[go: up one dir, main page]

CN110672699A - All-solid-state field effect transistor, biosensor using same and detection method - Google Patents

All-solid-state field effect transistor, biosensor using same and detection method Download PDF

Info

Publication number
CN110672699A
CN110672699A CN201910881688.1A CN201910881688A CN110672699A CN 110672699 A CN110672699 A CN 110672699A CN 201910881688 A CN201910881688 A CN 201910881688A CN 110672699 A CN110672699 A CN 110672699A
Authority
CN
China
Prior art keywords
solid
layer
dielectric layer
state
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910881688.1A
Other languages
Chinese (zh)
Inventor
王程
叶巍翔
贾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN201910881688.1A priority Critical patent/CN110672699A/en
Publication of CN110672699A publication Critical patent/CN110672699A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种全固态生物传感器,包括全固态场效应晶体管和待测目标物的特异性识别体,其中,所述全固态场效应晶体管包括:基底;栅极,设置于所述基底上;第一固态电介质层,覆盖于所述栅极上;敏感单元,设置于所述第一固态电介质层上,且与所述栅极相对设置;源极和漏极,设置于所述第一固态电介质层上,且分别与所述敏感单元的两端连接;第二固态电介质层,覆盖于所述敏感单元上;和金属浮栅层,设置于所述第二固态电介质层上,且与所述敏感单元相对设置。其中,所述特异性识别体固定连接至所述金属浮栅层上。本申请还提供一种全固态场效应晶体管及其应用,以及一种使用所述全固态生物传感器的检测方法。

Figure 201910881688

An all-solid-state biosensor, comprising an all-solid-state field effect transistor and a specific identifier for a target to be measured, wherein the all-solid-state field effect transistor comprises: a substrate; a gate disposed on the substrate; a first solid-state field effect transistor; a dielectric layer, covering the gate; a sensitive unit, disposed on the first solid dielectric layer and opposite to the gate; a source electrode and a drain electrode, disposed on the first solid dielectric layer , and are respectively connected to both ends of the sensitive unit; a second solid-state dielectric layer, covering the sensitive unit; and a metal floating gate layer, disposed on the second solid-state dielectric layer, and connected to the sensitive unit Relative settings. Wherein, the specific recognition body is fixedly connected to the metal floating gate layer. The present application also provides an all-solid-state field effect transistor and application thereof, and a detection method using the all-solid-state biosensor.

Figure 201910881688

Description

全固态场效应晶体管及应用其的生物传感器和检测方法All-solid-state field effect transistor and biosensor and detection method using the same

技术领域technical field

本发明涉及半导体电子器件,特别是涉及一种全固态场效应晶体管及其应用和全固态生物传感器及使用其的检测方法。The invention relates to a semiconductor electronic device, in particular to an all-solid-state field effect transistor and its application, an all-solid-state biosensor and a detection method using the same.

背景技术Background technique

传统的亲和型生物传感器通过使连接有特异性识别体的敏感单元的表面与含有待测目标物的水溶液直接接触来形成双电层界面电容,以使生物分子所带电荷向敏感单元施加电场效应,从而实现亲和检测。Traditional affinity biosensors form an electric double layer interface capacitance by directly contacting the surface of the sensitive unit connected with the specific recognition body and the aqueous solution containing the target to be detected, so that the charges of the biomolecules apply an electric field to the sensitive unit. effect to achieve affinity detection.

然而,敏感单元通常由石墨烯、碳纳米管和硅纳米线等材料制成,在含有待测目标物的水溶液与敏感单元的表面进行接触时,水溶液中的杂质会在敏感单元的表面形成非特异性吸附,又由于敏感单元的表面的强疏水性,该非特异性吸附是不可逆的,使得生物传感器的性能会随时间持续恶化。此外,该非特异性吸附的随机性很高,使得生物传感器的性能恶化过程既不可控也不可预测,即使是同一批次制造的生物传感器在执行同样的测试时,各个生物传感器之间也存在离散程度很高的性能差异。基于上述原因,传统的亲和型生物传感器的一致性和可替代性都很差。However, the sensitive unit is usually made of materials such as graphene, carbon nanotubes and silicon nanowires. When the aqueous solution containing the target to be tested is in contact with the surface of the sensitive unit, the impurities in the aqueous solution will form non-specific non-specific substances on the surface of the sensitive unit. Heterotropic adsorption, which is irreversible due to the strong hydrophobicity of the surface of the sensitive cell, makes the performance of the biosensor continue to deteriorate over time. In addition, the randomness of this non-specific adsorption is very high, which makes the performance degradation process of biosensors neither controllable nor predictable. Even if the biosensors manufactured in the same batch are subjected to the same test, there are dispersions among biosensors. A high degree of performance difference. For the above reasons, the consistency and substitutability of traditional affinity biosensors are poor.

发明内容SUMMARY OF THE INVENTION

基于此,有必要针对传统的亲和型生物传感器性能不一致、不稳定的问题,提供一种新型的全固态场效应晶体管、使用该场效应晶体管的全固态生物传感器和使用该生物传感器的检测方法。Based on this, it is necessary to provide a new type of all-solid-state field effect transistor, an all-solid-state biosensor using the field-effect transistor, and a detection method using the biosensor to solve the problems of inconsistent and unstable performance of traditional affinity biosensors .

一种全固态生物传感器,包括全固态场效应晶体管和待测目标物的特异性识别体,其中,所述全固态场效应晶体管包括:基底;栅极,设置于所述基底上;第一固态电介质层,覆盖于所述栅极上;敏感单元,设置于所述第一固态电介质层上,且与所述栅极相对设置;源极和漏极,设置于所述第一固态电介质层上,且分别与所述敏感单元的两端连接;第二固态电介质层,覆盖于所述敏感单元上;和金属浮栅层,设置于所述第二固态电介质层上,且与所述敏感单元相对设置;其中,所述特异性识别体固定连接至所述金属浮栅层上。An all-solid-state biosensor, comprising an all-solid-state field effect transistor and a specific identifier for a target to be measured, wherein the all-solid-state field effect transistor comprises: a substrate; a gate disposed on the substrate; a first solid-state field effect transistor; a dielectric layer, covering the gate; a sensitive unit, disposed on the first solid dielectric layer and opposite to the gate; a source electrode and a drain electrode, disposed on the first solid dielectric layer , and are respectively connected to both ends of the sensitive unit; a second solid-state dielectric layer, covering the sensitive unit; and a metal floating gate layer, disposed on the second solid-state dielectric layer, and connected to the sensitive unit Relatively arranged; wherein, the specific identification body is fixedly connected to the metal floating gate layer.

在其中一个实施例中,所述全固态生物传感器还包括连接体分子,所述连接体分子具有第一基团和第二基团,所述连接体分子通过所述第一基团与所述金属浮栅层固定连接并且通过所述第二基团与所述特异性识别体固定连接。In one embodiment, the all-solid-state biosensor further includes a linker molecule, the linker molecule has a first group and a second group, and the linker molecule is connected to the linker molecule through the first group. The metal floating gate layer is fixedly connected and fixedly connected to the specific recognition body through the second group.

在其中一个实施例中,所述连接体分子为导电化合物。In one embodiment, the linker molecule is a conductive compound.

在其中一个实施例中,所述导电化合物具有芳香环,所述第一基团和所述第二基团分别与所述芳香环直接连接。In one embodiment, the conductive compound has an aromatic ring, and the first group and the second group are directly connected to the aromatic ring, respectively.

在其中一个实施例中,所述第一基团是巯基。In one embodiment, the first group is a sulfhydryl group.

在其中一个实施例中,所述第二基团是能够与所述特异性识别体的基团发生缩合反应的基团。In one embodiment, the second group is a group capable of undergoing a condensation reaction with a group of the specific recognizer.

在其中一个实施例中,所述连接体分子包括氮-羟基琥珀酰亚胺酯对巯基苯甲酸和氮-羟基琥珀酰亚胺酯巯基联苯甲酸中的至少一种。In one embodiment, the linker molecule comprises at least one of nitrogen-hydroxysuccinimide ester p-mercaptobenzoic acid and nitrogen-hydroxysuccinimide ester mercaptobibenzoic acid.

在其中一个实施例中,所述敏感单元被所述第二固态电介质层完全封闭。In one of the embodiments, the sensitive cell is completely enclosed by the second solid dielectric layer.

在其中一个实施例中,所述金属浮栅层包括由惰性金属材料构成的外层。In one of the embodiments, the metal floating gate layer includes an outer layer composed of an inert metal material.

在其中一个实施例中,所述敏感单元是石墨烯层、碳纳米管层和硅纳米线层中的至少一种。In one of the embodiments, the sensitive unit is at least one of a graphene layer, a carbon nanotube layer and a silicon nanowire layer.

在其中一个实施例中,所述基底是掺杂半导体基底,所述栅极通过对所述掺杂半导体基底进行局部互补掺杂形成。In one embodiment, the substrate is a doped semiconductor substrate, and the gate is formed by locally complementary doping the doped semiconductor substrate.

一种场效应晶体管,包括:基底;栅极,设置于所述基底上;第一固态电介质层,覆盖于所述栅极上;敏感单元,设置于所述第一固态电介质层上,且与所述栅极相对设置;源极和漏极,设置于所述第一固态电介质层上,且分别与所述敏感单元的两端连接;第二固态电介质层,覆盖于所述敏感单元上;和金属浮栅层,设置于所述第二固态电介质层上,且与所述敏感单元相对设置。A field effect transistor, comprising: a substrate; a gate disposed on the substrate; a first solid-state dielectric layer covering the gate; a sensitive unit disposed on the first solid-state dielectric layer and connected to the first solid-state dielectric layer the gate electrodes are arranged oppositely; the source electrode and the drain electrode are arranged on the first solid-state dielectric layer and are respectively connected to both ends of the sensitive unit; the second solid-state dielectric layer covers the sensitive unit; and a metal floating gate layer disposed on the second solid dielectric layer and opposite to the sensitive unit.

一种所述全固态场效应晶体管在生物亲和检测中的应用。An application of the all-solid-state field effect transistor in bioaffinity detection.

一种所述全固态生物传感器的检测方法,包括:A detection method for the all-solid-state biosensor, comprising:

将所述源极和所述基底接地,向所述漏极施加电压Vds,向所述栅极施加电压Vgsgrounding the source and the substrate, applying a voltage V ds to the drain, and applying a voltage V gs to the gate;

使含有所述待测目标物的溶液与所述金属浮栅层接触,以使所述待测目标物与所述特异性识别体发生生物亲和作用;contacting the solution containing the target to be detected with the metal floating gate layer, so that the target to be detected has a bioaffinity effect on the specific recognition body;

实时检测流过所述漏极的电流Idsreal-time detection of the current I ds flowing through the drain;

根据所述实时检测的电流Ids和所述电压Vds计算所述敏感单元的电导率,绘制电导率随时间变化的曲线;和Calculate the conductivity of the sensitive cell according to the real-time detected current I ds and the voltage V ds , and draw a curve of conductivity versus time; and

根据所述电导率随时间变化的曲线获取所述待测目标物的浓度;Obtain the concentration of the target object to be measured according to the curve of the conductivity changing with time;

其中,当所述导电的掺杂半导体基底是p型掺杂半导体基底时,所述电压Vgs是正电压;当所述导电的掺杂半导体基底是n型掺杂半导体基底时,所述电压Vgs是负电压。Wherein, when the conductive doped semiconductor substrate is a p-type doped semiconductor substrate, the voltage V gs is a positive voltage; when the conductive doped semiconductor substrate is an n-type doped semiconductor substrate, the voltage V gs gs is the negative voltage.

本申请提供的全固态的场效应晶体管和生物传感器,由于敏感单元被覆盖而不会与任何外部污染源接触,从而使得敏感单元能够保持其原本性能。另外,由于金属浮栅层具有亲水性,与含有待测目标物的溶液中的杂质之间不存在特异性吸附,且金属浮栅层的性能(例如导电性)受外部杂质的影响较小,因此,使用所述场效应晶体管的生物传感器具有较高的稳定性,并且能够提高同批次生产的生物传感器的一致性。The all-solid-state field effect transistor and biosensor provided by the present application, since the sensitive unit is covered, will not be in contact with any external pollution source, so that the sensitive unit can maintain its original performance. In addition, due to the hydrophilicity of the metal floating gate layer, there is no specific adsorption with impurities in the solution containing the target to be measured, and the performance (such as conductivity) of the metal floating gate layer is less affected by external impurities Therefore, the biosensor using the field effect transistor has high stability and can improve the consistency of the biosensor produced in the same batch.

附图说明Description of drawings

图1为本申请提供的场效应晶体管的结构示意图;1 is a schematic structural diagram of a field effect transistor provided by the application;

图2为本申请实施例中Pb2+对DNA酶进行剪切的示意图;Fig. 2 is the schematic diagram that Pb 2+ cuts DNase in the embodiment of the application;

图3示出了本申请实施例中的FSS-GFET、对DNA酶进行剪切之前的生物传感器1和对DNA酶进行剪切之后的生物传感器1的转移特性曲线的对比图;FIG. 3 shows a comparison diagram of the transfer characteristic curves of the FSS-GFET in the embodiment of the present application, the biosensor 1 before the DNase is cleaved, and the biosensor 1 after the DNase is cleaved;

图4示出了本申请实施例中的FSS-GFET、对DNA酶进行剪切之前的生物传感器2和对DNA酶进行剪切之后的生物传感器2的转移特性曲线的对比图;FIG. 4 shows a comparison diagram of the transfer characteristic curves of the FSS-GFET in the embodiment of the present application, the biosensor 2 before the DNase is cleaved, and the biosensor 2 after the DNase is cleaved;

图5示出了本申请实施例中的SG-GFET、对DNA酶进行剪切之前的生物传感器3和对DNA酶进行剪切之后的生物传感器3的转移特性曲线的对比图;FIG. 5 shows a comparison diagram of the transfer characteristic curves of the SG-GFET in the embodiment of the present application, the biosensor 3 before cleaving the DNase, and the biosensor 3 after cleaving the DNase;

图6示出了本申请实施例中的采用FSS-GFET的生物传感器1和采用SG-GFET的生物传感器3的在不同Pb2+浓度的动力学过程曲线对比图。FIG. 6 shows a comparison diagram of kinetic process curves of biosensor 1 using FSS-GFET and biosensor 3 using SG-GFET at different concentrations of Pb 2+ in the embodiment of the present application.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下通过实施例,并结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention will be further described in detail below through embodiments and in conjunction with the accompanying drawings. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.

请参阅图1,本申请提供一种全固态场效应晶体管100,包括基底110、设置于所述基底110上的栅极120、覆盖于所述栅极120上的第一固态电介质层130、设置于所述第一固态电介质层130上且与所述栅极120相对设置的敏感单元140、设置于所述第一固态电介质层130上且分别与所述敏感单元140的两端连接的源极151和漏极152、覆盖于所述敏感单元140上的第二固态电介质层160和设置于所述第二固态电介质层160上且与所述敏感单元140相对设置的金属浮栅层170。Referring to FIG. 1 , the present application provides an all-solid-state field effect transistor 100 , including a substrate 110 , a gate 120 disposed on the substrate 110 , a first solid-state dielectric layer 130 covering the gate 120 , and A sensitive unit 140 disposed on the first solid dielectric layer 130 and opposite to the gate 120 , a source electrode disposed on the first solid dielectric layer 130 and connected to both ends of the sensitive unit 140 respectively 151 and drain electrodes 152 , a second solid dielectric layer 160 covering the sensitive unit 140 , and a metal floating gate layer 170 disposed on the second solid dielectric layer 160 and opposite to the sensitive unit 140 .

本申请提供的场效应晶体管100,生物电荷可以通过所述金属浮栅层170和所述第二固态电介质层160向所述敏感单元140施加电场效应,以实现生物亲和检测。具体地,当所述金属浮栅层170的表面连接有待测目标物的特异性识别体时,如果该特异性识别体与所述待测目标物发生生物亲和作用,则会引发金属浮栅层170表面的电荷变化,从而引发敏感单元140的表面发生电势变化,可以通过检测该电势变化来实现待测目标物的识别和检测。In the field effect transistor 100 provided in the present application, biological charges can apply an electric field effect to the sensitive unit 140 through the metal floating gate layer 170 and the second solid-state dielectric layer 160 to realize bioaffinity detection. Specifically, when the surface of the metal floating gate layer 170 is connected with a specific recognition body of the target to be measured, if the specific recognition body has a biological affinity with the target to be measured, it will cause the metal floating The charge on the surface of the gate layer 170 changes, thereby causing a potential change on the surface of the sensitive unit 140, and the target object to be detected can be identified and detected by detecting the potential change.

本申请提供的场效应晶体管100,由于敏感单元140被覆盖而不会与任何外部污染源接触,从而使得敏感单元140能够保持其原本性能。另外,由于金属浮栅层170具有亲水性,与含有待测目标物的溶液中的杂质之间不存在特异性吸附,且金属浮栅层170的性能(例如导电性)受外部杂质的影响较小,因此,使用所述场效应晶体管100的生物传感器具有较高的稳定性,并且能够提高同批次生产的生物传感器的一致性。In the field effect transistor 100 provided by the present application, since the sensitive unit 140 is covered, it will not be in contact with any external pollution source, so that the sensitive unit 140 can maintain its original performance. In addition, since the metal floating gate layer 170 is hydrophilic, there is no specific adsorption with impurities in the solution containing the target to be measured, and the performance (eg, conductivity) of the metal floating gate layer 170 is affected by external impurities Therefore, the biosensor using the field effect transistor 100 has higher stability and can improve the consistency of biosensors produced in the same batch.

所述基底110可以为硅基底或者由其他材料(例如锗)形成的半导体基底。所述基底110可以为掺杂半导体基底。所述掺杂半导体基底可以为n型掺杂半导体基底,也可为p型掺杂半导体基底。在一实施例中,所述基底110为p型掺杂硅基底。The substrate 110 may be a silicon substrate or a semiconductor substrate formed of other materials (eg, germanium). The substrate 110 may be a doped semiconductor substrate. The doped semiconductor substrate may be an n-type doped semiconductor substrate or a p-type doped semiconductor substrate. In one embodiment, the substrate 110 is a p-type doped silicon substrate.

所述栅极120可以由任何适宜的材料形成。在一实施例中,所述栅极120可以由金属材料形成。所述栅极120与所述基底110之间还可以形成有绝缘层(例如SiO2绝缘层)。所述金属材料可以是Ti、Pt、Cr、Au、Al、Ni、Cu和Ag等中的至少一种。在另一实施例中,所述基底110为掺杂半导体基底,可以直接对所述掺杂半导体基底进行局部互补掺杂以形成栅极120。例如,可以对p型掺杂硅基底进行局部的n型重掺杂,以形成导电的栅极120。The gate 120 may be formed of any suitable material. In one embodiment, the gate 120 may be formed of a metal material. An insulating layer (eg, a SiO 2 insulating layer) may also be formed between the gate electrode 120 and the substrate 110 . The metal material may be at least one of Ti, Pt, Cr, Au, Al, Ni, Cu, Ag, and the like. In another embodiment, the substrate 110 is a doped semiconductor substrate, and the doped semiconductor substrate can be directly subjected to local complementary doping to form the gate electrode 120 . For example, a p-doped silicon substrate may be heavily doped locally with n-type to form conductive gate 120 .

所述第一固态电介质层130用作电容层。所述第一固态电介质层130的材料可以为高介电常数电介质材料。所述第一固态电介质层130的材料可以包括HfO2、ZrO2、和Al2O3中的至少一种。在一实施例中,所述第一固态电介质层130的材料是铝氧铪复合物(HfxAlyO2,由HfO2与Al2O3复合形成)。所述第一固态电介质层130的厚度可以为1nm至100nm。优选地,所述第一固态电介质层130的厚度为10nm至15nm,该厚度范围不会引发针孔击穿风险。所述第一固态电介质层130可以采用原子层蒸镀沉积制备,优选采用干氧氧化法(使用O3前驱物),避免水汽氧化法的针孔击穿风险。The first solid dielectric layer 130 serves as a capacitive layer. The material of the first solid dielectric layer 130 may be a high dielectric constant dielectric material. The material of the first solid dielectric layer 130 may include at least one of HfO 2 , ZrO 2 , and Al 2 O 3 . In one embodiment, the material of the first solid dielectric layer 130 is a hafnium aluminum oxide compound (Hf x A y O 2 , which is formed by compounding HfO 2 and Al 2 O 3 ). The thickness of the first solid dielectric layer 130 may be 1 nm to 100 nm. Preferably, the thickness of the first solid dielectric layer 130 is 10 nm to 15 nm, and the thickness range does not cause the risk of pinhole breakdown. The first solid dielectric layer 130 can be prepared by atomic layer evaporation deposition, preferably by dry oxygen oxidation (using O 3 precursor) to avoid the risk of pinhole breakdown in water vapor oxidation.

所述敏感单元140即为所述场效应晶体管的半导体沟道,其可以将生物活性表达的信号转换为电信号。所述敏感单元140可以为用于传统亲和型生物传感器的敏感单元,例如可以为石墨烯层、碳纳米管层和硅纳米线层中的至少一种。在一实施例中,所述敏感单元140为石墨烯层,石墨烯层可以为单层石墨烯、双层石墨烯和多层石墨烯中的至少一种。优选地,所述敏感单元140为单层石墨烯。所述敏感单元140可以设置于所述栅极120的垂直上方。The sensitive unit 140 is the semiconductor channel of the field effect transistor, which can convert the signal expressed by biological activity into an electrical signal. The sensitive unit 140 may be a sensitive unit used in a traditional affinity biosensor, for example, may be at least one of a graphene layer, a carbon nanotube layer, and a silicon nanowire layer. In one embodiment, the sensitive unit 140 is a graphene layer, and the graphene layer may be at least one of single-layer graphene, double-layer graphene, and multi-layer graphene. Preferably, the sensitive unit 140 is a single-layer graphene. The sensitive unit 140 may be disposed vertically above the gate 120 .

所述源极151和所述漏极152可以由任何适宜的材料形成。例如,所述源极151和所述漏极152的材料可以包括Ti、Pt、Cr、Au、Al、Ni、Cu、Ag和ITO等中的至少一种。所述源极151和所述漏极152的材料可以相同。所述源极151和所述漏极152可以在同一工序中同时形成。The source electrode 151 and the drain electrode 152 may be formed of any suitable material. For example, the material of the source electrode 151 and the drain electrode 152 may include at least one of Ti, Pt, Cr, Au, Al, Ni, Cu, Ag, ITO, and the like. Materials of the source electrode 151 and the drain electrode 152 may be the same. The source electrode 151 and the drain electrode 152 may be formed simultaneously in the same process.

所述第二固态电介质层160用作电容层。所述第二固态电介质层160与所述第一固态电介质层130基本相同,在此不再赘述。所述第二固态电介质层160的材料与所述第一固态电介质层130的材料可以相同,也可以不相同。优选地,所述第二固态电介质层160可以将所述敏感单元140完全覆盖。The second solid dielectric layer 160 serves as a capacitive layer. The second solid dielectric layer 160 is basically the same as the first solid dielectric layer 130 , and details are not described herein again. The material of the second solid dielectric layer 160 and the material of the first solid dielectric layer 130 may be the same or different. Preferably, the second solid dielectric layer 160 can completely cover the sensitive unit 140 .

所述金属浮栅层170可以由金属材料形成。所述金属浮栅层170的材料可以包括Ti、Pt、Cr、Au、Al、Ni、Cu和Ag等中的至少一种。优选地,所述金属浮栅层170的外层由惰性金属材料(例如Pt和Au中的至少一种)构成。所述金属浮栅层170可以设置于所述敏感单元140的垂直上方。在一实施例中,所述金属浮栅层170和所述敏感单元140在所述基底110上的正投影落入所述基底110用于设置所述栅极120的区域。The metal floating gate layer 170 may be formed of a metal material. The material of the metal floating gate layer 170 may include at least one of Ti, Pt, Cr, Au, Al, Ni, Cu, Ag, and the like. Preferably, the outer layer of the metal floating gate layer 170 is composed of an inert metal material (eg, at least one of Pt and Au). The metal floating gate layer 170 may be disposed vertically above the sensitive cell 140 . In one embodiment, the orthographic projections of the metal floating gate layer 170 and the sensitive cells 140 on the substrate 110 fall into the region of the substrate 110 for arranging the gate electrode 120 .

本申请进一步提供一种全固态生物传感器,包括所述全固态场效应晶体管100和待测目标物的特异性识别体。所述特异性识别体可以固定连接至所述金属浮栅层170上。The present application further provides an all-solid-state biosensor, including the all-solid-state field effect transistor 100 and a specific recognizer for the target to be measured. The specific identifier can be fixedly connected to the metal floating gate layer 170 .

所述生物传感器还可以包括连接体分子,所述特异性识别体可以通过所述连接体分子与所述金属浮栅层170固定连接。所述连接体分子可以具有第一基团和第二基团。所述连接体分子可以通过所述第一基团与所述金属浮栅层170固定连接,并且通过所述第二基团与所述特异性识别体固定连接,从而使得所述特异性识别体与所述金属浮栅层170固定连接。The biosensor may further include linker molecules, and the specific recognition body may be fixedly connected to the metal floating gate layer 170 through the linker molecules. The linker molecule may have a first group and a second group. The linker molecule can be fixedly connected to the metal floating gate layer 170 through the first group, and fixedly connected to the specific recognition body through the second group, so that the specific recognition body It is fixedly connected with the metal floating gate layer 170 .

在传统的亲和型生物传感器中,敏感单元的表面通过不导电的连接体分子与待测目标物的特异性识别体进行连接,以使得在待测目标物与其特异性识别体进行亲和作用的过程中,所引发的电荷变化能够通过界面电容向敏感单元施加电场效应;如果连接体分子导电的话,则电压会通过连接体分子传导至敏感单元的表面,从而产生界面电流,破坏电场效应工作原理。In traditional affinity biosensors, the surface of the sensitive unit is connected with the specific recognizer of the target to be detected through a non-conductive linker molecule, so that the target to be tested and its specific recognizer have an affinity interaction During the process, the induced charge change can apply an electric field effect to the sensitive unit through the interface capacitance; if the linker molecule conducts electricity, the voltage will be conducted to the surface of the sensitive unit through the linker molecule, thereby generating an interface current and destroying the electric field effect. principle.

在本申请中,所述连接体分子也可以为不导电的分子。例如,所述连接体分子可以具有烷烃链,该烷烃链的一端通过所述第一基团与所述金属浮栅层170的固定连接,另一端通过所述第二基团与所述特异性识别体连接。当所述连接体分子不导电时,与传统的亲和型生物传感器类似,含有待测目标物的溶液与所述金属浮栅层170可以形成界面电容,生物电荷可以通过该界面电容和由所述第二固态电介质层160形成的电容层向所述敏感单元140施加电场效应。In the present application, the linker molecule may also be a non-conductive molecule. For example, the linker molecule may have an alkane chain, one end of the alkane chain is fixedly connected to the metal floating gate layer 170 through the first group, and the other end is connected to the specificity through the second group Recognize body connection. When the linker molecule is non-conductive, similar to traditional affinity biosensors, the solution containing the target to be detected and the metal floating gate layer 170 can form an interface capacitance, and biological charges can pass through the interface capacitance and the The capacitance layer formed by the second solid dielectric layer 160 applies an electric field effect to the sensitive unit 140 .

在优选的实施例中,所述连接体分子为导电分子。生物电荷可以通过所述连接体分子传导至所述金属浮栅层170的表面,再通过由所述第二固态电介质层160形成的电容层向所述敏感单元140施加电场效应。由于与不导电的连接体分子相比较,利用导电的连接体分子只需要通过一个电容层来施加电场效应,从而增加了所述生物传感器的灵敏度。In a preferred embodiment, the linker molecule is a conductive molecule. The biological charges can be conducted to the surface of the metal floating gate layer 170 through the linker molecules, and then an electric field effect can be applied to the sensitive unit 140 through the capacitance layer formed by the second solid dielectric layer 160 . As compared with non-conductive linker molecules, the use of conductive linker molecules only needs to apply electric field effects through a capacitive layer, thereby increasing the sensitivity of the biosensor.

所述连接体分子可以是导电化合物,例如所述连接体分子可以是有机导电化合物。有机导电化合物一般为具有共轭大π键的有机分子,该有机分子的一端通过所述第一基团与金属浮栅层170固定连接,另一端通过所述第二基团与所述待测目标物的特异性识别体固定连接。所述有机导电化合物可以具有芳香环,该芳香环可以分别与所述第一基团和所述第二基团直接连接。所述芳香环可以包括苯环、萘环、芴环、噻吩环、吡咯环和哌嗪环中的至少一种。所述第一基团可以为能够与金属材料产生不可逆的吸附的基团,例如巯基。所述第二基团可以为能够与所述特异性识别体的基团发生缩合反应的基团,例如当所述特异性识别体带有羟基或者羧基时,所述第二基团可以是氨基。在一实施例中,所述连接体分子可以包括氮-羟基琥珀酰亚胺酯对巯基苯甲酸(4-mercaptobenzoic acid N-hydroxysuccinimide ester,MBA-NHS)和氮-羟基琥珀酰亚胺酯巯基联苯甲酸(4-mercaptodiphenic acid N-hydroxysuccinimide ester,MDPA-NHS)中的至少一种。The linker molecule may be a conductive compound, eg, the linker molecule may be an organic conductive compound. The organic conductive compound is generally an organic molecule with a large conjugated π bond. One end of the organic molecule is fixedly connected to the metal floating gate layer 170 through the first group, and the other end is connected to the to-be-tested through the second group. Target-specific recognizers are immobilized. The organic conductive compound may have an aromatic ring, and the aromatic ring may be directly connected to the first group and the second group, respectively. The aromatic ring may include at least one of a benzene ring, a naphthalene ring, a fluorene ring, a thiophene ring, a pyrrole ring, and a piperazine ring. The first group may be a group capable of irreversibly adsorbing with a metal material, such as a thiol group. The second group can be a group that can undergo condensation reaction with the group of the specific recognizer, for example, when the specific recognizer has a hydroxyl group or a carboxyl group, the second group can be an amino group . In one embodiment, the linker molecule may include a nitrogen-hydroxysuccinimide ester p-mercaptobenzoic acid (4-mercaptobenzoic acid N-hydroxysuccinimide ester, MBA-NHS) and a nitrogen-hydroxysuccinimide ester thiol linker. At least one of benzoic acid (4-mercaptodiphenic acid N-hydroxysuccinimide ester, MDPA-NHS).

本申请还提供一种全固态场效应晶体管的制备方法,包括:The present application also provides a method for preparing an all-solid-state field effect transistor, comprising:

S10,提供基底110;S10, providing a substrate 110;

S20,对基底110进行光刻图形化,以暴露出待设置栅极120的区域,然后在该暴露出的区域设置所述栅极120;S20, performing photolithography patterning on the substrate 110 to expose the region where the gate electrode 120 is to be arranged, and then disposing the gate electrode 120 in the exposed region;

S30,在所述基底110上设置覆盖所述栅极120的第一固态电介质层130;S30, disposing a first solid dielectric layer 130 covering the gate electrode 120 on the substrate 110;

S40,在所述第一固态电介质层130上与所述栅极120相对的位置设置敏感单元140;S40, disposing a sensitive unit 140 on the first solid dielectric layer 130 at a position opposite to the gate 120;

S50,对设置有所述敏感单元140的基底110进行光刻胶图案化,以暴露出待设置源极151和漏极152的区域,然后在该暴露出的区域设置所述源极151和所述漏极152,以使所述源极151和所述漏极152分别与敏感单元140的两端连接;S50, photoresist patterning is performed on the substrate 110 provided with the sensitive unit 140 to expose the region where the source electrode 151 and the drain electrode 152 are to be provided, and then the source electrode 151 and all the source electrode 151 and the drain electrode 152 are provided in the exposed region. the drain electrode 152, so that the source electrode 151 and the drain electrode 152 are respectively connected to both ends of the sensitive unit 140;

S60,在所述基地110上设置覆盖所述敏感单元140的第二固态电介质层160;和S60, disposing a second solid dielectric layer 160 covering the sensitive unit 140 on the base 110; and

S70,在所述第二固态电介质层160上与所述敏感单元140相对的位置设置金属浮栅层170。S70 , providing a metal floating gate layer 170 on the second solid dielectric layer 160 at a position opposite to the sensitive unit 140 .

本申请提供的场效应晶体管的制备方法,可以大批量地制备出一致性好且性能稳定的场效应晶体管,其中,所述基底110、所述栅极120、所述第一固态电介质层130、所述敏感单元140、所述源极151、所述漏极152和所述第二固态电介质层160可以分别采用本领域习知的工艺提供、制备或者形成。所述金属浮栅层170可以通过习知的形成金属层的工艺(例如蒸镀、溅镀等工艺)来形成。The method for manufacturing field effect transistors provided by the present application can manufacture field effect transistors with good consistency and stable performance in large quantities, wherein the substrate 110, the gate 120, the first solid dielectric layer 130, The sensitive cell 140 , the source electrode 151 , the drain electrode 152 and the second solid dielectric layer 160 may be provided, prepared or formed by a process known in the art, respectively. The metal floating gate layer 170 may be formed by a conventional metal layer forming process (eg, evaporation, sputtering, etc.).

本申请还提供一种所述全固态生物传感器的制备方法,包括:The present application also provides a preparation method of the all-solid-state biosensor, comprising:

S1,提供所述全固态场效应晶体管100;S1, providing the all-solid-state field effect transistor 100;

S2,将所述连接体分子固定连接至所述金属浮栅层170的表面;S2, the linker molecules are fixedly connected to the surface of the metal floating gate layer 170;

S3,将所述待测目标物的特异性识别体固定连接至所述连接体分子。S3, the specific recognition body of the target to be detected is fixedly connected to the linker molecule.

在一实施例中,可以使用含有所述连接体分子的溶液浸泡所述金属浮栅层170,使得所述第一基团与所述金属浮栅层170发生不可逆的吸附,从而得到固定连接有所述连接体分子的金属浮栅层170。In one embodiment, the metal floating gate layer 170 may be soaked in a solution containing the linker molecule, so that the first group and the metal floating gate layer 170 are irreversibly adsorbed, so as to obtain a fixed connection with the metal floating gate layer 170 . The metal floating gate layer 170 of the linker molecule.

在一实施例中,可以使用含有所述特异性识别体的溶液浸泡所述固定连接有所述连接体分子的金属浮栅层170,使得所述连接体分子通过所述第二基团与所述特异性识别体发生缩合反应,从而将所述特异性识别体固定连接至所述金属浮栅层170上。In one embodiment, the metal floating gate layer 170 to which the linker molecules are fixedly connected can be soaked with a solution containing the specific recognition body, so that the linker molecules can interact with all the linker molecules through the second group. The specific recognition body undergoes a condensation reaction, so that the specific recognition body is fixedly connected to the metal floating gate layer 170 .

在一实施例中,在得到所述生物传感器之后,还可以使用含有封闭剂的溶液浸泡固定连接有所述特异性识别体的金属浮栅层170,以封闭尚未连接所述特异性识别体的连接体分子。所述封闭剂可以为含有能够与所述第二基团发生缩合反应的短链分子。例如,所述连接体分子可以为乙醇胺。In one embodiment, after the biosensor is obtained, the metal floating gate layer 170 to which the specific recognition body is fixedly connected can also be soaked in a solution containing a blocking agent, so as to block the unconnected specific recognition body. linker molecule. The blocking agent may be a molecule containing a short chain capable of undergoing a condensation reaction with the second group. For example, the linker molecule can be ethanolamine.

本申请还提供一种所述生物传感器的检测方法,包括:The present application also provides a method for detecting the biosensor, comprising:

S01,将所述源极151和所述基底110接地,向所述漏极152施加电压Vds,向所述栅极120施加电压VgsS01, grounding the source electrode 151 and the substrate 110, applying a voltage V ds to the drain electrode 152, and applying a voltage V gs to the gate electrode 120;

S02,使含有待测目标物的溶液与所述金属浮栅层170接触,以使所述待测目标物和所述特异性识别体发生生物亲和作用;S02, contacting the solution containing the target to be measured with the metal floating gate layer 170, so that the target to be measured and the specific recognition body have a biological affinity;

S03,实时检测流过所述漏极152的电流IdsS03, real-time detection of the current I ds flowing through the drain 152;

S04,根据所述实时检测的电流Ids和电压Vds计算所述敏感单元的电导率,绘制电导率随时间变化的曲线;和S04, calculating the conductivity of the sensitive unit according to the current I ds and the voltage V ds detected in real time, and drawing a curve of the conductivity changing with time; and

S05,根据所述电导率随时间变化的曲线获取所述待测目标物的浓度。S05, obtaining the concentration of the target to be measured according to the curve of the conductivity changing with time.

在漏极电压Vds和栅极电压Vgs不变的情况下,金属浮栅层170上的生物电荷的变化将引起敏感单元的电势变化,而含有不同浓度的待测目标物的溶液将引起不同的电导率变化率,因此可以根据所述电导率随时间变化的曲线获取所述待测目标物的浓度。Under the condition that the drain voltage V ds and the gate voltage V gs remain unchanged, the change of the bio-charge on the metal floating gate layer 170 will cause the potential change of the sensitive cell, and the solutions containing different concentrations of the target to be tested will cause Different conductivity change rates, so the concentration of the target object to be measured can be obtained according to the curve of the conductivity changing with time.

当所述栅极120是通过对p型掺杂半导体基底110进行局部互补掺杂形成时,可以向所述栅极120施加正的电压Vgs,从而使栅极120与硅基底110之间形成反偏pn结隔离,避免硅基底110漏电的风险。当所述栅极120是通过对n型掺杂半导体基底110进行局部互补掺杂形成时,可以向所述栅极120施加负的电压Vgs,从而使栅极120与硅基底110之间形成反偏pn结隔离,避免硅基底110漏电的风险。所述敏感单元的电导率=Vds/IdsWhen the gate electrode 120 is formed by locally complementary doping the p-type doped semiconductor substrate 110 , a positive voltage V gs can be applied to the gate electrode 120 , so that the gate electrode 120 and the silicon substrate 110 are formed between the gate electrode 120 and the silicon substrate 110 . The reverse biased pn junction is isolated to avoid the risk of leakage of the silicon substrate 110 . When the gate 120 is formed by locally complementary doping the n-type doped semiconductor substrate 110 , a negative voltage V gs can be applied to the gate 120 , so that the gate 120 and the silicon substrate 110 are formed between the gate 120 and the silicon substrate 110 . The reverse biased pn junction is isolated to avoid the risk of leakage of the silicon substrate 110 . Conductivity of the sensitive cell = V ds /I ds .

所述生物传感器的检测方法还可以包括获取标准的电导率随时间变化的曲线的步骤,该步骤与所述步骤S01至S04基本相同,不同之处仅在于在步骤S02中采用含有不同已知浓度的待测目标物的溶液与所述金属浮栅层170进行接触。可以根据检测所得的电导率随时间变化的曲线和标准的电导率随时间变化的曲线来获取所述待测目标物的浓度。The detection method of the biosensor may also include the step of obtaining a standard curve of electrical conductivity changing with time, which is basically the same as the steps S01 to S04, the difference is only that in step S02, different known concentrations are used. The solution of the target object to be tested is in contact with the metal floating gate layer 170 . The concentration of the target object to be measured can be obtained according to the curve of the change of conductivity with time obtained by the detection and the curve of the change of the standard of conductivity with time.

实施例1Example 1

场效应晶体管的制备Fabrication of Field Effect Transistors

所述场效应晶体管通过以下步骤制备:The field effect transistor is prepared by the following steps:

S10,提供杂质浓度为n=2×1016cm-3的硼掺杂p型硅晶圆,所述硅晶圆的表面具有100nm左右的二氧化硅层以形成离子射流散射。S10, providing a boron-doped p-type silicon wafer with an impurity concentration of n=2×10 16 cm −3 , the surface of the silicon wafer having a silicon dioxide layer of about 100 nm to form ion jet scattering.

S20,对所述硅晶圆基底进行光刻图形化,暴露出待形成栅极的区域,在所暴露出的区域中注入磷元素并退火激活,形成约500nm厚且杂质浓度约为2×1018cm-3的n型重掺杂栅极,并使用氧化物刻蚀剂氢氟酸溶液(buffered oxide etchant,BOE)硅晶圆表面的二氧化硅层。其中,注入磷元素时,离子注入能量约为150keV,磷元素束流密度约为1015cm-2。退火激活条件为在1050℃下退火30秒。S20, performing photolithography patterning on the silicon wafer substrate, exposing the region where the gate is to be formed, injecting phosphorus element into the exposed region and annealing and activating to form a thickness of about 500 nm and an impurity concentration of about 2×10 18 cm -3 n-type heavily doped gate, and oxide etchant hydrofluoric acid solution (buffered oxide etchant, BOE) silicon dioxide layer on the surface of the silicon wafer. Among them, when the phosphorus element is implanted, the ion implantation energy is about 150keV, and the phosphorus element beam current density is about 10 15 cm -2 . Annealing activation conditions were annealing at 1050°C for 30 seconds.

S30,使用干氧氧化法原子层蒸镀沉积工艺在步骤S30之后的晶圆表面生长一层厚度为15nm的HfO2电介质层。S30 , using a dry oxygen oxidation atomic layer evaporation deposition process to grow a HfO 2 dielectric layer with a thickness of 15 nm on the wafer surface after step S30 .

S40,制备石墨烯层,将所述石墨烯层转移至步骤S30形成的HfO2电介质层上,对石墨烯层进行光刻胶图形化和等离子刻蚀,形成多个石墨烯敏感单元,并使每个石墨烯敏感单元的位置准确位于对应栅极的上方,以便受到来自下方的栅极的电场控制,每一石墨烯敏感单元的尺寸约为20μm×20μm。S40, prepare a graphene layer, transfer the graphene layer to the HfO 2 dielectric layer formed in step S30, perform photoresist patterning and plasma etching on the graphene layer to form a plurality of graphene sensitive units, and make The position of each graphene-sensitive cell is exactly above the corresponding gate so as to be controlled by the electric field from the gate below, and the size of each graphene-sensitive cell is about 20 μm×20 μm.

S50,在石墨烯敏感单元两端通过光刻胶图形化和金属沉积制作源极和漏极,源极和漏极均为双层金属结构,内层为5nm厚的铬或钛黏附层,外层为45nm厚的金或铂。S50, the source and drain electrodes are fabricated by photoresist patterning and metal deposition at both ends of the graphene sensitive cell. The source and drain electrodes are both double-layer metal structures. The inner layer is a 5nm thick chromium or titanium adhesion layer. The layers are 45nm thick gold or platinum.

S60,使用干氧氧化法原子层蒸镀沉积工艺在步骤S50之后的晶圆表面生长一层厚度为10nm的HfO2电介质层。S60 , using a dry oxygen oxidation atomic layer evaporation deposition process to grow a HfO 2 dielectric layer with a thickness of 10 nm on the wafer surface after step S50 .

S70,对步骤60形成的HfO2电介质层进行光刻胶图形化和蒸镀沉积,从而形成多个金属浮栅层,每一金属浮栅层位于对应石墨烯敏感单元的垂直上方。金属浮栅层为双层金属结构,内层为5nm厚的铬或钛黏附层,外层为45nm厚的金或铂。S70, performing photoresist patterning and evaporation deposition on the HfO 2 dielectric layer formed in step 60, thereby forming a plurality of metal floating gate layers, each metal floating gate layer is located vertically above the corresponding graphene sensitive cell. The metal floating gate layer is a double-layer metal structure, the inner layer is a 5nm thick chromium or titanium adhesion layer, and the outer layer is a 45nm thick gold or platinum layer.

在实施例1中,步骤S50和步骤S70均形成了场效应晶体管,其中,步骤S50形成的场效应晶体管为使含有待测目标物的溶液与敏感单元接触来进行检测的传统亲和型场效应晶体管,本文中将其命名为SG-GFET;而步骤S70形成的场效应晶体管为上文描述的新型亲和型场效应晶体管,本文中将其命名为FSS-GFET。In Example 1, both step S50 and step S70 form field effect transistors, wherein the field effect transistor formed in step S50 is a traditional affinity field effect transistor that makes the solution containing the target object to be tested contact the sensitive unit for detection. The transistor, which is named SG-GFET herein; and the field effect transistor formed in step S70 is the novel affinity field effect transistor described above, which is named FSS-GFET herein.

实施例2Example 2

生物传感器的制备Preparation of Biosensors

生物传感器1的制备:对于FSS-GFET,首先,使用含有MBA-NHS的溶液浸泡金属浮栅层,使MBA-NHS的巯基与金属浮栅层外层的金或铂发生不可逆的吸附;其次,用含有对Pb2+敏感的DNA酶的溶液浸泡连接有MBA-NHS的金属浮栅层,使得DNA酶与MBA-NHS发生缩合反应,从而固定连接至所述金属浮栅层上;最后,使用乙醇胺浸泡金属浮栅层,以将尚未连接DNA酶的连接体分子封闭。Preparation of biosensor 1: For FSS-GFET, first, the metal floating gate layer was soaked with a solution containing MBA-NHS, so that the thiol group of MBA-NHS was irreversibly adsorbed with gold or platinum in the outer layer of the metal floating gate layer; secondly, Soak the metal floating gate layer connected with MBA-NHS with a solution containing DNase sensitive to Pb 2+ , so that the DNase and MBA-NHS undergo condensation reaction, so as to be fixedly connected to the metal floating gate layer; finally, use Ethanolamine soaks the metal floating gate layer to block linker molecules that have not yet attached DNase.

生物传感器2的制备:与生物传感器1的制备基本相同,不同之处仅在于使用氮-羟基琥珀酰亚胺酯3-巯基丙酸(3-mercaptopropionic acid N-hydroxysuccinimide ester,MPA-NHS)代替MBA-NHS。Preparation of biosensor 2: basically the same as that of biosensor 1, except that 3-mercaptopropionic acid N-hydroxysuccinimide ester (MPA-NHS) was used instead of MBA -NHS.

生物传感器3的制备:对于SG-GFET,使用含有氮-羟基琥珀酰亚胺酯芘丁酸(1-pyrenebutyric acid N-hydroxysuccinimide ester,PBA-NHS)的溶液浸泡石墨烯敏感单元,使PBA-NHS的芘基与石墨烯敏感单元连接;其次,用含有DNA酶的溶液浸泡连接有PBA-NHS的石墨烯敏感单元,使得DNA酶与PBA-NHS发生缩合反应,从而固定连接至所述石墨烯敏感单元上;最后,使用乙醇胺浸泡石墨烯敏感单元,以将尚未连接DNA酶的连接体分子封闭。Preparation of biosensor 3: For SG-GFET, the graphene-sensitive cell was soaked with a solution containing 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBA-NHS) to make PBA-NHS The pyrene group is connected with the graphene-sensitive unit; secondly, soak the graphene-sensitive unit connected with PBA-NHS with a solution containing DNase, so that a condensation reaction between DNase and PBA-NHS occurs, so as to be fixedly connected to the graphene-sensitive unit on the cell; finally, the graphene-sensitive cell was soaked with ethanolamine to block the linker molecules that had not yet been attached to DNase.

实施例3Example 3

对于实施例1的SG-GFET和FSS-GFET、实施例2的生物传感器1-3和完成生物亲和作用的生物传感器1-3进行转移特性曲线的检测。The detection of the transfer characteristic curve was carried out for the SG-GFET and FSS-GFET of Example 1, the biosensor 1-3 of Example 2, and the biosensor 1-3 that completed the bioaffinity effect.

其中,通过使用含有Pb2+的溶液与所述生物传感器1和2的金属浮栅层以及生物传感器3的石墨烯敏感单元接触来完成生物亲和作用。在进行生物亲和作用时,Pb2+对DNA酶进行剪切,使DNA酶的一部分从金属浮栅层或者石墨烯敏感单元的表面脱离,如图2所示。Wherein, the bioaffinity is accomplished by contacting the metal floating gate layers of the biosensors 1 and 2 and the graphene sensitive unit of the biosensor 3 with a solution containing Pb 2+ . During bioaffinity, Pb 2+ cleaves the DNase, so that a part of the DNase is detached from the surface of the metal floating gate layer or the graphene-sensitive cell, as shown in Figure 2.

所述转移特性曲线的检测步骤包括:The detection steps of the transfer characteristic curve include:

a)将源极与基底一起接地(0V),漏极施加一个较小的恒定直流电压Vds。a) The source is grounded together with the substrate (0V), and a small constant DC voltage Vds is applied to the drain.

b)向栅极施加连续扫描电压Vgs,Vgs始终保持为正以保证栅极与基底之间的反偏pn结隔离。b) A continuous scanning voltage Vgs is applied to the gate, and Vgs is always kept positive to ensure the isolation of the reverse-biased pn junction between the gate and the substrate.

c)对应于每个Vgs值测量流过漏极的电流Ids,即可算出器件电导率σ,电导率σ相对于Vgs的曲线即为转移特性曲线。c) Measure the current Ids flowing through the drain corresponding to each Vgs value, and then the device conductivity σ can be calculated, and the curve of the conductivity σ versus Vgs is the transfer characteristic curve.

请参阅图3至图5,图3示出了FSS-GFET、生物传感器1和完成生物亲和作用的生物传感器1的转移特性曲线的对比图;图4示出了FSS-GFET、生物传感器2和完成生物亲和作用的生物传感器2的转移特性曲线的对比图;图5示出了SG-GFET、生物传感器3和完成生物亲和作用的生物传感器3的转移特性曲线的对比图。从图3至图5可以看出,与传统的生物传感器1相比,新型的生物传感器1和2的转移特性曲线具有更大的斜率,说明新型的生物传感器1和2具有更大的跨导,栅极电压对漏极电压的控制作用更强。另外还可以看出,在栅极电压和漏极电压均相同时,在进行生物亲和作用之前和之后,与传统的生物传感器1相比,新型的生物传感器1和2的敏感单元的电导率变化更大,说明新型的生物传感器1和2的测试灵敏度更高。Please refer to Fig. 3 to Fig. 5, Fig. 3 shows the comparison graph of the transfer characteristic curves of FSS-GFET, biosensor 1 and biosensor 1 that completes bioaffinity; Fig. 4 shows FSS-GFET, biosensor 2 Fig. 5 shows a comparison diagram of the transfer characteristic curves of SG-GFET, biosensor 3 and biosensor 3 with bioaffinity. It can be seen from Fig. 3 to Fig. 5 that compared with the conventional biosensor 1, the transfer characteristic curves of the new biosensors 1 and 2 have larger slopes, indicating that the new biosensors 1 and 2 have larger transconductance , the gate voltage has a stronger control effect on the drain voltage. In addition, it can be seen that the conductivity of the sensitive cells of the novel biosensors 1 and 2 compared with the conventional biosensor 1 before and after the bioaffinity effect when the gate voltage and the drain voltage are the same The change is larger, indicating that the new biosensors 1 and 2 have higher test sensitivity.

实施例4Example 4

对于实施例2的生物传感器1(采用FSS-GFET)和生物传感器3(采用SG-GFET)进行动力学过程测试,具体步骤包括:For the biosensor 1 (using FSS-GFET) and biosensor 3 (using SG-GFET) of Example 2, the kinetic process test is performed, and the specific steps include:

a)将源极与基底一起接地(0V),漏极施加一个较小的恒定直流电压Vds。a) The source is grounded together with the substrate (0V), and a small constant DC voltage Vds is applied to the drain.

b)向栅极施加恒定的正电压Vgs,保证栅极与基底之间的反偏pn结隔离。b) A constant positive voltage Vgs is applied to the gate to ensure reverse-biased pn junction isolation between the gate and the substrate.

c)以一定时间间隔连续测量流过漏极的电流Ids,即可算出敏感单元的电导率σ随时间的变化,电导率σ随时间变化的曲线即为动力学过程曲线。c) Continuously measure the current Ids flowing through the drain at a certain time interval, and then the change of the conductivity σ of the sensitive unit with time can be calculated, and the curve of the change of the conductivity σ with time is the kinetic process curve.

上述动力学过程中发生生物亲和作用的具体步骤为:首先使用不含Pb2+的HEPES缓冲溶液冲洗金属浮栅层15分钟(buffer rinsing),然后将含有不同浓度Pb2+的HEPES缓冲溶液引入金属浮栅层的表面反应30分钟(sample detection),然后将含有高浓度(1μM)的Pb2+的HEPES缓冲溶液引入金属浮栅层的表面终止反应(end of 1μM sample)。The specific steps of the bioaffinity in the above kinetic process are: first, use the HEPES buffer solution without Pb 2+ to rinse the metal floating gate layer for 15 minutes (buffer rinsing), and then wash the HEPES buffer solutions containing different concentrations of Pb 2+ . The surface of the metal floating gate layer was introduced for 30 minutes (sample detection), and then HEPES buffer solution containing a high concentration (1 μM) of Pb 2+ was introduced into the surface of the metal floating gate layer to terminate the reaction (end of 1 μM sample).

请参阅图6,图6示出了在不同浓度下的生物传感器1和生物传感器3的动力学过程曲线对比图,从图中可以看出,与采用传统场效应晶体管的生物传感器相比,本申请的采用新型场效应晶体管的生物传感器对相同的生物亲和作用能够产生更大响应信号,从而更有利于低浓度待测目标物的检测。Please refer to Fig. 6. Fig. 6 shows the comparison of the kinetic process curves of biosensor 1 and biosensor 3 at different concentrations. It can be seen from the figure that compared with the biosensor using traditional field effect transistors, the The applied biosensor using the novel field effect transistor can generate a larger response signal to the same bio-affinity, thereby being more conducive to the detection of a low-concentration target to be detected.

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above-described embodiments can be combined arbitrarily. For the sake of brevity, all possible combinations of the technical features in the above-described embodiments are not described. However, as long as there is no contradiction between the combinations of these technical features, All should be regarded as the scope described in this specification.

以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present invention, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those of ordinary skill in the art, without departing from the concept of the present invention, several modifications and improvements can also be made, which all belong to the protection scope of the present invention. Therefore, the protection scope of the patent of the present invention should be subject to the appended claims.

本发明受到以下研究课题支持:中国国家自然科学基金(61901300),江苏省自然科学基金(SBK2018041725),天津市自然科学基金(18JCYBJC86000),天津市教委科研计划(2018KJ153).天津师范大学引进人才基金(011/5RL153)。The present invention is supported by the following research projects: National Natural Science Foundation of China (61901300), Natural Science Foundation of Jiangsu Province (SBK2018041725), Natural Science Foundation of Tianjin (18JCYBJC86000), Scientific Research Program of Tianjin Municipal Education Commission (2018KJ153). Tianjin Normal University Talent Introduction Fund (011/5RL153).

Claims (14)

1.一种全固态生物传感器,包括全固态场效应晶体管和待测目标物的特异性识别体,其中,所述全固态场效应晶体管包括:1. An all-solid-state biosensor, comprising an all-solid-state field effect transistor and a specific identifier for a target to be measured, wherein the all-solid-state field effect transistor comprises: 基底;base; 栅极,设置于所述基底上;a gate, disposed on the substrate; 第一固态电介质层,覆盖于所述栅极上;a first solid dielectric layer covering the gate; 敏感单元,设置于所述第一固态电介质层上,且与所述栅极相对设置;a sensitive unit, disposed on the first solid dielectric layer and opposite to the gate; 源极和漏极,设置于所述第一固态电介质层上,且分别与所述敏感单元的两端连接;a source electrode and a drain electrode, disposed on the first solid dielectric layer, and connected to two ends of the sensitive unit respectively; 第二固态电介质层,覆盖于所述敏感单元上;和a second solid dielectric layer overlying the sensitive cell; and 金属浮栅层,设置于所述第二固态电介质层上,且与所述敏感单元相对设置;a metal floating gate layer, disposed on the second solid dielectric layer, and disposed opposite to the sensitive unit; 其中,所述特异性识别体固定连接至所述金属浮栅层上。Wherein, the specific recognition body is fixedly connected to the metal floating gate layer. 2.根据权利要求1所述的全固态生物传感器,其特征在于,还包括连接体分子,所述连接体分子具有第一基团和第二基团,所述连接体分子通过所述第一基团与所述金属浮栅层固定连接并且通过所述第二基团与所述特异性识别体固定连接。2 . The all-solid-state biosensor according to claim 1 , further comprising a linker molecule, the linker molecule has a first group and a second group, and the linker molecule passes through the first group. 3 . The group is fixedly connected to the metal floating gate layer and is fixedly connected to the specific recognition body through the second group. 3.根据权利要求2所述的全固态生物传感器,其特征在于,所述连接体分子为导电化合物。3 . The all-solid-state biosensor according to claim 2 , wherein the linker molecule is a conductive compound. 4 . 4.根据权利要求3所述的全固态生物传感器,其特征在于,所述导电化合物具有芳香环,所述第一基团和所述第二基团分别与所述芳香环直接连接。4 . The all-solid-state biosensor according to claim 3 , wherein the conductive compound has an aromatic ring, and the first group and the second group are respectively directly connected to the aromatic ring. 5 . 5.根据权利要求2所述的全固态生物传感器,其特征在于,所述第一基团是巯基。5. The all-solid-state biosensor of claim 2, wherein the first group is a thiol group. 6.根据权利要求2所述的全固态生物传感器,其特征在于,所述第二基团是能够与所述特异性识别体的基团发生缩合反应的基团。6 . The all-solid-state biosensor according to claim 2 , wherein the second group is a group capable of undergoing a condensation reaction with a group of the specific recognizer. 7 . 7.根据权利要求2所述的全固态生物传感器,其特征在于,所述连接体分子包括氮-羟基琥珀酰亚胺酯对巯基苯甲酸和氮-羟基琥珀酰亚胺酯巯基联苯甲酸中的至少一种。7. The all-solid-state biosensor of claim 2, wherein the linker molecule comprises nitrogen-hydroxysuccinimide ester p-mercaptobenzoic acid and nitrogen-hydroxysuccinimide ester mercaptobibenzoic acid at least one of. 8.根据权利要求1所述的全固态生物传感器,其特征在于,所述敏感单元被所述第二固态电介质层完全封闭。8. The all-solid-state biosensor of claim 1, wherein the sensitive unit is completely enclosed by the second solid-state dielectric layer. 9.根据权利要求1至8中任一项所述的全固态生物传感器,其特征在于,所述金属浮栅层包括由惰性金属材料构成的外层。9 . The all-solid-state biosensor according to claim 1 , wherein the metal floating gate layer comprises an outer layer composed of an inert metal material. 10 . 10.根据权利要求1至8中任一项所述的全固态生物传感器,其特征在于,所述敏感单元是石墨烯层、碳纳米管层和硅纳米线层中的至少一种。10 . The all-solid-state biosensor according to claim 1 , wherein the sensitive unit is at least one of a graphene layer, a carbon nanotube layer and a silicon nanowire layer. 11 . 11.根据权利要求1至8中任一项所述的全固态生物传感器,其特征在于,所述基底是掺杂半导体基底,所述栅极通过对所述掺杂半导体基底进行局部互补掺杂形成。11. The all-solid-state biosensor according to any one of claims 1 to 8, wherein the substrate is a doped semiconductor substrate, and the gate is subjected to local complementary doping on the doped semiconductor substrate form. 12.一种全固态场效应晶体管,包括:12. An all-solid-state field effect transistor, comprising: 基底;base; 栅极,设置于所述基底上;a gate, disposed on the substrate; 第一固态电介质层,覆盖于所述栅极上;a first solid dielectric layer covering the gate; 敏感单元,设置于所述第一固态电介质层上,且与所述栅极相对设置;a sensitive unit, disposed on the first solid dielectric layer and opposite to the gate; 源极和漏极,设置于所述第一固态电介质层上,且分别与所述敏感单元的两端连接;a source electrode and a drain electrode, disposed on the first solid dielectric layer, and connected to two ends of the sensitive unit respectively; 第二固态电介质层,覆盖于所述敏感单元上;和a second solid dielectric layer overlying the sensitive cell; and 金属浮栅层,设置于所述第二固态电介质层上,且与所述敏感单元相对设置。The metal floating gate layer is disposed on the second solid dielectric layer and is disposed opposite to the sensitive unit. 13.一种如权利要求12所述的全固态场效应晶体管在生物亲和检测中的应用。13. An application of the all-solid-state field effect transistor according to claim 12 in bioaffinity detection. 14.一种使用如权利要求11所述的全固态生物传感器的检测方法,包括:14. A detection method using the all-solid-state biosensor of claim 11, comprising: 将所述源极和所述基底接地,向所述漏极施加电压Vds,向所述栅极施加电压Vgsgrounding the source and the substrate, applying a voltage V ds to the drain, and applying a voltage V gs to the gate; 使含有所述待测目标物的溶液与所述金属浮栅层接触,以使所述待测目标物与所述特异性识别体发生生物亲和作用;contacting the solution containing the target to be detected with the metal floating gate layer, so that the target to be detected has a bioaffinity effect on the specific recognition body; 实时检测流过所述漏极的电流Idsreal-time detection of the current I ds flowing through the drain; 根据所述实时检测的电流Ids和所述电压Vds计算所述敏感单元的电导率,绘制电导率随时间变化的曲线;和Calculate the conductivity of the sensitive cell according to the real-time detected current I ds and the voltage V ds , and draw a curve of conductivity versus time; and 根据所述电导率随时间变化的曲线获取所述待测目标物的浓度;Obtain the concentration of the target object to be measured according to the curve of the conductivity changing with time; 其中,当所述导电的掺杂半导体基底是p型掺杂半导体基底时,所述电压Vgs是正电压;当所述导电的掺杂半导体基底是n型掺杂半导体基底时,所述电压Vgs是负电压。Wherein, when the conductive doped semiconductor substrate is a p-type doped semiconductor substrate, the voltage V gs is a positive voltage; when the conductive doped semiconductor substrate is an n-type doped semiconductor substrate, the voltage V gs gs is the negative voltage.
CN201910881688.1A 2019-09-18 2019-09-18 All-solid-state field effect transistor, biosensor using same and detection method Pending CN110672699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910881688.1A CN110672699A (en) 2019-09-18 2019-09-18 All-solid-state field effect transistor, biosensor using same and detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910881688.1A CN110672699A (en) 2019-09-18 2019-09-18 All-solid-state field effect transistor, biosensor using same and detection method

Publications (1)

Publication Number Publication Date
CN110672699A true CN110672699A (en) 2020-01-10

Family

ID=69076841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910881688.1A Pending CN110672699A (en) 2019-09-18 2019-09-18 All-solid-state field effect transistor, biosensor using same and detection method

Country Status (1)

Country Link
CN (1) CN110672699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896697A (en) * 2020-07-31 2020-11-06 山东理工职业学院 Integrated carbon nanotube electric sensor based on medicine monitoring and system thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355436B1 (en) * 1996-05-17 2002-03-12 L'ecole Centrale De Lyon Method for analyzing biological substances in a conductive liquid medium
CN101454659A (en) * 2006-05-29 2009-06-10 皇家飞利浦电子股份有限公司 Organic field-effect transistor for sensing applications
KR101056467B1 (en) * 2010-03-05 2011-08-12 한국과학기술원 Biosensor using field effect transistor and its manufacturing method
US20160178569A1 (en) * 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-Sensitive Field Effect Transistor
WO2017206414A1 (en) * 2016-06-01 2017-12-07 张家港万众一芯生物科技有限公司 Biochemical sensor under standard cmos technology
CN108847424A (en) * 2018-04-24 2018-11-20 京东方科技集团股份有限公司 Thin film transistor (TFT), sensor, biological monitor and method
CN109690305A (en) * 2016-09-07 2019-04-26 华为技术有限公司 Biosensor and preparation method thereof
US20190257732A1 (en) * 2016-06-18 2019-08-22 Graphwear Technologies Inc. Polar fluid gated field effect devices

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6355436B1 (en) * 1996-05-17 2002-03-12 L'ecole Centrale De Lyon Method for analyzing biological substances in a conductive liquid medium
CN101454659A (en) * 2006-05-29 2009-06-10 皇家飞利浦电子股份有限公司 Organic field-effect transistor for sensing applications
KR101056467B1 (en) * 2010-03-05 2011-08-12 한국과학기술원 Biosensor using field effect transistor and its manufacturing method
US20160178569A1 (en) * 2014-12-18 2016-06-23 Edico Genome Corporation Chemically-Sensitive Field Effect Transistor
WO2017206414A1 (en) * 2016-06-01 2017-12-07 张家港万众一芯生物科技有限公司 Biochemical sensor under standard cmos technology
US20190257732A1 (en) * 2016-06-18 2019-08-22 Graphwear Technologies Inc. Polar fluid gated field effect devices
CN109690305A (en) * 2016-09-07 2019-04-26 华为技术有限公司 Biosensor and preparation method thereof
CN108847424A (en) * 2018-04-24 2018-11-20 京东方科技集团股份有限公司 Thin film transistor (TFT), sensor, biological monitor and method

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
GHADIRY, M. H. ET AL.: "A model for length of saturation velocity region in double-gate Graphene nanoribbon transistors", 《MICROELECTRONICS RELIABILITY》 *
GOODING, J. JUSTIN: "Advances in Interfacial Design for Electrochemical Biosensors and Sensors: Aryl Diazonium Salts for Modifying Carbon and Metal Electrodes", 《ELECTROANALYSIS》 *
HWANG, BYEONG-WOON ET AL.: "Enhanced transconductance in a double-gate graphene field-effect transistor", 《SOLID-STATE ELECTRONICS》 *
INKPEN, MICHAEL S. ET AL.: "Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers", 《NATURE CHEMISTRY》 *
JALIT, YAMILE ET AL.: "Characterization of a modified gold platform for the development of a label-free anti-thrombin aptasensor", 《BIOSENSORS AND BIOELECTRONICS》 *
KLIROS, GEORGE S.: "Analytical modeling of uniaxial strain effects on the performance of double-gate graphene nanoribbon field-effect transistors", 《NANOSCALE RESEARCH LETTERS》 *
LI, YIJUN ET AL.: "Fully integrated graphene electronic biosensor for label-free detection of lead (II) ion based on G-quadruplex structure-switching", 《BIOSENSORS AND BIOELECTRONICS》 *
LIU, GUOZHEN ET AL.: "The modification of glassy carbon and gold electrodes with aryl diazonium salt: The impact of the electrode materials on the rate of heterogeneous electron transfer", 《CHEMICAL PHYSICS》 *
NOWICKA, ANNA M. ET AL.: "Polypyrrole-Au Nanoparticles Composite as Suitable Platform for DNA Biosensor with Electrochemical Impedance Spectroscopy Detection", 《ELECTROCHIMICA ACTA》 *
TAMERSIT, K ET AL.: "Numerical Modeling of a Deep Submicron Gas Sensor Based on Double-Gate Graphene Nanoribbon Field-Effect Transistor", 《PROCEEDINGS OF THE WORLD CONGRESS ON ENGINEERING 2015 VOL I》 *
VAZIRI, SAM ET AL.: "A manufacturable process integration approach for graphene devices", 《SOLID-STATE ELECTRONICS》 *
WANG, CHENG ET AL.: "Exploiting electrostatic shielding-effect of metal nanoparticles to recognize uncharged small molecule affinity with label-free graphene electronic biosensor", 《BIOSENSORS AND BIOELECTRONICS》 *
WANG, CHENG ET AL.: "High-κ Solid-Gate Transistor Configured Graphene Biosensor with Fully Integrated Structure and Enhanced Sensitivity", 《ADVANCED FUNCTIONAL MATERIALS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896697A (en) * 2020-07-31 2020-11-06 山东理工职业学院 Integrated carbon nanotube electric sensor based on medicine monitoring and system thereof

Similar Documents

Publication Publication Date Title
Liu et al. van der Waals contact engineering of graphene field-effect transistors for large-area flexible electronics
Wang et al. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors
Yao et al. The effect of ambient humidity on the electrical properties of graphene oxide films
Ha et al. Highly stable hysteresis-free carbon nanotube thin-film transistors by fluorocarbon polymer encapsulation
CN107179337B (en) A kind of bimodulus humidity sensor and preparation method thereof
Winkler et al. Origin of anomalous piezoresistive effects in VLS grown Si nanowires
KR101767670B1 (en) Biochemical sensor for reusable and high sensitivity and superior stability and method thereby
KR101551876B1 (en) Biosensor based on carbon nanotube using floating electrode and Manufacturing method of the same and Measuring method of electrophysiological responses from a non-adherent cell
CN106198635A (en) A kind of humidity sensor based on organic field effect tube and preparation method thereof
CN107464847A (en) Crystal of molybdenum disulfide pipe and preparation method based on alkali metal soln doping
CN114965642B (en) A Grooved Field-Effect Transistor Biosensor Based on Atomic Layer Deposition Semiconductor Channel
CN103901085B (en) Biology sensor based on silicon nanowires tunneling field-effect transistor and preparation method
CN105609636B (en) Directional single-wall carbon nanotube array is the field-effect transistor and production method of raceway groove
Zhang et al. O2 plasma treated biosensor for enhancing detection sensitivity of sulfadiazine in a high-к HfO2 coated silicon nanowire array
CN112585454A (en) Multifunctional field effect transistor with inherent self-healing properties
CN110672699A (en) All-solid-state field effect transistor, biosensor using same and detection method
KR20110044360A (en) Selective assembly method of single-walled carbon nanotubes and method for manufacturing field effect transistor having single-walled carbon nanotube multi-channel
CN110006975B (en) AFP-based biosensor and preparation method thereof
Lapointe et al. Polymer encapsulants for threshold voltage control in carbon nanotube transistors
CN111579609A (en) pH sensor based on strontium titanate/lanthanum aluminate heterojunction and preparation method thereof
CN110865113A (en) A method for modifying the interface of field-effect transistor sensors based on DNA nanomachines
Thivina et al. Design and fabrication of Interdigitated Electrode (IDE) for detection of Ganoderma boninense
CN103489754B (en) Preparation method of small-size silver nanoparticles
Yan et al. Recovering the intrinsic electrical property of a graphene field-effect transistor by interface cleaning technology
CN101752250A (en) Method for preparing ZnO nanowire field effect transistor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200110

RJ01 Rejection of invention patent application after publication