CN110661532B - Symbol flipping decoding method based on multivariate LDPC code noise enhancement - Google Patents
Symbol flipping decoding method based on multivariate LDPC code noise enhancement Download PDFInfo
- Publication number
- CN110661532B CN110661532B CN201911097917.7A CN201911097917A CN110661532B CN 110661532 B CN110661532 B CN 110661532B CN 201911097917 A CN201911097917 A CN 201911097917A CN 110661532 B CN110661532 B CN 110661532B
- Authority
- CN
- China
- Prior art keywords
- value
- symbol
- iteration
- codeword
- codeword symbol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 112
- 239000000654 additive Substances 0.000 claims description 26
- 230000000996 additive effect Effects 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 11
- 238000013139 quantization Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 16
- 238000010586 diagram Methods 0.000 description 13
- 240000004760 Pimpinella anisum Species 0.000 description 10
- 238000004088 simulation Methods 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000002146 bilateral effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1108—Hard decision decoding, e.g. bit flipping, modified or weighted bit flipping
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/11—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
- H03M13/1102—Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
- H03M13/1105—Decoding
- H03M13/1128—Judging correct decoding and iterative stopping criteria other than syndrome check and upper limit for decoding iterations
Landscapes
- Physics & Mathematics (AREA)
- Probability & Statistics with Applications (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Error Detection And Correction (AREA)
Abstract
本发明公开一种基于噪声增强的多元低密度奇偶校验LDPC码符号翻转译码N‑SFDP方法,其实现的步骤为:计算信道接收的每个码字符号的硬判决值;更新每个校验节点的信息;计算每个码字符号的软可靠度;获取其对应的翻转值;更新硬判决符号序列;译码停止判决,若不满足条件,更新每个校验节点的当前信息。本发明通过改变SFDP译码方法的翻转机制,将随机噪声扰动引入SFDP译码方法的目标函数中,从而增加了现有技术的SFDP译码方法逃离局部最大值的概率,使得本发明能够降低某些多元LDPC码的错误平层,大大提高译码器的误比特率BER性能。
The invention discloses a multivariate low-density parity-check LDPC code symbol flip decoding N-SFDP method based on noise enhancement. The information of the verification node; calculate the soft reliability of each codeword symbol; obtain its corresponding flip value; update the hard decision symbol sequence; decode and stop the judgment, if the condition is not met, update the current information of each verification node. The present invention introduces random noise disturbance into the objective function of the SFDP decoding method by changing the flipping mechanism of the SFDP decoding method, thereby increasing the probability that the SFDP decoding method of the prior art escapes from the local maximum, so that the present invention can reduce a certain The error floor of these multivariate LDPC codes greatly improves the BER performance of the decoder.
Description
技术领域technical field
本发明属于通信技术领域,更进一步涉及信道编码技术领域中一种基于多元低密度奇偶检验LDPC(Low-Density Parity-Check Codes)码噪声增强的符号翻转译码SFD(Symbol Flipping Decoding)方法。本发明可实现对大数逻辑预测的多元低密度奇偶检验LDPC码进行符号翻转译码。The invention belongs to the technical field of communication, and further relates to a symbol flipping decoding SFD (Symbol Flipping Decoding) method based on multiple low-density parity check LDPC (Low-Density Parity-Check Codes) code noise enhancement in the technical field of channel coding. The invention can realize the symbol flip decoding of the multivariate low-density parity check LDPC code predicted by the logic of large numbers.
背景技术Background technique
具有低译码复杂度和逼近香农限良好性能的低密度奇偶校验LDPC码已经被广泛应用于现代通信的深空通信、无线通信等领域中,并被802.11n、802.16e、10GBASE-T等各种现代通信标准采纳。因此,低密度奇偶校验LDPC码及其译码方法已经成为近年来信道编码领域普遍关注的研究热点。对于短分组长度到中等分组长度的低密度奇偶校验LDPC码,多元低密度奇偶校验LDPC码的误比特率BER(Bit Error Rate)性能优于二元低密度奇偶校验LDPC码。然而传统的多元低密度奇偶校验LDPC码译码方法的不足之处是:译码复杂度较高,或者译码复杂度低但译码性能存在一定程度的损失。Low-density parity-check LDPC codes with low decoding complexity and good performance close to the Shannon limit have been widely used in deep space communication, wireless communication and other fields of modern communication, and have been adopted by 802.11n, 802.16e, 10GBASE-T, etc. Adoption of various modern communication standards. Therefore, low-density parity-check LDPC codes and their decoding methods have become a research hotspot in the field of channel coding in recent years. For low-density parity-check LDPC codes with short to medium packet lengths, the BER (Bit Error Rate) performance of multivariate LDPC codes is better than that of binary LDPC codes. However, the disadvantages of traditional multivariate low-density parity-check LDPC decoding methods are: high decoding complexity, or low decoding complexity but a certain degree of loss in decoding performance.
广西大学在其申请的专利文献“一种基于硬可靠度信息的多元LDPC码译码方法”(申请公布日:2016年2月14日,申请公布号:CN 105763203A,申请号:2016100846156)中公开了一种多元低密度奇偶校验LDPC码的译码方法。该方法通过将硬判决符号向量中每个二进制硬判决符号的可靠度按比特位进行整数化,在每次迭代中根据每个硬判决符号的可靠度确定每个二进制硬判决符号的取值,并进行译码校验,对变量节点通过按比特位加权的方式更新外信息及其可靠度后,进行下一次迭代,从而能够降低多元低密度奇偶校验LDPC译码的复杂度和存储负荷。该方法存在的不足之处是:译码过程中对于每个变量节点,根据其接收到的外信息与硬判决符号所对应的二进制表示之间的汉明距离对每个二进制硬判决符号的可靠度按比特位进行加权,使得更新变量节点外信息的复杂度较高。Guangxi University disclosed in its patent document "A Multivariate LDPC Code Decoding Method Based on Hard Reliability Information" (application publication date: February 14, 2016, application publication number: CN 105763203A, application number: 2016100846156) A decoding method for multivariate low-density parity-check LDPC codes is proposed. In this method, the reliability of each binary hard-decision symbol in the hard-decision symbol vector is integerized in bits, and the value of each binary hard-decision symbol is determined according to the reliability of each hard-decision symbol in each iteration. And perform decoding verification, after updating the external information and reliability of the variable nodes in a bit-weighted manner, the next iteration is performed, thereby reducing the complexity and storage load of multivariate low-density parity check LDPC decoding. The disadvantage of this method is: for each variable node in the decoding process, the reliability of each binary hard-decision symbol is determined according to the Hamming distance between the external information it receives and the binary representation corresponding to the hard-decision symbol. The degree is weighted by bit, which makes the complexity of updating the information outside the variable node higher.
Qin Huang等人在其发表的论文“Symbol Flipping Decoding Algorithms Basedon Prediction for Non-Binary LDPC Codes”(IEEE Trans.Commun.,2017,65,(5),pp.1913-1924.)中提出了一种基于大数逻辑预测的多元低密度奇偶校验LDPC码的符号翻转译码SFDP(Symbol Flipping Decoding algorithm based on Prediction)方法。该方法通过构造包含来自信道的软可靠度信息和来自校验节点的基于校验的硬可靠度信息的符号翻转目标函数,使得符号翻转译码SFD方法的翻转度量同时考虑到符号翻转前与符号翻转后的信息,从而使译码的错误性能大大提高。该方法存在的不足之处是:对于环长为6的多元低密度奇偶校验LDPC码,基于大数逻辑预测的符号翻转译码SFDP方法在高信噪比SNR(Signal-to-Noise Ratio)区域下会出现错误平层,并且该方法中没有具体说明如何选择与大数逻辑相关的权重系数。Qin Huang et al. proposed a Sign flipping decoding SFDP (Symbol Flipping Decoding algorithm based on Prediction) method of multivariate low-density parity-check LDPC code based on large number logic prediction. In this method, by constructing a symbol flip objective function including soft reliability information from the channel and check-based hard reliability information from the check node, the flip metric of the symbol flip decoding SFD method takes into account both the pre-symbol flip and the symbol flip The reversed information greatly improves the error performance of decoding. The shortcomings of this method are: for multi-element low-density parity-check LDPC codes with a ring length of 6, the sign-flip decoding SFDP method based on large-number logic prediction has a high SNR (Signal-to-Noise Ratio) There will be an error level under the region, and the method does not specify how to choose the weight coefficients related to the logic of large numbers.
发明内容Contents of the invention
本发明的目的在于针对上述已有技术的不足,提出一种基于多元低密度奇偶校验LDPC码噪声增强的符号翻转译码N-SFDP方法,用于解决译码性能低,误比特率低,以及如何选择与大数逻辑相关的权重系数的问题。The purpose of the present invention is to address the above-mentioned deficiencies in the prior art, propose a kind of symbol flip decoding N-SFDP method based on multivariate low-density parity check LDPC code noise enhancement, for solving low decoding performance, low bit error rate, And how to choose the weight coefficients related to the logic of large numbers.
实现本发明目的的思路是:通过改变SFDP译码方法的翻转度量,将随机噪声扰动引入SFDP译码方法的目标函数中,从而增加SFDP译码方法逃离不期望的局部最大值的概率,大大提高译码性能。改变基于大数逻辑预测的符号翻转译码SFDP方法的翻转度量,将随机噪声扰动引入基于大数逻辑预测的符号翻转译码SFDP方法的目标函数中,动态地选择基于大数逻辑预测的符号翻转译码SFDP方法中与大数逻辑相关的权重系数,从而增加了现有技术的基于大数逻辑预测的符号翻转译码SFDP方法中目标函数逃离不期望的局部最大值的概率,大大提高译码器的误比特率性能,同时克服了当被翻转的硬判决符号具有较小的二进制汉明距离时,现有技术的基于大数逻辑预测的符号翻转译码SFDP方法在中高信噪比下易陷入局部陷阱集的缺点,从而降低环长为6的多元低密度奇偶校验LDPC码的错误平层,提高译码性能。The train of thought of realizing the object of the present invention is: by changing the inversion measure of SFDP decoding method, random noise perturbation is introduced in the objective function of SFDP decoding method, thereby increases the probability that SFDP decoding method escapes from the undesired local maximum, greatly improves decoding performance. Change the flip metric of the sign flip decoding SFDP method based on large number logic prediction, introduce random noise disturbance into the objective function of the sign flip decoding SFDP method based on large number logic prediction, and dynamically select the sign flip based on large number logic prediction Decoding the weight coefficients related to large number logic in the SFDP method, thereby increasing the probability of the target function escaping from the unexpected local maximum in the prior art sign flip decoding SFDP method based on large number logic prediction, greatly improving the decoding The bit error rate performance of the device, while overcoming when the flipped hard-decision symbols have a small binary Hamming distance, the prior art SFDP method of symbol flip decoding based on large number logic prediction is easy to use at medium and high SNR Falling into the shortcoming of the local trap set, thereby reducing the error floor of the multivariate low-density parity-check LDPC code with a ring length of 6, and improving the decoding performance.
本发明方法的实现包括如下步骤:The realization of the inventive method comprises the steps:
步骤1,按照下式,计算初始迭代时加性高斯白噪声信道接收的每个码字符号的硬判决值:
其中,表示加性高斯白噪声信道接收的第j个码字符号在初始迭代时的硬判决值,j的取值范围为[0,N-1],N表示多元低密度奇偶校验LDPC码的码字长度,d表示以二进制表示的第j个码字符号的比特数,Σ表示求和操作,r表示在初始迭代时以二进制表示的第j个码字符号的硬判决值比特位数,r的取值范围为[0,d-1],表示在初始迭代时由加性高斯白噪声信道接收的以二进制表示的第j个码字符号信息进行非线性量化后的第t个比特值,t与r的取值对应相等;in, Indicates the hard decision value of the jth codeword symbol received by the additive Gaussian white noise channel at the initial iteration, the value range of j is [0, N-1], and N represents the code of the multivariate low-density parity-check LDPC code word length, d represents the number of bits of the jth codeword symbol in binary, Σ represents the summation operation, and r represents the hard decision value of the jth codeword symbol in binary representation at the initial iteration The number of bits, the value range of r is [0, d-1], Represents the t-th bit value after nonlinear quantization of the j-th codeword symbol information received by the additive Gaussian white noise channel received by the additive Gaussian white noise channel during the initial iteration, and the values of t and r are correspondingly equal;
步骤2,更新每个校验节点的信息:Step 2, update the information of each check node:
第一步,按照下式,计算当前迭代时从校验节点传递给变量节点的外信息和:The first step is to calculate the sum of external information passed from the check node to the variable node during the current iteration according to the following formula:
其中,表示在第k次迭代时从第i个校验节点传递给第j个变量节点的外信息和,i的取值范围为[0,M-1],M表示奇偶校验矩阵的行数,j的取值范围为j∈Nv,∈表示属于符号,Nv表示与第v个校验节点相邻的变量节点的序号集合,v的取值范围为[0,N-1],hm,n表示奇偶校验矩阵中第m行第n列的非二元元素的值,表示非二元元素hm,n在GF(Q=2d)有限域内的乘法逆元,GF(Q)表示Q个非二元元素的集合,GF(Q)有限域内元素的取值范围为[0,Q-1],·表示GF(Q)有限域乘法操作,j'表示码字符号的序号,Nw表示与第w个校验节点相邻的变量节点的序号集合,\表示不包含符号,q表示码字符号的序号,hm,n'表示奇偶校验矩阵中第m行第n'列的非二元元素的值,表示第j'个码字符号在第k次迭代时的硬判决值,i、m与w的取值对应相等,j、n与q的取值对应相等,j'与n'的取值对应相等;in, Indicates the sum of external information passed from the i-th check node to the j-th variable node at the k-th iteration, the value range of i is [0, M-1], and M represents the number of rows of the parity check matrix, The value range of j is j∈N v , ∈ means belonging to a symbol, N v means the sequence number set of variable nodes adjacent to the vth check node, the value range of v is [0, N-1], h m, n represent the value of the non-binary element in the mth row and nth column in the parity check matrix, Indicates the multiplicative inverse of the non-binary elements h m, n in the finite field of GF(Q=2 d ), GF(Q) represents the set of Q non-binary elements, and the value range of the elements in the finite field of GF(Q) is [0, Q-1], represents GF(Q) finite field multiplication operation, j' represents the sequence number of the codeword symbol, N w represents the sequence number set of variable nodes adjacent to the wth check node, \ represents not Contains symbols, q represents the serial number of the codeword number, h m, n' represents the value of the non-binary element in the mth row and n'th column in the parity check matrix, Indicates the hard decision value of the j'th codeword symbol at the kth iteration, the values of i, m and w are correspondingly equal, the values of j, n and q are correspondingly equal, and the values of j' and n' are corresponding equal;
第二步,用当前迭代时从校验节点传递给变量节点的外信息和,更新每个校验节点在当前迭代时的信息;The second step is to update the information of each check node in the current iteration by using the sum of external information passed from the check node to the variable node in the current iteration;
步骤3,利用软可靠度公式,根据加性高斯白噪声信道接收的信息,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的软可靠度;Step 3, using the soft reliability formula, according to the information received by the additive Gaussian white noise channel, calculate the soft reliability of each codeword symbol of the multivariate low density parity check LDPC code in the current iteration;
步骤4,获取多元低密度奇偶检验LDPC码在当前迭代时每个码字符号对应的翻转值:
第一步,按照下式,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转度量:In the first step, according to the following formula, calculate the flip metric of each codeword symbol of the multivariate low-density parity-check LDPC code in the current iteration:
其中,表示第a个码字符号在第k次迭代时的翻转度量,a的取值范围为[0,N-1],表示第q个码字符号在第k次迭代时更新后的值,表示第s个码字符号在第k次迭代时的硬判决值,表示与第q个码字符号在第k次迭代时更新后的值对应的加性高斯白噪声信道的软可靠度,表示与第q个码字符号更新后的值对应的大数逻辑权重系数,表示来自校验节点的外信息中与第q个码字符号更新后的值相等的外信息个数,的取值范围为[0,v],v表示多元低密度奇偶校验LDPC码的列重,表示与第t个码字符号在第k次迭代时更新后的值对应的扰动噪声,表示与第a个码字符号在第k次迭代时更新前的值对应的加性高斯白噪声信道的软可靠度,表示与第s个码字符号在第k次迭代时的硬判决值对应的大数逻辑权重系数,表示来自校验节点的外信息中与第s个码字符号的硬判决值相等的外信息个数,的取值范围为[0,v],表示在与第t个码字符号在第k次迭代时的硬判决值对应的扰动噪声,a、q、s、w与t的取值对应相等;in, Indicates the flip metric of the a-th codeword symbol at the k-th iteration, and the value range of a is [0, N-1], Indicates the updated value of the qth codeword symbol at the kth iteration, Indicates the hard decision value of the s-th codeword symbol at the k-th iteration, Indicates the updated value of the qth codeword symbol at the kth iteration The soft reliability of the corresponding additive white Gaussian noise channel, Indicates the value updated with the qth codeword symbol The corresponding large number logic weight coefficient, Indicates the updated value of the qth codeword symbol in the external information from the check node Equal number of extrinsic information, The value range of is [0, v], and v represents the column weight of the multivariate low-density parity-check LDPC code, Denotes the perturbation noise corresponding to the updated value of the t-th codeword symbol at the k-th iteration, Indicates the soft reliability of the additive white Gaussian noise channel corresponding to the value of the a-th codeword symbol before the update at the k-th iteration, Indicates the hard decision value of the s-th codeword symbol at the k-th iteration The corresponding large number logic weight coefficient, Indicates the hard decision value of the sth codeword symbol in the external information from the check node Equal number of extrinsic information, The value range of is [0, v], Indicates the disturbance noise corresponding to the hard decision value of the t-th codeword symbol at the k-th iteration, and the values of a, q, s, w and t are correspondingly equal;
第二步,选择多元低密度奇偶检验LDPC码在当前迭代时每个码字符号翻转度量的最大值作为该码字符号的可靠度;The second step is to select the maximum value of the flipping measure of each codeword symbol as the reliability of the codeword symbol in the current iteration of the multivariate low density parity check LDPC code;
第三步,利用翻转目标函数,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转目标函数值;The third step is to use the flip objective function to calculate the flip objective function value of each codeword symbol in the current iteration of the multivariate low-density parity check LDPC code;
第四步,利用翻转公式,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转值;The fourth step is to use the flipping formula to calculate the flipping value of each codeword symbol of the multivariate low density parity check LDPC code in the current iteration;
步骤5,更新多元低密度奇偶检验LDPC码在当前迭代时的硬判决符号序列:
第一步,取当前迭代时每个码字符号的翻转目标函数值最大值所对应的码字符号的序号,作为当前迭代时待翻转的码字符号的序号,若该序号与前一次迭代时翻转的码字符号的序号相等,则取当前迭代时每个码字符号的翻转目标函数值中第二大值所对应的码字符号的序号,作为当前迭代时待翻转的码字符号的序号;The first step is to take the sequence number of the codeword symbol corresponding to the maximum flip objective function value of each codeword symbol in the current iteration, as the sequence number of the codeword symbol to be flipped in the current iteration, if the sequence number is different from that in the previous iteration If the sequence numbers of the flipped codeword symbols are equal, the sequence number of the codeword symbol corresponding to the second largest value among the flipping objective function values of each codeword symbol during the current iteration is taken as the sequence number of the codeword symbol to be flipped during the current iteration ;
第二步,用当前迭代时待翻转的码字符号的序号所对应的翻转值更新该序号所对应的硬判决值;In the second step, the hard decision value corresponding to the sequence number is updated with the flip value corresponding to the sequence number of the codeword symbol to be flipped during the current iteration;
步骤6,判断当前迭代的码字向量是否满足停止译码条件,若是,则执行步骤7,否则,执行步骤2;
步骤7,译码成功。Step 7, the decoding is successful.
本发明与现有技术相比具有以下优点:Compared with the prior art, the present invention has the following advantages:
第一,由于本发明通过改变SFDP译码方法的翻转度量计算公式,将随机噪声扰动引入SFDP译码方法的目标函数中,克服了现有技术译码复杂度较高,或者译码复杂度低但译码性能存在一定程度的损失的缺点,从而增加了现有技术的SFDP译码方法逃离不期望的局部最大值的概率,使得本发明大大地提高了译码性能。First, because the present invention introduces random noise disturbance into the objective function of the SFDP decoding method by changing the calculation formula of the flip metric of the SFDP decoding method, it overcomes the high or low decoding complexity of the prior art However, there is a disadvantage of a certain degree of loss in decoding performance, which increases the probability of escaping from an undesired local maximum in the SFDP decoding method of the prior art, so that the present invention greatly improves the decoding performance.
第二,由于本发明使用随机噪声扰动,动态地改变SFDP译码方法中与大数逻辑相关的权重系数,克服了译码过程中更新变量节点外信息的复杂度较高的缺点,从而增加了现有技术的基于大数逻辑预测的符号翻转译码SFDP方法中目标函数逃离不期望的局部最大值的概率,使得本发明大大地提高了译码器的误比特率性能。Second, because the present invention uses random noise perturbation to dynamically change the weight coefficients related to large number logic in the SFDP decoding method, it overcomes the relatively high complexity of updating the information outside the variable node during the decoding process, thereby increasing the The probability of the target function escaping from an undesired local maximum in the sign flip decoding SFDP method based on large number logic prediction in the prior art makes the present invention greatly improve the bit error rate performance of the decoder.
第三,由于本发明采用动态的随机噪声扰动方式,对于不同的多元LDPC码,在不同信噪比SNR下,选择相应不同的权重系数,克服了现有技术SFDP方法在高信噪比SNR(Signal-to-Noise Ratio)区域下会出现错误平层,在中高信噪比情况下易陷入局部陷阱集,并且没有具体说明如何选择与大数逻辑相关的权重系数的缺点,使得本发明能够在某些多元LDPC码中降低错误平层,选择了更好的权重系数,降低了译码的错误性能。The 3rd, because the present invention adopts the dynamic random noise perturbation mode, for different multiple LDPC codes, under different signal-to-noise ratios SNR, select corresponding different weight coefficients, overcome prior art SFDP method in high signal-to-noise ratio SNR ( Signal-to-Noise Ratio) region, there will be an error flat layer, and it is easy to fall into a local trap set under the situation of medium and high signal-to-noise ratios, and there is no specific description of how to select the shortcoming of the weight coefficient relevant to the logic of large numbers, so that the present invention can be used in In some multivariate LDPC codes, the error floor is reduced, and better weight coefficients are selected, which reduces the error performance of decoding.
附图说明Description of drawings
图1是本发明的流程图;Fig. 1 is a flow chart of the present invention;
图2是本发明与现有方法在SNR=5.0dB时译码结果对比图;Fig. 2 is a comparison diagram of decoding results between the present invention and the existing method at SNR=5.0dB;
图3是本发明与现有方法针对码C1的译码性能对比图和译码收敛速度对比图;Fig. 3 is a comparison diagram of the decoding performance and a decoding convergence speed comparison diagram of the present invention and the existing method for code C1 ;
图4是本发明与现有方法针对码C2的译码性能对比图和译码收敛速度对比图。Fig. 4 is a comparison diagram of decoding performance and decoding convergence speed of code C 2 between the present invention and the existing method.
具体实施方式Detailed ways
下面结合附图对本发明做进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
下面结合附图1,对本发明的具体步骤做进一步描述。Below in conjunction with accompanying
步骤1,按照下式,计算初始迭代时加性高斯白噪声信道接收的每个码字符号的硬判决值:
其中,表示加性高斯白噪声信道接收的第j个码字符号在初始迭代时的硬判决值,j的取值范围为[0,N-1],N表示多元低密度奇偶校验LDPC码的码字长度,d表示以二进制表示的第j个码字符号的比特数,Σ表示求和操作,r表示在初始迭代时以二进制表示的第j个码字符号的硬判决值比特位数,r的取值范围为[0,d-1],表示在初始迭代时由加性高斯白噪声信道接收的以二进制表示的第j个码字符号信息进行非线性量化后的第t个比特值,t与r的取值对应相等。in, Indicates the hard decision value of the jth codeword symbol received by the additive Gaussian white noise channel at the initial iteration, the value range of j is [0, N-1], and N represents the code of the multivariate low-density parity-check LDPC code word length, d represents the number of bits of the jth codeword symbol in binary, Σ represents the summation operation, and r represents the hard decision value of the jth codeword symbol in binary representation at the initial iteration The number of bits, the value range of r is [0, d-1], Indicates the t-th bit value after the nonlinear quantization of the j-th codeword symbol information received by the additive Gaussian white noise channel received by the additive Gaussian white noise channel during the initial iteration, and the values of t and r are correspondingly equal.
步骤2,更新每个校验节点的信息:Step 2, update the information of each check node:
第一步,按照下式,计算当前迭代时从校验节点传递给变量节点的外信息和:The first step is to calculate the sum of external information passed from the check node to the variable node during the current iteration according to the following formula:
其中,表示在第k次迭代时从第i个校验节点传递给第j个变量节点的外信息和,i的取值范围为[0,M-1],M表示奇偶校验矩阵的行数,j的取值范围为j∈Nv,∈表示属于符号,Nv表示与第v个校验节点相邻的变量节点的序号集合,v的取值范围为[0,N-1],hm,n表示奇偶校验矩阵中第m行第n列的非二元元素的值,表示非二元元素hm,n在GF(Q=2d)有限域内的乘法逆元,GF(Q)表示Q个非二元元素的集合,GF(Q)有限域内元素的取值范围为[0,Q-1],·表示GF(Q)有限域乘法操作,j'表示码字符号的序号,Nw表示与第w个校验节点相邻的变量节点的序号集合,\表示不包含符号,q表示码字符号的序号,hm,n'表示奇偶校验矩阵中第m行第n'列的非二元元素的值,表示第j'个码字符号在第k次迭代时的硬判决值,i、m与w的取值对应相等,j、n与q的取值对应相等,j'与n'的取值对应相等。in, Indicates the sum of external information passed from the i-th check node to the j-th variable node at the k-th iteration, the value range of i is [0, M-1], and M represents the number of rows of the parity check matrix, The value range of j is j∈N v , ∈ means belonging to a symbol, N v means the sequence number set of variable nodes adjacent to the vth check node, the value range of v is [0, N-1], h m, n represent the value of the non-binary element in the mth row and nth column in the parity check matrix, Indicates the multiplicative inverse of the non-binary elements h m, n in the finite field of GF(Q=2 d ), GF(Q) represents the set of Q non-binary elements, and the value range of the elements in the finite field of GF(Q) is [0, Q-1], represents GF(Q) finite field multiplication operation, j' represents the sequence number of the codeword symbol, N w represents the sequence number set of variable nodes adjacent to the wth check node, \ represents not Contains symbols, q represents the serial number of the codeword number, h m, n' represents the value of the non-binary element in the mth row and n'th column in the parity check matrix, Indicates the hard decision value of the j'th codeword symbol at the kth iteration, the values of i, m and w are correspondingly equal, the values of j, n and q are correspondingly equal, and the values of j' and n' are corresponding equal.
第二步,用当前迭代时从校验节点传递给变量节点的外信息和,更新每个校验节点在当前迭代时的信息。The second step is to update the information of each check node at the current iteration with the sum of extrinsic information passed from the check node to the variable node at the current iteration.
步骤3,利用下述软可靠度公式,根据加性高斯白噪声信道接收的信息,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的软可靠度:Step 3, using the following soft reliability formula, according to the information received by the additive Gaussian white noise channel, calculate the soft reliability of each codeword symbol of the multivariate low-density parity check LDPC code in the current iteration:
其中,表示第i个码字符号在第k次迭代时的硬判决值,i的取值范围为[0,N-1],⊙表示非对称二进制操作,yw表示加性高斯白噪声信道接收的第w个码字符号信息,t表示以二进制表示的第i个码字符号在第k次迭代时的硬判决值的比特位数,t的取值范围为[0,d-1],表示以二进制表示的第i个码字符号在第k次迭代时第t个比特值,yr,s表示加性高斯白噪声信道接收的以二进制表示的第r个码字符号第s个比特的软可靠度,i、w与r的取值对应相等,s与t的取值对应相等。in, Indicates the hard decision value of the i-th codeword symbol at the k-th iteration, the value range of i is [0, N-1], ⊙ indicates an asymmetric binary operation, y w indicates the additive Gaussian white noise channel received The wth codeword symbol information, t represents the hard decision value of the ith codeword symbol expressed in binary at the kth iteration The number of bits, the value range of t is [0, d-1], Represents the t-th bit value of the i-th codeword in binary representation at the k-th iteration, y r,s represents the s-th bit of the r-th codeword in binary representation received by the additive Gaussian white noise channel The soft reliability of , the values of i, w and r are correspondingly equal, and the values of s and t are correspondingly equal.
步骤4,获取多元低密度奇偶检验LDPC码在当前迭代时每个码字符号对应的翻转值。
第一步,按照下式,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转度量:In the first step, according to the following formula, calculate the flip metric of each codeword symbol of the multivariate low-density parity-check LDPC code in the current iteration:
其中,表示第a个码字符号在第k次迭代时的翻转度量,a的取值范围为[0,N-1],表示第q个码字符号在第k次迭代时更新后的值,表示第s个码字符号在第k次迭代时的硬判决值,表示与第q个码字符号在第k次迭代时更新后的值对应的加性高斯白噪声信道的软可靠度,表示与第q个码字符号更新后的值对应的大数逻辑权重系数,表示来自校验节点的外信息中与第q个码字符号更新后的值相等的外信息个数,的取值范围为[0,v],v表示多元低密度奇偶校验LDPC码的列重,表示与第t个码字符号在第k次迭代时更新后的值对应的扰动噪声,表示与第a个码字符号在第k次迭代时更新前的值对应的加性高斯白噪声信道的软可靠度,表示与第s个码字符号在第k次迭代时的硬判决值对应的大数逻辑权重系数,表示来自校验节点的外信息中与第s个码字符号的硬判决值相等的外信息个数,的取值范围为[0,v],表示在与第t个码字符号在第k次迭代时的硬判决值对应的扰动噪声,a、q、s、w与t的取值对应相等。in, Indicates the flip metric of the a-th codeword symbol at the k-th iteration, and the value range of a is [0, N-1], Indicates the updated value of the qth codeword symbol at the kth iteration, Indicates the hard decision value of the s-th codeword symbol at the k-th iteration, Indicates the updated value of the qth codeword symbol at the kth iteration The soft reliability of the corresponding additive white Gaussian noise channel, Indicates the value updated with the qth codeword symbol The corresponding large number logic weight coefficient, Indicates the updated value of the qth codeword symbol in the external information from the check node Equal number of extrinsic information, The value range of is [0, v], and v represents the column weight of the multivariate low-density parity-check LDPC code, Denotes the perturbation noise corresponding to the updated value of the t-th codeword symbol at the k-th iteration, Indicates the soft reliability of the additive white Gaussian noise channel corresponding to the value of the a-th codeword symbol before the update at the k-th iteration, Indicates the hard decision value of the s-th codeword symbol at the k-th iteration The corresponding large number logic weight coefficient, Indicates the hard decision value of the sth codeword symbol in the external information from the check node Equal number of extrinsic information, The value range of is [0, v], Indicates the disturbance noise corresponding to the hard decision value of the t-th codeword symbol at the k-th iteration, and the values of a, q, s, w are correspondingly equal to t.
其中,添加的噪声扰动和可以考虑两种类型的随机噪声:Among them, the added noise perturbation and Two types of random noise can be considered:
第一种是均值为0,分布区间为[-a,a]的均匀随机变量。The first is a uniform random variable with a mean of 0 and a distribution interval of [-a, a].
第二种是均值为0,方差为σ2=λ2N0/2的高斯随机变量。其中,σ2表示方差,λ表示噪声规模参数,λ的取值范围为0<λ≤1,N0/2表示高斯函数的双边功率谱密度。所有高斯随机变量都是独立同分布的。The second type is a Gaussian random variable with a mean of 0 and a variance of σ 2 =λ 2 N 0 /2. Among them, σ 2 represents the variance, λ represents the noise scale parameter, the value range of λ is 0<λ≤1, and N 0 /2 represents the bilateral power spectral density of the Gaussian function. All Gaussian random variables are independent and identically distributed.
第二步,选择多元低密度奇偶检验LDPC码在当前迭代时每个码字符号翻转度量的最大值作为该码字符号的可靠度。In the second step, the maximum value of the flipping measure of each codeword symbol in the current iteration of the multivariate low-density parity-check LDPC code is selected as the reliability of the codeword symbol.
第三步,利用下述翻转目标函数,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转目标函数值:The third step is to use the following flipping objective function to calculate the flipping objective function value of each codeword symbol of the multivariate low-density parity check LDPC code in the current iteration:
其中,表示第w个码字符号在第k次迭代中的翻转目标函数值,w的取值范围为[0,N-1],max表示取最大值操作,∈为属于符号,Γ表示集合符号,表示除第q个码字符号在第k次迭代时的硬判决值以外其他有限域元素构成的集合,w、q、a与s的取值对应相等。in, Indicates the flip objective function value of the w-th codeword symbol in the k-th iteration, the value range of w is [0, N-1], max means the maximum value operation, ∈ is the belonging symbol, Γ means the set symbol, Indicates the set of other finite field elements except the hard decision value of the qth codeword symbol at the kth iteration, and the values of w, q, a and s are correspondingly equal.
第四步,利用下述翻转公式,计算多元低密度奇偶检验LDPC码在当前迭代时每个码字符号的翻转值:The fourth step is to use the following inversion formula to calculate the inversion value of each codeword symbol of the multivariate low-density parity-check LDPC code in the current iteration:
其中,表示第w个码字符号在第k次迭代时的翻转值,w的取值范围为[0,N-1],arg max表示当目标函数取最大值时自变量的值,q、a、s与w的取值对应相等。in, Indicates the flip value of the wth codeword symbol at the kth iteration, the value range of w is [0, N-1], arg max indicates the value of the independent variable when the objective function takes the maximum value, q, a, The values of s and w are correspondingly equal.
步骤5,更新多元低密度奇偶检验LDPC码在当前迭代时的硬判决符号序列:
第一步,取当前迭代时每个码字符号的翻转目标函数值最大值所对应的码字符号的序号,作为当前迭代时待翻转的码字符号的序号,若该序号与前一次迭代时翻转的码字符号的序号相等,则取当前迭代时每个码字符号的翻转目标函数值中第二大值所对应的码字符号的序号,作为当前迭代时待翻转的码字符号的序号。The first step is to take the sequence number of the codeword symbol corresponding to the maximum flip objective function value of each codeword symbol in the current iteration, as the sequence number of the codeword symbol to be flipped in the current iteration, if the sequence number is different from that in the previous iteration If the sequence numbers of the flipped codeword symbols are equal, the sequence number of the codeword symbol corresponding to the second largest value among the flipping objective function values of each codeword symbol during the current iteration is taken as the sequence number of the codeword symbol to be flipped during the current iteration .
第二步,用当前迭代时待翻转的码字符号的序号所对应的翻转值更新该序号所对应的硬判决值。The second step is to update the hard decision value corresponding to the sequence number of the codeword symbol to be flipped with the flip value corresponding to the sequence number of the codeword symbol to be flipped in the current iteration.
步骤6,判断当前迭代的码字向量是否满足停止译码条件,若是,则执行步骤7,否则,执行步骤2。
所述的停止译码条件是指满足以下的两个条件中的任意一种情形:The described stop decoding condition refers to any one of the following two conditions:
条件1:码字向量与多元低密度奇偶校验LDPC码的奇偶校验矩阵的转置的乘积为零向量。Condition 1: The product of the codeword vector and the transpose of the parity check matrix of the multivariate low-density parity-check LDPC code is a zero vector.
条件2:基于噪声增强的符号翻转译码N-SFDP译码迭代次数达到100。Condition 2: The number of N-SFDP decoding iterations based on noise-enhanced sign flip decoding reaches 100.
步骤7,译码成功。Step 7, the decoding is successful.
下面结合仿真实验对本发明的效果做进一步的说明:Effect of the present invention is described further below in conjunction with simulation experiment:
1.仿真实验条件:1. Simulation experiment conditions:
本发明的仿真实验的硬件平台为:处理器为Intel i75930k CPU,主频为3.5GHz,内存16GB。The hardware platform of the emulation experiment of the present invention is: processor is Intel i75930k CPU, main frequency is 3.5GHz, memory 16GB.
本发明的仿真实验的软件平台为:Windows 7操作系统,Microsoft Visual C++6.0,MATLAB 2017。The software platform of the simulation experiment of the present invention is: Windows 7 operating system, Microsoft Visual C++6.0, MATLAB 2017.
本发明仿真实验所使用的噪声扰动分别为高斯噪声和均匀噪声,在加性高斯白噪声信道下,利用SFDP译码对码率为1/2长度为204的16元LDPC码C1和码率为1/2长度为384的64元LDPC码C2进行仿真,译码分别采用现有的SFDP译码方法和本发明提出的N-SFDP译码方法。The noise perturbations used in the simulation experiment of the present invention are respectively Gaussian noise and uniform noise. Under the additive Gaussian white noise channel, the 16-element LDPC code C 1 and the code rate of 1/2 length of 204 are utilized for SFDP decoding. Simulation is carried out for the 64-element LDPC code C 2 whose 1/2 length is 384, and the decoding adopts the existing SFDP decoding method and the N-SFDP decoding method proposed by the present invention respectively.
2.仿真内容及其结果分析:2. Simulation content and result analysis:
本发明仿真实验是采用本发明和一个现有技术(基于预测的多元LDPC码符号翻转译码SFDP方法)分别进行了三个仿真实验:The emulation experiment of the present invention is to adopt the present invention and a prior art (based on the multivariate LDPC code symbol reversal decoding SFDP method of prediction) to carry out three emulation experiments respectively:
实验一,采用本发明和现有技术方法分别对针对码率为1/2长度为204的16元LDPC码C1在SNR=5.0dB时进行仿真,获得译码结果对比图,如图2所示。
实验二,采用本发明和现有技术方法分别对针对码率为1/2长度为204的16元LDPC码C1进行仿真,获得译码性能对比图和译码收敛速度对比图,如图3所示。Experiment two, adopt the present invention and prior art method respectively to carry out emulation to the 16 yuan LDPC code C1 that length is 204 for
实验三,采用本发明和现有技术方法分别对针对码率为1/2长度为384的64元LDPC码C2进行仿真,获得译码性能对比图和译码收敛速度对比图,如图4所示。Experiment three, the method of the present invention and the prior art are respectively used to emulate the 64-element LDPC code C2 whose code rate is 1/2 and the length is 384, and obtain a decoding performance comparison diagram and a decoding convergence speed comparison diagram, as shown in Figure 4 shown.
在仿真实验中,采用的一个现有技术是指:In the simulation experiment, an existing technology adopted refers to:
Qin Huang等人在其发表的论文“Symbol Flipping Decoding Algorithms Basedon Prediction for Non-Binary LDPC Codes”(IEEE Trans.Commun.,2017,65,(5),pp.1913-1924.)中提出了一种基于大数逻辑预测的多元低密度奇偶校验LDPC码的符号翻转译码SFDP(Symbol Flipping Decoding algorithm based on Prediction)方法。Qin Huang et al. proposed a Sign flipping decoding SFDP (Symbol Flipping Decoding algorithm based on Prediction) method of multivariate low-density parity-check LDPC code based on large number logic prediction.
下面结合图2对本发明的效果做进一步的描述。The effects of the present invention will be further described below in conjunction with FIG. 2 .
图2是本发明与现有方法针对码C1在SNR=5.0dB时译码结果对比图。图2表示针对码C1,在SNR=5.0dB时,现有技术SFDP译码方法与本发明引入均匀噪声扰动时N-SFDP译码方法的译码结果对比图。图2中的横坐标表示码C1在16元有限域内译码错误符号的位置索引,对应的位置索引范围为[0,203],纵坐标表示由两种译码方法得到的码字中错误符号的硬判决值。图2中以实心圆圈标识的点表示现有方法SFDP译码方法译码得到的码字中的错误符号。图2中以正方形标识的点表示本发明提出的N-SFDP译码方法针对码C1在SNR=5.0dB时译码得到的码字中的错误符号。Fig. 2 is a comparison diagram of the decoding results of the present invention and the existing method for code C1 at SNR=5.0dB. Fig. 2 shows a comparison of decoding results between the prior art SFDP decoding method and the N-SFDP decoding method of the present invention when uniform noise disturbance is introduced for code C 1 at SNR=5.0dB. The abscissa in Figure 2 represents the position index of code C 1 decoding error symbols in the 16-element finite field, and the corresponding position index range is [0, 203], and the ordinate represents the error in the code word obtained by the two decoding methods The hard decision value of the symbol. The dots marked with solid circles in FIG. 2 represent error symbols in codewords decoded by the existing SFDP decoding method. The points marked with squares in FIG. 2 indicate the error symbols in the codeword obtained by decoding the N-SFDP decoding method proposed by the present invention for the code C1 when SNR=5.0dB.
由图2可以看出,现有方法的SFDP译码方法针对码C1在SNR=5.0dB时译码得到的码字中错误符号的硬判决值大多数为{1,2,4,8},它们对应的二进制表示分别为(1)16=(0001)2,(2)16=(0010)2,(4)16=(0100)2,(8)16=(1000)2,这四个值的二进制汉明权重都是1。这说明当汉明权重比较小的符号被翻转为其他符号时,现有方法的SFDP译码方法容易陷入局部错误集。本发明提出的N-SFDP译码方法针对码C1在SNR=5.0dB时译码得到的码字中仅有一少部分错误符号。图2说明了随机噪声对SFDP译码方法纠错能力的影响,翻转度量的噪声扰动可以有效纠正陷入局部错误集的符号。It can be seen from Fig. 2 that the hard decision values of the error symbols in the code word obtained by decoding the code C 1 when SNR=5.0dB by the SFDP decoding method of the existing method are mostly {1, 2, 4, 8} , and their corresponding binary representations are (1) 16 =(0001) 2 , (2) 16 =(0010) 2 , (4) 16 =(0100) 2 , (8) 16 =(1000) 2 , these four Each value has a binary Hamming weight of 1. This shows that when the symbols with relatively small Hamming weights are flipped to other symbols, the SFDP decoding method of the existing method is easy to fall into a local error set. The N-SFDP decoding method proposed by the present invention only has a small number of error symbols in the codeword obtained by decoding the code C1 when SNR=5.0dB. Figure 2 illustrates the impact of random noise on the error correction capability of the SFDP decoding method. The noise perturbation of the flip metric can effectively correct symbols trapped in local error sets.
下面结合图3对本发明的效果做进一步的描述。The effects of the present invention will be further described below in conjunction with FIG. 3 .
图3(a)是本发明与现有方法针对码C1的译码性能对比图。图3(a)表示现有技术SFDP译码方法与本发明引入不同噪声扰动时N-SFDP译码方法的误比特率BER性能对比图。N-SFDP译码引入的噪声分别为高斯噪声和均匀噪声。图3(a)中的横坐标表示信噪比SNR,纵坐标表示误比特率BER。图3(a)中以三角形标识的曲线表示现有技术的SFDP译码方法针对码C1的误比特率BER性能。图3(a)中以五角星标识的曲线表示本发明提出的N-SFDP译码方法引入高斯噪声时针对码C1的误比特率BER性能。图3(a)中以米字形标识的曲线表示本发明提出的N-SFDP译码方法引入均匀噪声时针对码C1的误比特率BER性能。Fig. 3(a) is a comparison diagram of decoding performance for code C 1 between the present invention and the existing method. Fig. 3(a) shows the performance comparison of BER between the SFDP decoding method of the prior art and the N-SFDP decoding method of the present invention when different noise disturbances are introduced. The noise introduced by N-SFDP decoding is Gaussian noise and uniform noise respectively. The abscissa in Fig. 3(a) represents the signal-to-noise ratio SNR, and the ordinate represents the bit error rate BER. The curve marked with a triangle in FIG. 3( a ) represents the BER performance of the SFDP decoding method in the prior art for code C 1 . The curve marked with a five-pointed star in Fig. 3(a) represents the BER performance of the code C 1 when the N-SFDP decoding method proposed by the present invention introduces Gaussian noise. In Fig. 3 (a), the curve marked with a rice-shaped character represents the BER performance of the code C 1 when the N-SFDP decoding method proposed by the present invention introduces uniform noise.
由图3(a)可以看出,与现有技术的SFDP译码方法相比,本发明提出的N-SFDP译码方法引入不同噪声扰动时可以明显提高译码性能,尤其是在高信噪比区域下。如误比特率BER≈10-6时,与现有技术的SFDP译码方法相比,本发明提出的N-SFDP译码方法在引入高斯噪声时可以获得0.95dB的信噪比增益,引入均匀噪声时可以获得0.9dB的信噪比增益。It can be seen from Fig. 3(a) that, compared with the SFDP decoding method in the prior art, the N-SFDP decoding method proposed in the present invention can significantly improve the decoding performance when introducing different noise perturbations, especially in high signal-to-noise lower than the area. For example, when the bit error rate BER≈10 -6 , compared with the SFDP decoding method of the prior art, the N-SFDP decoding method proposed by the present invention can obtain a SNR gain of 0.95dB when Gaussian noise is introduced, and the uniform A 0.9dB signal-to-noise ratio gain can be obtained when there is noise.
由图3(a)可以看出,与现有技术的SFDP译码方法相比,本发明提出的N-SFDP译码方法引入不同噪声扰动时可以在高信噪比区域下降低错误平层。如误比特率BER≈10-7时,现有技术的SFDP译码方法存在错误平层,而本发明提出的N-SFDP译码方法在引入高斯噪声或者均匀噪声时并没有明显的错误平层。It can be seen from Fig. 3(a) that compared with the SFDP decoding method in the prior art, the N-SFDP decoding method proposed by the present invention can reduce the error floor in the high SNR region when introducing different noise disturbances. For example, when the bit error rate BER≈10 -7 , the SFDP decoding method in the prior art has an error floor, but the N-SFDP decoding method proposed by the present invention has no obvious error floor when Gaussian noise or uniform noise is introduced .
图3(b)是本发明与现有方法针对码C1的译码收敛速度对比图。图3(b)表示现有技术SFDP译码方法与本发明引入不同噪声扰动时N-SFDP译码方法对应不同误比特率BER性能的平均迭代次数(Average Number of Iterations,ANIs)对比图。N-SFDP译码引入的噪声分别为高斯噪声和均匀噪声。图3(b)中的横坐标表示误比特率BER,纵坐标表示平均迭代次数ANIs。图3(b)中以三角形标识的曲线表示现有技术的SFDP译码方法针对码C1的平均迭代次数ANIs。图3(b)中以五角星标识的曲线表示本发明提出的N-SFDP译码方法引入高斯噪声时针对码C1的平均迭代次数ANIs。图3(b)中以米字形标识的曲线表示本发明提出的N-SFDP译码方法引入均匀噪声时针对码C1的平均迭代次数ANIs。Fig. 3(b) is a comparison diagram of decoding convergence speeds for code C 1 between the present invention and the existing method. Fig. 3(b) shows the comparison of the average number of iterations (Average Number of Iterations, ANIs) of the SFDP decoding method in the prior art and the N-SFDP decoding method corresponding to different BER performances when different noise perturbations are introduced in the present invention. The noise introduced by N-SFDP decoding is Gaussian noise and uniform noise respectively. The abscissa in Figure 3(b) represents the bit error rate BER, and the ordinate represents the average number of iterations ANIs. The curve marked with a triangle in FIG. 3( b ) represents the average number of iterations ANIs for the code C 1 in the SFDP decoding method of the prior art. The curve marked with a five-pointed star in Fig. 3(b) represents the average number of iterations ANIs for code C1 when the N-SFDP decoding method proposed by the present invention introduces Gaussian noise. The curve marked in the shape of a rice in Fig. 3(b) represents the average number of iterations ANIs for code C1 when the N-SFDP decoding method proposed by the present invention introduces uniform noise.
由图3(b)可以看出,与现有技术的SFDP译码方法相比,在相同的误比特率BER性能下,本发明提出的N-SFDP译码方法引入高斯噪声或者均匀噪声时译码的平均迭代次数都比较高。但本发明提出的N-SFDP译码方法可以在低误比特率BER值下明显降低信噪比SNR,也就是当译码方法处于相似的计算复杂度时,本发明提出的N-SFDP译码方法通常会有更低的误比特率BER性能。如当平均迭代次数等于30时,现有技术的SFDP译码方法的误比特率BER约等于10-5,而本发明提出的N-SFDP译码方法引入不同噪声时误比特率BER都可以降低到约等于10-7。It can be seen from Fig. 3(b) that, compared with the SFDP decoding method of the prior art, under the same bit error rate BER performance, the N-SFDP decoding method proposed by the present invention introduces Gaussian noise or uniform noise when decoding The average number of iterations of the code is relatively high. However, the N-SFDP decoding method proposed by the present invention can significantly reduce the signal-to-noise ratio (SNR) at a low bit error rate BER value, that is, when the decoding method is at a similar computational complexity, the N-SFDP decoding method proposed by the present invention The method usually has a lower BER performance. For example, when the average number of iterations is equal to 30, the bit error rate BER of the SFDP decoding method in the prior art is approximately equal to 10 -5 , while the N-SFDP decoding method proposed by the present invention can reduce the bit error rate BER when different noises are introduced to approximately equal to 10 -7 .
下面结合图4的仿真图对本发明的效果做进一步的描述。The effects of the present invention will be further described below in conjunction with the simulation diagram of FIG. 4 .
图4(a)是本发明与现有方法针对码C2的译码性能对比图。图4(a)表示现有技术SFDP译码方法与本发明引入不同噪声扰动时N-SFDP译码方法的误比特率BER性能对比图。N-SFDP译码引入的噪声分别为高斯噪声和均匀噪声。图4(a)中的横坐标表示信噪比SNR,纵坐标表示误比特率BER。图4(a)中以三角形标识的曲线表示现有技术的SFDP译码方法针对码C2的误比特率BER性能。图4(a)中以五角星标识的曲线表示本发明提出的N-SFDP译码方法引入高斯噪声时针对码C2的误比特率BER性能。图4(a)中以米字形标识的曲线表示本发明提出的N-SFDP译码方法引入均匀噪声时针对码C2的误比特率BER性能。Fig. 4(a) is a comparison diagram of the decoding performance of the present invention and the existing method for code C2 . Fig. 4(a) shows the performance comparison of BER between the SFDP decoding method of the prior art and the N-SFDP decoding method of the present invention when different noise disturbances are introduced. The noise introduced by N-SFDP decoding is Gaussian noise and uniform noise respectively. The abscissa in Fig. 4(a) represents the signal-to-noise ratio SNR, and the ordinate represents the bit error rate BER. The curve marked with a triangle in FIG. 4( a ) represents the BER performance of the SFDP decoding method in the prior art for code C 2 . The curve marked with a five-pointed star in Fig. 4(a) shows the BER performance for code C2 when the N-SFDP decoding method proposed by the present invention introduces Gaussian noise. In Fig. 4 (a), the curve marked with a rice-shaped character represents the BER performance of the code C2 when the N-SFDP decoding method proposed by the present invention introduces uniform noise.
由图4(a)可以看出,与现有技术的SFDP译码方法相比,本发明提出的N-SFDP译码方法引入不同噪声扰动时可以提高译码性能,尤其是在高信噪比区域下。如误比特率BER≈10-6时,与现有技术的SFDP译码方法相比,本发明提出的N-SFDP译码方法在引入高斯噪声时可以获得0.6dB的信噪比增益,引入均匀噪声时可以获得0.5dB的信噪比增益。As can be seen from Figure 4(a), compared with the SFDP decoding method of the prior art, the N-SFDP decoding method proposed by the present invention can improve the decoding performance when introducing different noise perturbations, especially at high SNR under the area. For example, when the bit error rate BER≈10 -6 , compared with the SFDP decoding method of the prior art, the N-SFDP decoding method proposed by the present invention can obtain a SNR gain of 0.6dB when Gaussian noise is introduced, and the uniform When there is noise, a 0.5dB SNR gain can be obtained.
图4(b)是本发明与现有方法针对码C2的译码收敛速度对比图。图4(b)表示现有技术SFDP译码方法与本发明引入不同噪声扰动时N-SFDP译码方法对应不同误比特率BER性能的平均迭代次数ANIs对比图。N-SFDP译码引入的噪声分别为高斯噪声和均匀噪声。图4(b)中的横坐标表示误比特率BER,纵坐标表示平均迭代次数ANIs。图4(b)中以三角形标识的曲线表示现有技术的SFDP译码方法针对码C2的平均迭代次数ANIs。图4(b)中以五角星标识的曲线表示本发明提出的N-SFDP译码方法引入高斯噪声时针对码C2的平均迭代次数ANIs。图4(b)中以米字形标识的曲线表示本发明提出的N-SFDP译码方法引入均匀噪声时针对码C2的平均迭代次数ANIs。Fig. 4(b) is a comparison diagram of decoding convergence speeds for code C 2 between the present invention and the existing method. Fig. 4(b) shows a comparison chart of the average number of iterations ANIs of the SFDP decoding method in the prior art and the N-SFDP decoding method corresponding to different bit error rate BER performances when different noise perturbations are introduced in the present invention. The noise introduced by N-SFDP decoding is Gaussian noise and uniform noise respectively. The abscissa in Figure 4(b) represents the bit error rate BER, and the ordinate represents the average number of iterations ANIs. The curve marked with a triangle in FIG. 4( b ) represents the average number of iterations ANIs for the code C 2 in the SFDP decoding method of the prior art. The curve marked with a five-pointed star in FIG. 4(b) represents the average number of iterations ANIs for code C2 when the N-SFDP decoding method proposed by the present invention introduces Gaussian noise. The curve marked with a rice in Fig. 4(b) represents the average number of iterations ANIs for code C2 when the N-SFDP decoding method proposed by the present invention introduces uniform noise.
由图4(b)可以看出,与现有技术的SFDP译码方法相比,在相同的误比特率BER性能下,本发明提出的N-SFDP译码方法引入高斯噪声或者均匀噪声时译码的平均迭代次数都比较高。但本发明提出的N-SFDP译码方法可以在低误比特率BER值下明显降低信噪比SNR,也就是当译码方法处于相似的计算复杂度时,本发明提出的N-SFDP译码方法通常会有更低的误比特率BER性能。如当平均迭代次数等于40时,现有技术的SFDP译码方法的误比特率BER约等于10-5,而本发明提出的N-SFDP译码方法引入不同噪声时误比特率BER都可以降低到约等于10-7。It can be seen from Fig. 4(b) that, compared with the SFDP decoding method of the prior art, under the same bit error rate BER performance, the N-SFDP decoding method proposed by the present invention introduces Gaussian noise or uniform noise when decoding The average number of iterations of the code is relatively high. However, the N-SFDP decoding method proposed by the present invention can significantly reduce the signal-to-noise ratio SNR at a low bit error rate BER value, that is, when the decoding method is at a similar computational complexity, the N-SFDP decoding method proposed by the present invention The method usually has a lower BER performance. For example, when the average number of iterations is equal to 40, the bit error rate BER of the SFDP decoding method in the prior art is approximately equal to 10 -5 , while the N-SFDP decoding method proposed by the present invention can reduce the bit error rate BER when different noises are introduced to approximately equal to 10 -7 .
以上仿真实验表明:本发明方法利用随机噪声对翻转度量的噪声扰动,能够有效纠正陷入局部错误集的符号,尤其是在高信噪比区域下,利用引入不同噪声扰动,能够明显提高译码性能,获得信噪比增益,利用引入不同噪声扰动,能够在高信噪比区域下降低错误平层,使得在相同的误比特率BER性能下译码的平均迭代次数较高,解决了现有技术方法中译码复杂度较高,或者译码性能低,在高信噪比区域下会出现错误平层,在中高信噪比情况下易陷入局部陷阱集的问题,是一种非常实用的多元LDPC码噪声增强的符号翻转译码方法。The above simulation experiments show that: the method of the present invention utilizes random noise to perturb the noise of the flip metric, and can effectively correct symbols trapped in local error sets, especially in areas with high SNR, by introducing different noise perturbations, the decoding performance can be significantly improved , to obtain the SNR gain, by introducing different noise perturbations, the error floor can be reduced in the high SNR region, so that the average number of iterations of decoding is higher under the same bit error rate BER performance, which solves the problem of the existing technology In the method, the decoding complexity is high, or the decoding performance is low, and there will be an error floor in the area of high SNR, and it is easy to fall into the problem of local trap set in the case of medium and high SNR. It is a very practical multivariate Noise-enhanced sign-flip decoding method for LDPC codes.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911097917.7A CN110661532B (en) | 2019-11-12 | 2019-11-12 | Symbol flipping decoding method based on multivariate LDPC code noise enhancement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911097917.7A CN110661532B (en) | 2019-11-12 | 2019-11-12 | Symbol flipping decoding method based on multivariate LDPC code noise enhancement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110661532A CN110661532A (en) | 2020-01-07 |
CN110661532B true CN110661532B (en) | 2023-02-10 |
Family
ID=69043360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911097917.7A Active CN110661532B (en) | 2019-11-12 | 2019-11-12 | Symbol flipping decoding method based on multivariate LDPC code noise enhancement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110661532B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112350737B (en) * | 2020-11-23 | 2023-12-12 | 南京信息工程大学滨江学院 | Method for transmitting packet information update based on LDPC code |
CN114421971B (en) * | 2022-01-20 | 2025-04-25 | 东南大学 | A dynamic multi-symbol flipping decoding method for multi-element LDPC codes |
CN114785353B (en) * | 2022-03-24 | 2025-02-11 | 山东岱微电子有限公司 | Low-density parity-check code decoding method, system, device, apparatus and medium |
CN114598330A (en) * | 2022-03-28 | 2022-06-07 | 山东岱微电子有限公司 | Quasi-cyclic low-density parity-check code decoding method, system, device and equipment |
CN115051715B (en) * | 2022-07-08 | 2025-07-04 | 广西大学 | Adaptive single-to-multiple symbol flipping LDPC decoding method and device |
CN116232340B (en) * | 2022-12-15 | 2023-10-13 | 中国人民解放军战略支援部队信息工程大学 | Satellite communication signal sparse check matrix parameter estimation method and device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015139160A1 (en) * | 2014-03-20 | 2015-09-24 | 山东华芯半导体有限公司 | Hard decision decoding method for ldpc code of dynamic threshold bit-flipping |
WO2015168862A1 (en) * | 2014-05-06 | 2015-11-12 | 华为技术有限公司 | Data processing device and method |
CN106301388A (en) * | 2015-05-14 | 2017-01-04 | 北京航空航天大学 | M-ary LDPC code coding method |
CN106936445A (en) * | 2017-03-14 | 2017-07-07 | 西安电子科技大学 | A kind of multielement LDPC code coding method of low complex degree near-maximum-likelihood |
CN107689801A (en) * | 2017-09-07 | 2018-02-13 | 西安电子科技大学 | The early method of shutting down of LDPC code ADMM iterative decodings |
CN110166171A (en) * | 2018-03-19 | 2019-08-23 | 西安电子科技大学 | Multielement LDPC code compensates high-performance decoding scheme based on the segmented of EMS |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8739004B2 (en) * | 2012-05-10 | 2014-05-27 | Lsi Corporation | Symbol flipping LDPC decoding system |
US20170288698A1 (en) * | 2016-03-29 | 2017-10-05 | Silicon Motion Inc. | Power saving for bit flipping decoding algorithm in ldpc decoder |
-
2019
- 2019-11-12 CN CN201911097917.7A patent/CN110661532B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015139160A1 (en) * | 2014-03-20 | 2015-09-24 | 山东华芯半导体有限公司 | Hard decision decoding method for ldpc code of dynamic threshold bit-flipping |
WO2015168862A1 (en) * | 2014-05-06 | 2015-11-12 | 华为技术有限公司 | Data processing device and method |
CN106301388A (en) * | 2015-05-14 | 2017-01-04 | 北京航空航天大学 | M-ary LDPC code coding method |
CN106936445A (en) * | 2017-03-14 | 2017-07-07 | 西安电子科技大学 | A kind of multielement LDPC code coding method of low complex degree near-maximum-likelihood |
CN107689801A (en) * | 2017-09-07 | 2018-02-13 | 西安电子科技大学 | The early method of shutting down of LDPC code ADMM iterative decodings |
CN110166171A (en) * | 2018-03-19 | 2019-08-23 | 西安电子科技大学 | Multielement LDPC code compensates high-performance decoding scheme based on the segmented of EMS |
Non-Patent Citations (3)
Title |
---|
"LDPC码的快速联合加权比特翻转译码算法";吴文波等;《南昌航空大学学报(自然科学版)》;20180131;第32卷(第1期);第71-75页 * |
"Weighted symbol-flipping decoding algorithm for nonbinary LDPC codes with flipping patterns";Bing Liu等;《Journal of Systems Engineering and Electronics》;20111031;第22卷(第5期);第848-855页 * |
"基于平均概率和停止准则的多元LDPC码加权符号翻转译码算法";郭锐等;《通信学报》;20160228;第37卷(第2期);第43-52页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110661532A (en) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110661532B (en) | Symbol flipping decoding method based on multivariate LDPC code noise enhancement | |
CN112290954B (en) | A decoding algorithm for LDPC codes based on deep learning post-processing | |
CN110535475A (en) | A kind of layered self-adapting normalization Min-Sum decoding algorithm | |
CN110233628B (en) | Adaptive Belief Propagation List Decoding Method for Polar Codes | |
CN107689801B (en) | An Early Stopping Method for ADMM Iterative Decoding of LDPC Codes | |
CN108847848A (en) | A kind of BP decoding algorithm of the polarization code based on information post-processing | |
CN106130688B (en) | A low-complexity sparse code multiple access detection method | |
CN107565978B (en) | BP decoding method based on Tanner graph edge scheduling strategy | |
CN110430013B (en) | An RCM method based on deep learning | |
CN102412843A (en) | Adaptive Normalized Minimum Sum LDPC Decoding Method and Decoder | |
CN111327332B (en) | Noise gradient-reduced multi-bit flip decoding early-stop method of LDPC code | |
CN114421971B (en) | A dynamic multi-symbol flipping decoding method for multi-element LDPC codes | |
CN111900998B (en) | LDPC code dynamic turning decoding method based on packet parallel processing | |
CN104009763A (en) | A Low Complexity LDPC Code Weighted Bit Flip Decoding Algorithm Early Stopping Method | |
CN105530014A (en) | Alternating Direction Multiplier Decoding Method for LDPC Codes Based on Simplified Projection Operator | |
CN112953557A (en) | NB-LDPC code weighting factor optimization decoder and method based on extended minimum sum algorithm | |
CN101106437B (en) | A Decoding Method of Finite Geometry Low Density Parity Check Codes | |
CN106027069B (en) | A Cyclic Switching Hybrid Weighted Bit Flip LDPC Decoding Method | |
CN104184480B (en) | An Improved LDPC Decoding Method with Reduced Complexity | |
CN102832954B (en) | Turbo code iterative decoding stopping method based on soft information average minimum value | |
CN115801023A (en) | Momentum-Based Decoding Method of Non-Binary LDPC Codes with Sign Inversion | |
CN110768678B (en) | A Sign Flip Multivariate LDPC Decoding Method with Reduced Complexity | |
Phromsa-ard et al. | Improved gradient descent bit flipping algorithms for LDPC decoding | |
CN115378443B (en) | Low-precision deep neural network polarization code SC decoding algorithm | |
CN108055043B (en) | Bit flipping decoding method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |