s is the signal and n is the noise.
(4)对正交矩阵Vs进行奇异值分解:(4) Perform singular value decomposition on the orthogonal matrix V s :
其中,V1表示矩阵Vs删除第1行后得到的新矩阵。V2表示矩阵Vs删除最后1行后得到的新矩阵。Among them, V 1 represents the new matrix obtained by deleting the first row of the matrix V s . V 2 represents the new matrix obtained by deleting the last 1 row of the matrix V s .
通过对Vs进行奇异值分解,确定可逆矩阵P,使得:By performing singular value decomposition of V s , the invertible matrix P is determined such that:
V2=V1PV 2 =V 1 P
如此,满足V2=V1P关系的矩阵P,其特征值可用来计算数据信号的频率。In this way, the eigenvalues of the matrix P satisfying the relationship V 2 =V 1 P can be used to calculate the frequency of the data signal.
(5)通过总体最小二乘法(TLS)对可逆矩阵P进行计算,得到可逆矩阵P的特征值λi,该特征值λi用于后续估计功率因数数据的振荡频率;(5) Calculate the reversible matrix P by the total least squares method (TLS) to obtain the eigenvalue λ i of the reversible matrix P, and the eigenvalue λ i is used for the subsequent estimation of the oscillation frequency of the power factor data;
具体地,令K=[V1,V2],对矩阵K做奇异值(SVD)分解:Specifically, let K=[V1, V2], and perform singular value (SVD) decomposition on matrix K:
K=U3∑V3 T;K=U 3 ΣV 3 T ;
其中,U为r阶正交矩阵;Σ为r×m阶对角阵,且Σ的对角元素由矩阵K的奇异值由大到小作递减排列得到;V为m阶正交矩阵,VT为V的共轭转置。Σ的对角元素Σi即为K的奇异值。Among them, U is an r-order orthogonal matrix; Σ is an r×m-order diagonal matrix, and the diagonal elements of Σ are obtained by decreasing the singular values of the matrix K from large to small; V is an m-order orthogonal matrix, V T is the conjugate transpose of V. The diagonal element Σ i of Σ is the singular value of K.
然后,根据设定的拟合模型阶数p,将矩阵K中的矩阵V3分块成4个p×p的子矩阵:Then, according to the set fitting model order p, the matrix V 3 in the matrix K is divided into 4 sub-matrices of p × p:
其中,V11、V12、V2、V22分别表示对应的四个子矩阵的位置,例如,V11表示1行1列,V12表示1行2列,V21表示2行1列,V21表示2行2列。Among them, V 11 , V 12 , V 2 , and V 22 respectively represent the positions of the corresponding four sub-matrices. For example, V 11 represents 1 row and 1 column, V 12 represents 1 row and 2 columns, V 21 represents 2 rows and 1 column, and V 21 means 2 rows and 2 columns.
根据矩阵V3的子矩阵得到可逆矩阵P的总体最小二乘解:The overall least squares solution of the invertible matrix P is obtained from the submatrices of the matrix V:
求可逆矩阵P的总体最小二乘解Ptls的特征值λi(i=1,2,…,p),得到信号中所包含的正弦分量的振荡频率: Find the eigenvalue λ i (i=1, 2, .
其中,Ts为功率因数的采样时间,λi为Ptls的特征值。Among them, T s is the sampling time of the power factor, and λ i is the characteristic value of P tls .
这里,fi即为功率因数的第二振荡频率,记为fPF。Here, f i is the second oscillation frequency of the power factor, denoted as f PF .
步骤104,当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。
本申请中,电力机车在得到电压有效值的第一振荡频率fU和功率因数的第二振荡频率fPF之后,可以判断该电压有效值的第一振荡频率fU和功率因数的第二振荡频率fPF是否均在区间[0.1,20]Hz的范围以内,得到判断结果,如果判断结果表征第一振荡频率fU和第二振荡频率fPF均在区间[0.1,20]Hz的范围以内,则表示当前牵引网出现了低频网压波动现象,该牵引网压当前处于低频振荡状态。反之,如果判断结果表征第一振荡频率fU和/或第二振荡频率fPF处于区间[0.1,20]Hz的范围以外,则表示牵引网没有出现低频网压波动现象,则说明当前牵引网不处于低频振荡状态。In this application, after obtaining the first oscillation frequency f U of the RMS voltage and the second oscillation frequency f PF of the power factor, the electric locomotive can determine the first oscillation frequency f U of the RMS voltage and the second oscillation frequency of the power factor. Whether the frequency f PF is within the range of the interval [0.1, 20] Hz, the judgment result is obtained, if the judgment result indicates that the first oscillation frequency f U and the second oscillation frequency f PF are both within the range of the interval [0.1, 20] Hz , it means that the current traction network has low-frequency network pressure fluctuations, and the traction network pressure is currently in a low-frequency oscillation state. On the contrary, if the judgment result indicates that the first oscillation frequency f U and/or the second oscillation frequency f PF is outside the range of the interval [0.1, 20] Hz, it means that there is no low-frequency network pressure fluctuation phenomenon in the traction network, which means that the current traction network Not in a low frequency oscillation state.
如此,通过本申请提供的牵引网压检测方法,利用车载变压器的原边电压和副边电流相位不停变化的特点,对牵引供电系统中低频振荡现象进行实时检测,能够及时对牵引网压出现低频振荡现象进行识别,从而能够更有效地对牵引网压的低频振荡现象进行抑制。In this way, through the traction grid voltage detection method provided by the present application, the characteristics of the primary side voltage and the secondary side current phase of the on-board transformer are constantly changing, the low frequency oscillation phenomenon in the traction power supply system is detected in real time, and the occurrence of traction grid voltage can be detected in time. The low-frequency oscillation phenomenon can be identified, so that the low-frequency oscillation phenomenon of the traction network pressure can be suppressed more effectively.
本申请中,在牵引网压出现低频振荡现象的情况下,电力机车还可以获取牵引网出现低频振荡现象的持续时长;基于低频振荡的持续时长,增大网侧变流器的电流环比例系数,即:Kpi=αΔt Kpi0。In this application, in the case of low-frequency oscillation in the traction network voltage, the electric locomotive can also obtain the duration of the low-frequency oscillation in the traction network; based on the duration of the low-frequency oscillation, increase the current loop proportional coefficient of the grid-side converter , namely: K pi =α Δt K pi0 .
其中,系数α取大于1的值,优选取1.1,Δt为检测到的低频振荡持续时长,Kpi0为网侧变流器的电流环比例系数的初始值。Among them, the coefficient α takes a value greater than 1, preferably 1.1, Δt is the detected low-frequency oscillation duration, and K pi0 is the initial value of the current loop proportional coefficient of the grid-side converter.
本申请可以在修正网侧变流器的电流环比例系数之后,继续执行步骤101至步骤104,直至低频振荡现象消除。The present application may continue to perform
本申请中,电力机车还可以在确定牵引网不处于低频振荡状态的情况下,调整网侧变流器的电流环比例系数为初始值,即Kpi=Kpi0。In the present application, the electric locomotive may also adjust the current loop proportional coefficient of the grid-side converter to an initial value, ie K pi =K pi0 , when it is determined that the traction grid is not in a low-frequency oscillation state.
如此,通过在线自适应修正电力机车的网侧整流器控制器参数,只需对现有算法进行适当修正,无需进行额外投资,从而可以在不影响牵引供电系统正常运行情况下达到抑制低频振荡的效果。In this way, through the online adaptive correction of the grid-side rectifier controller parameters of the electric locomotive, it is only necessary to properly correct the existing algorithm without additional investment, so that the effect of suppressing low-frequency oscillation can be achieved without affecting the normal operation of the traction power supply system. .
图2为本申请中牵引网压的检测及抑制方法的实现流程示意图,如图2所示:Fig. 2 is the realization flow schematic diagram of the detection and suppression method of traction network pressure in the application, as shown in Fig. 2:
步骤201,采集车载变压器原边电压及副边电流数据,并且对采集到的数据进行截止频率为100Hz的低通滤波处理,滤除高频部分,保留低频部分。
步骤202,利用滑动窗口法计算电压有效值,以及计算车载变压器的功率因数。
这里,具体采用周期为0.02s的滑动窗口的方法逐个窗口的求取电压数据的均方根值(RMS),得到电压有效值数据Urms;然后,通过本地时钟产生的正弦参考信号和余弦参考信号、原边电压数据、副边电流数据计算车载变压器的功率因数PF。Here, the method of the sliding window with a period of 0.02s is used to obtain the root mean square value (RMS) of the voltage data window by window to obtain the voltage RMS data U rms ; then, the sine reference signal and the cosine reference signal generated by the local clock are used. Signal, primary side voltage data, secondary side current data to calculate the power factor PF of the on-board transformer.
步骤203,利用基于总体最小二乘法-旋转不变技术的信号参数估计算法对牵引网电压有效值Urms和功率因数PF进行识别,获得振荡频率fU和fPF。
具体地,低频振荡发生时网压幅值、网压网流相位波动,利用基于总体最小二乘法-旋转不变技术的信号参数估计算法对牵引网电压有效值Urms和功率因数PF进行识别,获得电压有效值Urms对应的振荡频率fU和功率因数PF对应的振荡频率fPF。Specifically, when the low-frequency oscillation occurs, the grid voltage amplitude and grid current phase fluctuate, and the effective value of the traction grid voltage U rms and the power factor PF are identified by using the signal parameter estimation algorithm based on the overall least squares method-rotation invariant technology. Obtain the oscillation frequency f U corresponding to the voltage effective value U rms and the oscillation frequency f PF corresponding to the power factor PF .
步骤204,判断电压有效值的振荡频率fU,功率因数的振荡频率fPF是否在区间[0.1,20]Hz范围内,如果均在则判断为低频振荡现象,执行步骤205,如果至少一个不在,则判断为正常,执行步骤206。
具体地,国内牵引供电系统低频振荡频率在20Hz以内,因此,判断电压有效值振荡频率fU,功率因数振荡频率fPF是否在区间[0.1,20]Hz内,如果同时满足则确定牵引供电系统出现低频振荡现象,执行步骤205,不满足则判断为正常,设置动车组网侧变流器电流环比例系数为初始值Kpi0,返回步骤201继续进行检测。Specifically, the low-frequency oscillation frequency of the domestic traction power supply system is within 20 Hz. Therefore, it is determined whether the voltage RMS oscillation frequency f U and the power factor oscillation frequency f PF are within the interval [0.1, 20] Hz. If both are satisfied, the traction power supply system is determined. If low frequency oscillation occurs, go to step 205, if not, it is judged as normal, set the current loop proportional coefficient of the EMU grid-side converter to the initial value K pi0 , and return to step 201 to continue the detection.
步骤205,牵引供电系统出现低频振荡,调整网侧变流器电流环比例系数为:Kpi=αΔt Kpi0。
其中,系数α取大于1的值,优选取1.1,Δt为检测到的低频振荡持续时长,Kpi0为网侧变流器的电流环比例系数的初始值。Among them, the coefficient α takes a value greater than 1, preferably 1.1, Δt is the detected low-frequency oscillation duration, and K pi0 is the initial value of the current loop proportional coefficient of the grid-side converter.
具体地,根据现有车网耦合系统低频振荡稳定性分析研究结论可知,动车组网侧整流器采用电流环dq解耦控制时,适当增加电流环比例系数,可对低频振荡起到很好的抑制作用。因此,当判断为低频振荡状态时,每隔固定时间在线自适应修正动车组网侧变流器电流环比例系数为:Kpi=αΔt Kpi0。修正系数后返回执行步骤201,继续检测,直到低频振荡消除。Specifically, according to the analysis and research conclusions of the low-frequency oscillation stability of the existing vehicle-to-grid coupling system, it can be seen that when the EMU grid-side rectifier adopts the current loop dq decoupling control, the current loop proportional coefficient can be appropriately increased, which can effectively suppress the low-frequency oscillation. effect. Therefore, when it is judged to be a low-frequency oscillation state, the proportional coefficient of the current loop of the EMU grid-side converter is adaptively corrected online every fixed time as: K pi =α Δt K pi0 . After correcting the coefficient, return to step 201, and continue to detect until the low frequency oscillation is eliminated.
步骤206,牵引供电系统未出现低频振荡,调整网侧变流器电流环比例系数为:Kpi=Kpi0。
修正后,返回执行步骤201,继续检测。After the correction, return to step 201 to continue detection.
图3为现有技术中采用传统电流dq解耦控制时牵引网压的波形示意图;如图3所示:Fig. 3 is the waveform schematic diagram of the traction grid voltage when the conventional current dq decoupling control is adopted in the prior art; as shown in Fig. 3:
假如牵引供电系统共有5车列车同时轻载运行,动车组网侧整流器采用传统电流dq解耦控制时,采集到的车载变压器原边电压及副边电流发生大幅度波动,产生了持续的低频振荡现象。If the traction power supply system has a total of 5 trains running lightly at the same time, when the traditional current dq decoupling control is adopted for the rectifier on the EMU grid side, the collected primary voltage and secondary current of the on-board transformer will fluctuate greatly, resulting in continuous low frequency oscillation. Phenomenon.
图4为采用本申请中牵引网压检测及抑制方法时牵引网压的波形示意图;如图4所示:Fig. 4 is the waveform schematic diagram of traction grid pressure when adopting traction grid pressure detection and suppression method in the present application; as shown in Fig. 4:
假如牵引供电系统共有5车列车同时轻载运行,动车组网侧整流器采用本申请提出的牵引网压检测及抑制方法时,采集到的车载变压器原边电压及副边电流的振荡现象得到明显抑制。If the traction power supply system has a total of 5 trains running lightly at the same time, when the EMU grid-side rectifier adopts the traction grid voltage detection and suppression method proposed in this application, the collected on-board transformer primary side voltage and secondary side current The oscillation phenomenon is significantly suppressed. .
图5为本申请中网侧变流器电流环比例系数自适应调节过程示意图,如图5所示:FIG. 5 is a schematic diagram of the adaptive adjustment process of the current loop proportional coefficient of the grid-side converter in the application, as shown in FIG. 5 :
虚线表示Kpi参数值;矩形线表示是否检测到低频振荡,0表示未检测到,1表示检测到。未检测到低频振荡时,Kpi参数为固定初始值Kpi0,检测到低频振荡时,Kpi参数自适应调整为αΔt Kpi0,以增大动车组网侧变流器电流环比例系数。The dotted line indicates the Kpi parameter value; the rectangular line indicates whether LFO is detected, 0 indicates not detected, and 1 indicates detected. When low-frequency oscillation is not detected, the K pi parameter is a fixed initial value K pi0 . When low-frequency oscillation is detected, the K pi parameter is adaptively adjusted to α Δt K pi0 to increase the current loop proportional coefficient of the EMU grid-side converter.
图6为本申请中牵引网压检测装置的结构组成示意图一;如图6所示,所述牵引网压检测装置600可以是电力机车、动车组。图6所示的牵引网压检测装置600包括:电压互感器601、电流互感器602、车载变压器603、至少一个处理器604和网侧变流器605,电压互感器601、电流互感器602、车载变压器603、至少一个处理器604和网侧变流器605之间可以通过总线系统606耦合在一起。可理解,总线系统606用于实现这些组件之间的连接通信。总线系统606除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图6中将各种总线都标为总线系统606。FIG. 6 is a schematic diagram 1 of the structure of the traction network pressure detection device in the application; as shown in FIG. 6 , the traction network
上述本发明实施例揭示的方法可以应用于处理器604中,或者由处理器604实现。处理器604可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器604中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器604可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器604可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本发明实施例所公开的方法的步骤,可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。The methods disclosed in the above embodiments of the present invention may be applied to the
在示例性实施例中,牵引网压检测装置600可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable LogicDevice)、现场可编程门阵列(FPGA,Field-Programmable Gate Array)、通用处理器、控制器、微控制器(MCU,Micro Controller Unit)、微处理器(Microprocessor)、或其他电子元件实现,用于执行前述方法。In an exemplary embodiment, the traction grid
具体,所述电压互感器601,用于采集车载变压器603的原边电压数据;Specifically, the
所述电流互感器602,用于采集所述车载变压器603的副边电流数据;The
所述处理器604,用于对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据;以及基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。The
作为本申请实施例的优选方案,该处理器604还用于:获取所述牵引网处于低频振荡状态的持续时长;基于所述牵引网处于低频振荡的持续时长,增大网侧变流器605的电流环比例系数。As a preferred solution of the embodiment of the present application, the
作为本申请实施例的优选方案,该处理器604还用于,当所述第一振荡频率和/或所述第二振荡频率处于预设频率范围以外的情况下,确定所述牵引网不处于低频振荡状态,并且在处于低频振荡状态下,调整网侧变流器605的电流环比例系数为初始值。As a preferred solution of the embodiment of the present application, the
作为本申请实施例的优选方案,该处理器604,具体用于对所述原边电压数据进行均方根计算,得到所述原边电压数据的电压有效值数据;利用本地时钟获取正弦参考信号和余弦参考信号;对所述正弦参考信号、所述余弦参考信号、所述原边电压数据和所述副边电流数据进行计算,得到所述车载变压器603的功率因数数据。As a preferred solution of the embodiment of the present application, the
作为本申请实施例的优选方案,所述处理器604具体还用于:基于所述电压有效值数据构建第一汉克尔矩阵;对所述第一汉克尔矩阵进行奇异值分解,得到所述第一汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述电压有效值数据的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述电压有效值的第一振荡频率。As a preferred solution of the embodiment of the present application, the
作为本申请实施例的优选方案,所述处理器604具体还用于:基于所述功率因数数据构建第二汉克尔矩阵;对所述第二汉克尔矩阵进行奇异值分解,得到所述第二汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述功率因数数据的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述功率因数的第二振荡频率。As a preferred solution of the embodiment of the present application, the
作为本申请实施例的优选方案,所述处理器604具体还用于:对所述原边电压数据和副边电流数据分别进行截至频率为100Hz的低通滤波,得到所述原边电压数据的低频数据和所述副边电流数据的低频数据。As a preferred solution of the embodiment of the present application, the
图7为本申请中牵引网压检测装置的结构组成示意图二;如图7所示,在示例性实施例中,所述检测装置包括:FIG. 7 is a schematic diagram 2 of the structure of the traction network pressure detection device in the application; as shown in FIG. 7 , in an exemplary embodiment, the detection device includes:
采集单元701,用于采集车载变压器的原边电压数据和副边电流数据;The collection unit 701 is used to collect the primary side voltage data and the secondary side current data of the on-board transformer;
处理单元702,用于对所述原边电压数据和所述副边电流数据进行处理,得到所述车载变压器的电压有效值数据和功率因数数据,以及基于所述电压有效值数据和功率因数数据,得到所述电压有效值数据的第一振荡频率和所述功率因数数据的第二振荡频率;A processing unit 702, configured to process the primary side voltage data and the secondary side current data to obtain the voltage RMS data and power factor data of the on-board transformer, and based on the voltage RMS data and power factor data , obtain the first oscillation frequency of the voltage RMS data and the second oscillation frequency of the power factor data;
确定单元703,用于当所述第一振荡频率和所述第二振荡频率均处于预设频率范围内的情况下,确定所述牵引网处于低频振荡状态。A determination unit 703, configured to determine that the traction net is in a low-frequency oscillation state when both the first oscillation frequency and the second oscillation frequency are within a preset frequency range.
在优选实施例中,所述检测装置还包括:获取单元704和调整单元705;In a preferred embodiment, the detection device further includes: an acquisition unit 704 and an adjustment unit 705;
所述获取单元704,用于获取所述牵引网处于低频振荡状态的持续时长;The obtaining unit 704 is configured to obtain the duration that the traction net is in a low-frequency oscillation state;
所述调整单元705,用于基于所述牵引网处于低频振荡的持续时长,增大网侧变流器的电流环比例系数。The adjustment unit 705 is configured to increase the current loop proportional coefficient of the grid-side converter based on the duration of the low-frequency oscillation of the traction grid.
在优选实施例中,所述确定单元703,还用于当所述第一振荡频率和/或所述第二振荡频率处于预设频率范围以外的情况下,确定所述牵引网不处于低频振荡状态。In a preferred embodiment, the determining unit 703 is further configured to determine that the traction net is not in low frequency oscillation when the first oscillation frequency and/or the second oscillation frequency is outside the preset frequency range state.
在优选实施例中,所述调整单元705还用于在所述确定所述牵引网不处于低频振荡状态下,调整网侧变流器的电流环比例系数为初始值。In a preferred embodiment, the adjusting unit 705 is further configured to adjust the current loop proportional coefficient of the grid-side converter to an initial value when it is determined that the traction grid is not in a low-frequency oscillation state.
在优选实施例中,所述处理单元702具体用于对所述原边电压数据进行均方根计算,得到所述原边电压数据的电压有效值数据;In a preferred embodiment, the processing unit 702 is specifically configured to perform root mean square calculation on the primary voltage data to obtain voltage RMS data of the primary voltage data;
利用本地时钟获取正弦参考信号和余弦参考信号;对所述正弦参考信号、所述余弦参考信号、所述原边电压数据和所述副边电流数据进行计算,得到所述车载变压器的功率因数数据。Use the local clock to obtain the sine reference signal and the cosine reference signal; calculate the sine reference signal, the cosine reference signal, the primary voltage data and the secondary current data to obtain the power factor data of the on-board transformer .
在优选实施例中,所述处理单元702具体还用于基于所述电压有效值数据构建第一汉克尔矩阵;对所述第一汉克尔矩阵进行奇异值分解,得到所述第一汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述电压有效值数据的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述电压有效值的第一振荡频率;In a preferred embodiment, the processing unit 702 is further configured to construct a first Hankel matrix based on the voltage RMS data; perform singular value decomposition on the first Hankel matrix to obtain the first Hankel matrix an orthogonal matrix of the first order in the Kerr matrix, wherein the orthogonal matrix corresponds to the subspace of the voltage RMS data; perform singular value decomposition on the orthogonal matrix to obtain an invertible matrix; through the overall minimum The square method calculates the invertible matrix to obtain the eigenvalue of the invertible matrix; calculates the eigenvalue of the invertible matrix to obtain the first oscillation frequency of the voltage effective value;
基于所述功率因数数据构建第二汉克尔矩阵;对所述第二汉克尔矩阵进行奇异值分解,得到所述第二汉克尔矩阵中第一阶数的正交矩阵,其中,所述正交矩阵与所述功率因数数据的子空间对应;对所述正交矩阵进行奇异值分解,得到可逆矩阵;通过总体最小二乘法对所述可逆矩阵进行计算,得到所述可逆矩阵的特征值;对所述可逆矩阵的特征值进行计算,得到所述功率因数的第二振荡频率。Construct a second Hankel matrix based on the power factor data; perform singular value decomposition on the second Hankel matrix to obtain an orthogonal matrix of the first order in the second Hankel matrix, wherein the The orthogonal matrix corresponds to the subspace of the power factor data; singular value decomposition is performed on the orthogonal matrix to obtain an invertible matrix; the invertible matrix is calculated by the overall least squares method to obtain the characteristics of the invertible matrix value; calculate the eigenvalues of the invertible matrix to obtain the second oscillation frequency of the power factor.
在优选实施例中,所述处理单元702具体还用于对所述原边电压数据和副边电流数据分别进行截至频率为100Hz的低通滤波,得到所述原边电压数据的低频数据和所述副边电流数据的低频数据。对所述原边电压数据的低频数据和所述副边电流数据的低频数据进行处理。In a preferred embodiment, the processing unit 702 is further configured to perform low-pass filtering with a cut-off frequency of 100 Hz on the primary-side voltage data and the secondary-side current data, respectively, to obtain the low-frequency data of the primary-side voltage data and all The low-frequency data of the secondary side current data. The low-frequency data of the primary-side voltage data and the low-frequency data of the secondary-side current data are processed.
需要说明的是:上述提供的牵引网压检测装置在实现牵引网压检测时,仅以上述各程序模块的划分进行举例说明,实际应用中,可以根据需要而将上述数据处理模块由不同的程序模块完成,即将牵引网压检测装置的内部结构划分成不同的程序模块,以完成以上描述的全部或者部分处理。另外,上述提供的牵引网压检测装置与上述牵引网压检测方法二者属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that: when the traction network pressure detection device provided above realizes the detection of traction network pressure, only the division of the above program modules is used as an example. The module is completed, that is, the internal structure of the traction network pressure detection device is divided into different program modules, so as to complete all or part of the processing described above. In addition, the traction network pressure detection device provided above and the traction network pressure detection method described above belong to the same concept, and the specific implementation process thereof is detailed in the method embodiment, which will not be repeated here.
本申请所提供的几个方法实施例中所揭露的方法,在不冲突的情况下可以任意组合,得到新的方法实施例。The methods disclosed in the several method embodiments provided in this application can be arbitrarily combined under the condition of no conflict to obtain new method embodiments.
本申请所提供的几个产品实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的产品实施例。The features disclosed in the several product embodiments provided in this application can be combined arbitrarily without conflict to obtain a new product embodiment.
本申请所提供的几个方法或设备实施例中所揭露的特征,在不冲突的情况下可以任意组合,得到新的方法实施例或设备实施例。The features disclosed in several method or device embodiments provided in this application can be combined arbitrarily without conflict to obtain new method embodiments or device embodiments.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. should be included within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911002041.3A CN110672914B (en) | 2019-10-21 | 2019-10-21 | A method and device for detecting traction network pressure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911002041.3A CN110672914B (en) | 2019-10-21 | 2019-10-21 | A method and device for detecting traction network pressure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110672914A true CN110672914A (en) | 2020-01-10 |
CN110672914B CN110672914B (en) | 2025-05-02 |
Family
ID=69083635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911002041.3A Active CN110672914B (en) | 2019-10-21 | 2019-10-21 | A method and device for detecting traction network pressure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110672914B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239370A (en) * | 1997-02-25 | 1998-09-11 | Mitsubishi Electric Corp | Low tension power line survey device |
US20040124785A1 (en) * | 2000-07-21 | 2004-07-01 | Alexandrov Felix I. | Method and apparatus for arc detection and protection for electronic ballasts |
US6778919B1 (en) * | 1999-09-30 | 2004-08-17 | Siemens Aktiengesellschaft | Method for identification of an oscillation in an electrical power supply system |
CN107154634A (en) * | 2017-05-02 | 2017-09-12 | 西南交通大学 | A kind of high ferro low-frequency oscillation suppression method based on model prediction current control |
CN212540517U (en) * | 2019-10-21 | 2021-02-12 | 中铁第四勘察设计院集团有限公司 | A detection device for traction network pressure |
-
2019
- 2019-10-21 CN CN201911002041.3A patent/CN110672914B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10239370A (en) * | 1997-02-25 | 1998-09-11 | Mitsubishi Electric Corp | Low tension power line survey device |
US6778919B1 (en) * | 1999-09-30 | 2004-08-17 | Siemens Aktiengesellschaft | Method for identification of an oscillation in an electrical power supply system |
US20040124785A1 (en) * | 2000-07-21 | 2004-07-01 | Alexandrov Felix I. | Method and apparatus for arc detection and protection for electronic ballasts |
CN107154634A (en) * | 2017-05-02 | 2017-09-12 | 西南交通大学 | A kind of high ferro low-frequency oscillation suppression method based on model prediction current control |
CN212540517U (en) * | 2019-10-21 | 2021-02-12 | 中铁第四勘察设计院集团有限公司 | A detection device for traction network pressure |
Non-Patent Citations (1)
Title |
---|
张静 等: "TLS-ESPRIT算法在低频振荡分析中的应用", 《电力系统自动化》, vol. 31, no. 20, 25 October 2007 (2007-10-25), pages 84 - 88 * |
Also Published As
Publication number | Publication date |
---|---|
CN110672914B (en) | 2025-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102854437B (en) | Fault line selection method of low current grounding system using time-frequency atom decomposition theory | |
CN109459651B (en) | Locomotive converter ground fault detection circuit and method | |
CN106505840B (en) | A kind of grid-connected photovoltaic inverter harmonic wave management method | |
CN101201282A (en) | A Fundamental Frequency Recognition Method for Cable Force Detection of Cable-Stayed Bridges | |
CN105527539B (en) | A kind of fault-signal Eigenvalue Extraction Method in micro-capacitance sensor failure diagnostic process | |
CN103323747A (en) | Method for single-phase earth fault line selection of small current grounding system | |
CN109507480B (en) | Inter-harmonic detection method and device for adjacent fundamental waves/harmonic waves | |
CN114859266B (en) | A CHB photovoltaic grid-connected inverter system open circuit fault diagnosis method | |
CN108008187B (en) | Power grid harmonic detection method based on variational modal decomposition | |
CN110672981A (en) | A fault location method for DC distribution network based on MMC | |
CN108414838B (en) | Method for measuring line impedance of inverter parallel system | |
CN103647550A (en) | Phase-locked loop method for dynamic voltage reactive compensation | |
CN107064630A (en) | A kind of power system frequency measuring method and device | |
CN109061345B (en) | RMS measurement method and system suitable for power system | |
CN106226623B (en) | Island detection method | |
CN117590158A (en) | A method, device and control system for abnormal state identification of distribution network | |
CN110632394B (en) | A Line Impedance Characteristics Simulation System | |
CN115224690A (en) | A real-time adaptive suppression method for background harmonics of inverter grid-connected system | |
CN104950215B (en) | A kind of Microcomputer Protection method | |
CN212540517U (en) | A detection device for traction network pressure | |
CN110672914A (en) | Method and device for detecting traction net pressure | |
CN108594156A (en) | A kind of improved CT saturation characteristics recognizing method | |
CN106569979B (en) | A kind of voltage fluctuation and flicker signal detecting method | |
CN104330616B (en) | A kind of power network alternating current virtual value real-time detection method | |
CN105606893A (en) | Power interharmonic detection method based on space smooth correction MUSIC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |