CN110658280A - 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 - Google Patents
一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 Download PDFInfo
- Publication number
- CN110658280A CN110658280A CN201910997515.6A CN201910997515A CN110658280A CN 110658280 A CN110658280 A CN 110658280A CN 201910997515 A CN201910997515 A CN 201910997515A CN 110658280 A CN110658280 A CN 110658280A
- Authority
- CN
- China
- Prior art keywords
- bisphenol
- organic framework
- magnetic metal
- composite material
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 title claims abstract description 79
- 239000012924 metal-organic framework composite Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 64
- 239000013154 zeolitic imidazolate framework-8 Substances 0.000 claims abstract description 45
- MFLKDEMTKSVIBK-UHFFFAOYSA-N zinc;2-methylimidazol-3-ide Chemical compound [Zn+2].CC1=NC=C[N-]1.CC1=NC=C[N-]1 MFLKDEMTKSVIBK-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000000605 extraction Methods 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 22
- SZVJSHCCFOBDDC-UHFFFAOYSA-N ferrosoferric oxide Chemical compound O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000002414 normal-phase solid-phase extraction Methods 0.000 claims abstract description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 50
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 45
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 33
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 27
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 23
- 229930185605 Bisphenol Natural products 0.000 claims description 20
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 claims description 17
- 238000003756 stirring Methods 0.000 claims description 17
- 239000012498 ultrapure water Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- HTVITOHKHWFJKO-UHFFFAOYSA-N Bisphenol B Chemical compound C=1C=C(O)C=CC=1C(C)(CC)C1=CC=C(O)C=C1 HTVITOHKHWFJKO-UHFFFAOYSA-N 0.000 claims description 15
- VOWWYDCFAISREI-UHFFFAOYSA-N Bisphenol AP Chemical compound C=1C=C(O)C=CC=1C(C=1C=CC(O)=CC=1)(C)C1=CC=CC=C1 VOWWYDCFAISREI-UHFFFAOYSA-N 0.000 claims description 13
- 230000007613 environmental effect Effects 0.000 claims description 13
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 11
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 11
- 229910052681 coesite Inorganic materials 0.000 claims description 10
- 229910052906 cristobalite Inorganic materials 0.000 claims description 10
- 229910052682 stishovite Inorganic materials 0.000 claims description 10
- 229910052905 tridymite Inorganic materials 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 239000012071 phase Substances 0.000 claims description 8
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 claims description 5
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 claims description 4
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 4
- 239000007924 injection Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 229910021536 Zeolite Inorganic materials 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 239000003480 eluent Substances 0.000 claims description 3
- 239000010457 zeolite Substances 0.000 claims description 3
- 239000012792 core layer Substances 0.000 claims description 2
- 239000011258 core-shell material Substances 0.000 claims description 2
- 239000000945 filler Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims description 2
- 239000013153 zeolitic imidazolate framework Substances 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims 5
- 239000012621 metal-organic framework Substances 0.000 claims 5
- -1 bisphenol compound Chemical class 0.000 claims 3
- 238000004364 calculation method Methods 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000003795 desorption Methods 0.000 claims 1
- 238000005059 solid analysis Methods 0.000 claims 1
- 238000001291 vacuum drying Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000003463 adsorbent Substances 0.000 abstract description 11
- 238000004458 analytical method Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 239000013384 organic framework Substances 0.000 abstract 1
- 239000002994 raw material Substances 0.000 abstract 1
- 238000000825 ultraviolet detection Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 64
- 229910004298 SiO 2 Inorganic materials 0.000 description 46
- 239000000047 product Substances 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 239000012456 homogeneous solution Substances 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 4
- 238000011835 investigation Methods 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 3
- NQXWGWZJXJUMQB-UHFFFAOYSA-K iron trichloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].Cl[Fe+]Cl NQXWGWZJXJUMQB-UHFFFAOYSA-K 0.000 description 3
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000017281 sodium acetate Nutrition 0.000 description 3
- 239000001632 sodium acetate Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- GSNUFIFRDBKVIE-UHFFFAOYSA-N DMF Natural products CC1=CC=C(C)O1 GSNUFIFRDBKVIE-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000009547 development abnormality Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 210000000750 endocrine system Anatomy 0.000 description 1
- 229940011871 estrogen Drugs 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007472 neurodevelopment Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000000575 pesticide Substances 0.000 description 1
- 238000000634 powder X-ray diffraction Methods 0.000 description 1
- 238000004094 preconcentration Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004454 trace mineral analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/34—Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
- G01N30/74—Optical detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N2030/062—Preparation extracting sample from raw material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
- G01N2030/324—Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本发明公开了一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法,以磁性金属有机骨架复合材料作为吸附剂,采用磁固相萃取将测试水样中的双酚类化合物进行萃取,然后将吸附在磁性有机骨架材料中的双酚类化合物洗脱后进行高效液相色谱‑紫外检测进行分析,所述磁性金属有机骨架复合材料为四氧化三铁与ZIF‑8复合而成的材料。该发明原料易得,过程简单,准确度高,萃取效果好,可推广至环境中水质的检测。
Description
本专利受到国家自然科学基金面上项目20975054的资助。
技术领域
本发明属于环境检测领域,涉及一种水样中四种双酚类化合物的分析测定方法,利用磁固相萃取(MSPE)技术,采用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取-高效液相色谱来测定环境水样中双酚F、双酚A、双酚B、双酚AP四种双酚类化合物。
背景技术
双酚是一类具有两个羟基苯基官能团的化合物,包括双酚F、双酚A、双酚B、双酚AP等,广泛用于现代工业产品的制造过程中,如食品包装袋,农药和纸张等。然而,双酚类化合物的生产和大量使用,导致其最终由各种途径进入环境。目前,在水、沉积物、大气环境和生物体内均已检出双酚类化合物。越来越多的证据证明,双酚类化合物可能会破坏雌激素的活性,干扰人类和动物的内分泌系统,影响生理和神经的健康发育,甚至会导致发育异常、生殖障碍甚至癌症等健康问题。除此之外,其对生态环境的影响也极其显著,在极低浓度水平就可以对环境中的生物体造成危害。
双酚类化合物的检测方法主要包括高效液相色谱、气-质联用、液-质联用等。由于环境基质复杂,双酚类化合物在环境中的浓度极低,因此在分析检测之前必须进行预处理。传统用于环境样品的预处理方法有固相萃取、液液萃取等,但这些方法样品处理时间长、操作繁琐且需要大量有机溶剂。为了达到更加高效、快速的目的,近年来磁固相萃取样品预处理方法被广泛应用。除此之外,吸附材料的性能对于预处理来说也极为重要,已报道的磁固相萃取方法由于吸附材料的差异,存在对双酚类化合物的提取效果不佳等缺陷。因此,发展一种简便高效的样品前处理技术并结合高效液相色谱实现对双酚类化合物的预浓缩和检测具有重要意义。
发明内容
为了解决现有技术的不足,本发明的目的之一是提供一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法,采用磁性金属有机骨架复合材料联合磁固相萃取-高效液相色谱来测定环境水样中双酚F、双酚A、双酚B、双酚AP四种双酚类化合物,具有更低的检出限,从而能够对环境水样中的更低含量的双酚类化合物进行简便高效的检测。
为了实现上述目的,本发明采用下述技术方案:
一种基于磁性金属有机骨架复合材料,其特征在于具有如下的结构:
Fe3O4@SiO2/ZIF-8
@代表核壳结构,@前为核层,@后为壳层;
ZIF-8代表沸石咪唑酯骨架结构材料-8(Zeolitic Imidazolate Frameworks-8)。
本发明进一步公开了基于磁性金属有机骨架复合材料检测双酚类化合物的方法,其特征在于包括:
步骤一:制备磁性金属有机骨架复合材料;
步骤二:利用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取,结合高效液相色谱对水样中四种双酚类化合物进行分析;所述ZIF-8指沸石咪唑酯骨架结构材料-8,在步骤一的(7)(8)(9)步中合成。
其中步骤一:制备磁性金属有机骨架复合材料如下:
(1)将1.35 g的六水合三氯化铁溶于40 mL乙二醇中,再加入3.6 g乙酸钠,充分搅拌溶解;
(2)将步骤(1)中制得的混合物在溶剂热反应釜内200˚C条件下反应8 h,将溶剂热反应釜内制得的混合物用乙醇和超纯水洗涤制得四氧化三铁(Fe3O4),并在60˚C条件下真空干燥12 h;
(3)将0.3 g的Fe3O4、1.5 mL浓氨水和60 mL高纯水加入300 mL乙醇中,超声4 h,制得分散均匀的反应体系;
(4)在步骤(3)中制得的分散均匀的反应体系加入1.5 mL原硅酸四乙酯,充分搅拌4 h,将所得产物用乙醇和超纯水洗涤制得二氧化硅包覆的四氧化三铁(Fe3O4@SiO2),并在60˚C条件下真空干燥12 h;
(5)将0.168 g戊二酸酐和0.455 mL的3-氨丙基三乙氧基硅烷溶于12 mL的N,N-二甲基酰胺(DMF)中,在60˚C水浴下充分搅拌3 h,制得均匀的溶液;
(6)将0.3 g的Fe3O4@SiO2和0.9 mL高纯水加入10 mL的DMF中,并将其加入在步骤(5)中制得均匀溶液中,在60˚C水浴下充分搅拌5 h,将所得产物用乙醇洗涤制得羧基四氧化三铁(Fe3O4@SiO2-COOH),并在60˚C条件下真空干燥12 h;
(7)将0.9 g六水合硝酸锌溶于50 mL甲醇中,制得均匀的溶液,将0.2 g的Fe3O4@SiO2-COOH加入上述均匀溶液中,充分搅拌15 min,制得分散均匀的反应体系;
(8)将0.7 g的2-甲基咪唑溶于50 mL甲醇中,并将其加入在步骤(7)中制得的分散均匀的反应体系中,充分搅拌30 min,将所得产物用乙醇洗涤;
(9)重复步骤(7)(8)四次,其中Fe3O4@SiO2-COOH改为步骤(8)所得产物,最后所得产物在60˚C条件下真空干燥12 h,制得磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8备用;所述双酚类化合物包括:双酚F、双酚A、双酚B、双酚AP;
步骤二:利用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取,结合高效液相色谱对水样中四种双酚类化合物进行分析,具体步骤如下:
(1)取30 mg的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8于烧杯中,向烧杯中加入100 mL水样,其中水样中四种双酚类化合物的浓度均为30μg/L,充分震荡10 min,使磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8均匀分散于水样中;
(2)利用磁铁的作用将吸附有目标化合物的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8与水样分开;
(3)用0.5 mL乙腈洗脱磁性金属有机骨架复合材料,将洗脱液用0.45μm滤膜过滤后进行高效液相色谱分析。
高效液相色谱条件为:选用倍思乐C18高效液相色谱柱,其规格为长度250 mm,内径为4.6 mm,填料颗粒直径为5μm;所述流动相选用体积比为60:40的乙腈和超纯水,流动相流速为0.9 mL/min;检测器为二极管阵列紫外检测器,测定波长为225 nm;手动进样器进样,进样量:20μL。
本发明所述的检测双酚类化合物的方法,其中所述的检测方法中萃取剂用量为30mg。所用水样的pH值为7,萃取时间选取10 min。脱附剂选择乙腈。双酚F、双酚A、双酚B、双酚AP四种双酚类化合物的工作曲线相关参数的计算方法为配制四种双酚类化合物的浓度为1、2、10、30、50μg/L的100 mL水样,在优化的磁固相萃取条件下,进行高效液相色谱-二极管阵列检测器测定,四种双酚类化合物的工作曲线回归方程、线性范围、相关系数(R2)和方法检出限如下:
四种双酚类化合物的工作曲线相关参数
本发明更加详细的描述如下:
一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法:
(1)取30 mg的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8于烧杯中,向烧杯中加入100 mL水样(水样中四种双酚类化合物的浓度均为30μg/L),充分震荡10 min,使磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8均匀分散于水样中;
(2)利用磁铁的作用将吸附有目标化合物的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8与水样分离,待上清液澄清后将其倒出;
(3)用0.5 mL乙腈将双酚类化合物从磁性金属有机骨架复合材料上洗脱,将洗脱液用0.45μm滤膜过滤后进行高效液相色谱分析。
优选地,步骤1中所述磁性金属有机骨架复合材料由如下方法制备:
(1)将1.35 g的六水合三氯化铁溶于40 mL乙二醇中,再加入3.6 g乙酸钠,充分搅拌溶解;
(2)将步骤(1)中制得的混合物在溶剂热反应釜内200˚C条件下反应8 h,将溶剂热反应釜内制得的混合物用乙醇和超纯水洗涤制得四氧化三铁(Fe3O4),并在60˚C条件下真空干燥12 h;
(3)将0.3 g的Fe3O4、1.5 mL浓氨水和60 mL高纯水加入300 mL乙醇中,超声4 h,制得分散均匀的反应体系;
(4)在步骤(3)中制得的分散均匀的反应体系加入1.5 mL原硅酸四乙酯,充分搅拌4 h,将所得产物用乙醇和超纯水洗涤制得二氧化硅包覆的四氧化三铁(Fe3O4@SiO2),并在60˚C条件下真空干燥12 h;
(5)将0.168 g戊二酸酐和0.455 mL的3-氨丙基三乙氧基硅烷溶于12 mL的N,N-二甲基酰胺(DMF)中,在60˚C水浴下充分搅拌3 h,制得均匀的溶液;
(6)将0.3 g的Fe3O4@SiO2和0.9 mL高纯水加入10 mL的DMF中,并将其加入在步骤(5)中制得均匀溶液中,在60˚C水浴下充分搅拌5 h,将所得产物用乙醇洗涤制得羧基四氧化三铁(Fe3O4@SiO2-COOH),并在60˚C条件下真空干燥12 h;
(7)将0.9 g六水合硝酸锌溶于50 mL甲醇中,制得均匀的溶液,将0.2 g的Fe3O4@SiO2-COOH加入上述均匀溶液中,充分搅拌15 min,制得分散均匀的反应体系;
(8)将0.7 g的2-甲基咪唑溶于50 mL甲醇中,并将其加入在步骤(7)中制得的分散均匀的反应体系中,充分搅拌30 min,将所得产物用乙醇洗涤;
(9)重复步骤(7)(8)四次,其中Fe3O4@SiO2-COOH改为步骤(8)所得产物,最后所得产物在60˚C条件下真空干燥12 h,制得磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8;
优选地,步骤2中所述高效液相色谱分析条件为:选用倍思乐C18高效液相色谱柱,其规格为长度250 mm,内径为4.6 mm,填料颗粒直径为5μm;所述流动相选用体积比为60:40的乙腈和超纯水,流动相流速为0.9 mL/min;检测器为二极管阵列紫外检测器,测定波长为225nm;手动进样器进样,进样量:20μL。
本发明更进一步公开了基于磁性金属有机骨架复合材料在用于检测环境水样中四种双酚类化合物方面的应用,实验结果显示在环境水样中可得到满意的加标回收率,所述磁性金属有机骨架复合材料可更好地应用于实际样品中双酚类化合物的检测。
本发明公开的基于磁性金属有机骨架复合材料检测双酚类化合物的方法与现有技术相比所具有的有益效果在于:
(1)本发明以磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8为吸附剂,基于磁固相色谱和高效液相色谱技术,建立了一种简便高效灵敏的分析水中痕量双酚类化合物的样品前处理方法。对影响实验效果的重要因素如吸附剂用量、萃取时间和溶液pH等进行了优化,并将该方法应用于不同环境水样中痕量双酚类化合物的分析。
(2)本发明能够对环境水样中的低含量的双酚类化合物进行简便、高效的检测,方法的线性范围为1-50μg/L,检出限为0.35-0.62μg/L。
附图说明
图1为本发明使用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8的扫描电镜图;
图2为本发明使用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8的X-射线粉末衍射谱图;
图3为不同吸附剂用量对四种双酚类化合物峰面积的影响图,其中,a为双酚F的实验曲线,b为双酚A的实验曲线,c为双酚B的实验曲线,d为双酚AP的实验曲线;
图4为不同萃取时间对四种双酚类化合物峰面积的影响图,其中,a为双酚F的实验曲线,b为双酚A的实验曲线,c为双酚B的实验曲线,d为双酚AP的实验曲线;
图5为不同水样pH对四种双酚类化合物峰面积的影响图,其中,a为双酚F的实验曲线,b为双酚A的实验曲线,c为双酚B的实验曲线,d为双酚AP的实验曲线;
图6为不同脱附剂类型对四种双酚类化合物峰面积的影响图,其中,a为双酚F,b为双酚A,c为双酚B,d为双酚AP;
图7为本发明涉及的湖水样品的高效液相色谱-二极管阵列检测器图,其中,a为湖水空白水样,b为加标10μg/L双酚类化合物的湖水,c为加标50μg/L双酚类化合物的湖水。
具体实施方式
下面通过具体的实施方案和附图说明来详细描述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。
下述实施例中所使用的试剂至少为分析纯。DMF、乙二醇、乙醇,甲醇,乙腈和丙酮购自天津康科德科技有限公司,双酚A(BPA),双(4-羟苯基)甲烷(BPF),双酚B(BPB),4,4'-(α-甲基苄叉基)双酚(BPAP),戊二酸酐和2-甲基咪唑购自于上海阿拉丁科技有限公司,无机试剂均购买于天津市科威有限公司。
实施例1:
实施例涉及的环境水样中四种双酚类化合物的分析检测方法具体包括以下步骤:
步骤一:制备磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8:
(1)将1.35 g的六水合三氯化铁溶于40 mL乙二醇中,再加入3.6 g乙酸钠,充分搅拌溶解;
(2)将步骤(1)中制得的混合物在溶剂热反应釜内200˚C条件下反应8 h,将溶剂热反应釜内制得的混合物用乙醇和超纯水洗涤制得四氧化三铁(Fe3O4),并在60˚C条件下真空干燥12 h;
(3)将0.3 g的Fe3O4、1.5 mL浓氨水和60 mL高纯水加入300 mL乙醇中,超声4 h,制得分散均匀的反应体系;
(4)在步骤(3)中制得的分散均匀的反应体系加入1.5 mL原硅酸四乙酯,充分搅拌4 h,将所得产物用乙醇和超纯水洗涤制得二氧化硅包覆的四氧化三铁(Fe3O4@SiO2),并在60˚C条件下真空干燥12 h;
(5)将0.168 g戊二酸酐和0.455 mL的3-氨丙基三乙氧基硅烷溶于12 mL的N,N-二甲基酰胺(DMF)中,在60˚C水浴下充分搅拌3 h,制得均匀的溶液;
(6)将0.3 g的Fe3O4@SiO2和0.9 mL高纯水加入10 mL的DMF中,并将其加入在步骤(5)中制得均匀溶液中,在60˚C水浴下充分搅拌5 h,将所得产物用乙醇洗涤制得羧基四氧化三铁(Fe3O4@SiO2-COOH),并在60˚C条件下真空干燥12 h;
(7)将0.9 g六水合硝酸锌溶于50 mL甲醇中,制得均匀的溶液,将0.2 g的Fe3O4@SiO2-COOH加入上述均匀溶液中,充分搅拌15 min,制得分散均匀的反应体系;
(8)将0.7 g的2-甲基咪唑溶于50 mL甲醇中,并将其加入在步骤(7)中制得的分散均匀的反应体系中,充分搅拌30 min,将所得产物用乙醇洗涤;
(9)重复步骤(7)(8)四次,其中Fe3O4@SiO2-COOH改为步骤(8)所得产物,最后所得产物在60˚C条件下真空干燥12 h,制得磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8备用;所述ZIF-8指沸石咪唑酯骨架结构材料-8,在步骤一的(7)(8)(9)步中合成。
磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8的结构表征:
(1)用扫描电子显微镜对合成的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8进行表征,由图1可知,磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8表面上附着有具有菱形十二面体结构的ZIF-8。
(2)用X-射线单晶衍射仪对合成的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8进行表征,由图2可以看到,磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8中5-20˚的衍射峰与ZIF-8模拟数据吻合,说明成功合成磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8。
步骤二:利用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取,结合高效液相色谱对水样中四种双酚类化合物进行分析,具体步骤如下:
(1)取30 mg的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8于烧杯中,向烧杯中加入100 mL水样(水样中四种双酚类化合物的浓度均为30μg/L),充分震荡10 min,使磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8均匀分散于水样中;
(2)利用磁铁的作用将吸附有目标化合物的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8与水样分开;
(3)用0.5 mL乙腈洗脱磁性金属有机骨架复合材料,将洗脱液用0.45μm滤膜过滤后进行高效液相色谱分析,所述高效液相色谱检测条件如下:
高效液相色谱检测条件为:选用倍思乐C18高效液相色谱柱,其规格为长度250 mm,内径为4.6 mm,填料颗粒直径为5μm;所述流动相选用体积比为60:40的乙腈和超纯水,流动相流速为0.9 mL/min;检测器为二极管阵列紫外检测器,测定波长为225 nm;手动进样器进样,进样量:20μL。
实施例2:
本实施例对影响四种双酚类化合物萃取峰面积的主要因素进行考察,计算出萃取峰面积最高时各因素的最佳值,再在各因素最佳值的条件下测定四种双酚类化合物的工作曲线相关参数,具体工艺包括以下步骤:
步骤一:计算四种双酚类化合物萃取峰面积最高时各因素的最佳值:
(1)吸附剂用量对萃取峰面积的考察
本实施例考察吸附剂用量对萃取峰面积的影响,分别称取10、20、30、40、50 mg磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8于100 mL模拟水样中,水样中四种双酚类化合物浓度均为30μg/L,结果如图3所示,当磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8用量由10mg增加到30 mg时,萃取峰面积随吸附剂用量增加而增加,说明随磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8用量增加,吸附位点增多,吸附量增加;但当吸附剂的用量大于30 mg时,再继续增加磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8用量,四种双酚类化合物的萃取峰面积基本保持不变,所以本实施例中萃取剂用量选取30 mg。
(2)萃取时间对萃取峰面积的考察
本实施例考察萃取时间对萃取峰面积的影响,萃取时间不足会使目标化合物和磁性材料之间的吸附无法达到平衡,影响萃取效率,本实施例考察了萃取时间分别为2、10、20、30、40、50 min时四种双酚类化合物的峰面积情况,结果如图4所示,萃取时间由2min增加到10min时,萃取峰面积升高,继续延长萃取时间,四种双酚类化合物峰面积均无显著增长,说明吸附已达到平衡,因此本实施例选取萃取时间为10 min。
(3)水样pH对萃取峰面积的考察
本实施例考察水样pH对萃取峰面积的影响,分别考察了水样pH为3、4、5、6、7、8、9条件下的萃取峰面积结果,由图5可知,pH从3到7时,双酚F、双酚A、双酚B的峰面积逐渐升高,双酚AP的峰面积先下降而后在7时升至最高。pH高于7后,四种双酚类化合物峰面积都开始下降,说明材料对四种双酚类化合物萃取最适的pH为7;实验用超纯水pH≈7,因此本实施例选择不调pH。
(4)洗脱剂种类对萃取峰面积的考察
本实施例考察不同的洗脱剂对吸附于吸附剂上的待测物洗脱效率的影响,本实施例考察了甲醇、乙腈、丙酮三种有机溶剂对萃取效率的影响,结果如图6所示,乙腈具有最高的洗脱效率,因此本实施例选取乙腈作为洗脱溶剂。
步骤二:测定四种双酚类化合物的工作曲线相关参数:
配制四种双酚类化合物浓度为1、2、10、30、50μg/L的100 mL水样,在优化的磁固相萃取条件下,进行高效液相色谱-二极管阵列检测器测定,四种双酚类化合物的工作曲线回归方程、线性范围、相关系数(R2)和方法检出限如下:
四种双酚类化合物的工作曲线相关参数
实施例3:
为了检验该方法的可靠性,选取实际湖水水样来考察方法的可行性。所有水样在分析前都需用0.45μm滤膜过滤。实际水样中未检出双酚类化合物。在水样中分别加标10、50μg/L双酚类化合物,加标回收率在82.3-103.1%,如图7所示,这满足实际水样痕量分析的要求。以上实验结果表明磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8应用于实际环境水样中痕量双酚类化合物的分析是可行的。
Claims (9)
1.一种基于磁性金属有机骨架复合材料,其特征在于具有如下的结构:
Fe3O4@SiO2/ZIF-8
@代表核壳结构,@前为核层,@后为壳层;
ZIF-8代表沸石咪唑酯骨架结构材料-8(Zeolitic Imidazolate Frameworks)。
2.采用权利要求1所述的基于磁性金属有机骨架复合材料进行双酚类化合物检测的方法,其特征在于包括:
步骤一:制备磁性金属有机骨架复合材料;
步骤二:利用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取,结合高效液相色谱对水样中四种双酚类化合物进行分析;所述双酚类化合物包括:双酚F、双酚A、双酚B、双酚AP;
其中步骤一:制备磁性金属有机骨架复合材料的步骤如下:
(1)将0.9 g六水合硝酸锌溶于50 mL甲醇中,制得均匀的溶液,将0.2 g的Fe3O4@SiO2-COOH加入上述均匀溶液中,充分搅拌15 min,制得分散均匀的反应体系;
(2)将0.7 g的2-甲基咪唑溶于50 mL甲醇中,并将其加入在步骤(1)中制得的分散均匀的反应体系中,充分搅拌30 min,将所得产物用乙醇洗涤;
(3)重复步骤(1)(2)四次,其中Fe3O4@SiO2-COOH改为步骤(2)所得产物,最后所得产物在60˚C条件下真空干燥12 h,制得磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8备用;
步骤二:利用磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8磁固相萃取,结合高效液相色谱对水样中四种双酚类化合物进行分析,具体步骤如下:
(1)取30 mg的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8于烧杯中,向烧杯中加入100 mL水样,其中水样中四种双酚类化合物的浓度均为30μg/L,充分震荡10 min,使磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8均匀分散于水样中;
(2)利用磁铁的作用将吸附有目标化合物的磁性金属有机骨架复合材料Fe3O4@SiO2/ZIF-8与水样分开;
(3)用0.5 mL乙腈洗脱磁性金属有机骨架复合材料,将洗脱液用0.45μm滤膜过滤后进行高效液相色谱分析。
3.权利要求2所述的检测双酚类化合物的方法,其特征在于高效液相色谱条件为:选用倍思乐C18高效液相色谱柱,其规格为长度250 mm,内径为4.6 mm,填料颗粒直径为5μm;所述流动相选用体积比为60:40的乙腈和超纯水,流动相流速为0.9 mL/min;检测器为二极管阵列紫外检测器,测定波长为225 nm;手动进样器进样,进样量:20μL。
4.权利要求2所述的检测双酚类化合物的方法,其特征在于为保证检测结果准确性,所述的检测方法中萃取剂用量为30 mg。
5.权利要求2所述的检测双酚类化合物的方法,其特征在于为保证检测结果准确性,所述的检测方法中所用水样的pH值为7。
6.权利要求2所述的检测双酚类化合物的方法,其特征在于为保证检测结果准确性,所述的检测方法中萃取时间选取10 min。
7.权利要求2所述的检测双酚类化合物的方法,其特征在于为保证检测结果准确性,所述的检测方法中脱附剂选择乙腈。
9.权利要求1所述的基于磁性金属有机骨架复合材料用于检测环境水样中四种双酚类化合物方面的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910997515.6A CN110658280B (zh) | 2019-10-21 | 2019-10-21 | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910997515.6A CN110658280B (zh) | 2019-10-21 | 2019-10-21 | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110658280A true CN110658280A (zh) | 2020-01-07 |
CN110658280B CN110658280B (zh) | 2023-08-22 |
Family
ID=69041402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910997515.6A Active CN110658280B (zh) | 2019-10-21 | 2019-10-21 | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110658280B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111650311A (zh) * | 2020-04-26 | 2020-09-11 | 齐鲁工业大学 | 一种分析功能性饮料中双酚类化合物的方法 |
CN112108120A (zh) * | 2020-09-22 | 2020-12-22 | 宁夏医科大学 | 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用 |
CN112604661A (zh) * | 2020-12-29 | 2021-04-06 | 复旦大学 | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 |
CN112831058A (zh) * | 2021-01-07 | 2021-05-25 | 中国农业大学 | 整体型cg-zif-8金属有机框架泡沫材料及其制备方法与应用 |
CN114778724A (zh) * | 2022-04-18 | 2022-07-22 | 江南大学 | 一种搅拌棒吸附-分散微萃取检测三唑类农药残留的方法 |
CN115487791A (zh) * | 2022-08-23 | 2022-12-20 | 中科检测技术服务(广州)股份有限公司 | 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597713A (zh) * | 2016-03-11 | 2016-05-25 | 山东省分析测试中心 | 一种磁固相萃取材料及其制备方法与应用 |
CN107907614A (zh) * | 2017-12-18 | 2018-04-13 | 丽水学院 | 一种双酚类化合物的分子印迹固相萃取‑高效液相色谱‑串联质谱测定方法 |
CN108398498A (zh) * | 2018-02-12 | 2018-08-14 | 宁波市疾病预防控制中心 | 一种常见食物中四种双酚类化合物的快速定量分析方法 |
CN109632985A (zh) * | 2018-12-13 | 2019-04-16 | 温州医科大学 | 一种基于金属有机框架纳米材料的萃取技术检测双酚类化合物及其衍生物的方法 |
-
2019
- 2019-10-21 CN CN201910997515.6A patent/CN110658280B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105597713A (zh) * | 2016-03-11 | 2016-05-25 | 山东省分析测试中心 | 一种磁固相萃取材料及其制备方法与应用 |
CN107907614A (zh) * | 2017-12-18 | 2018-04-13 | 丽水学院 | 一种双酚类化合物的分子印迹固相萃取‑高效液相色谱‑串联质谱测定方法 |
CN108398498A (zh) * | 2018-02-12 | 2018-08-14 | 宁波市疾病预防控制中心 | 一种常见食物中四种双酚类化合物的快速定量分析方法 |
CN109632985A (zh) * | 2018-12-13 | 2019-04-16 | 温州医科大学 | 一种基于金属有机框架纳米材料的萃取技术检测双酚类化合物及其衍生物的方法 |
Non-Patent Citations (10)
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111650311A (zh) * | 2020-04-26 | 2020-09-11 | 齐鲁工业大学 | 一种分析功能性饮料中双酚类化合物的方法 |
CN111650311B (zh) * | 2020-04-26 | 2022-09-13 | 齐鲁工业大学 | 一种分析功能性饮料中双酚类化合物的方法 |
CN112108120A (zh) * | 2020-09-22 | 2020-12-22 | 宁夏医科大学 | 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用 |
CN112108120B (zh) * | 2020-09-22 | 2023-07-25 | 宁夏医科大学 | 磁性层状双氢氧化物-金属有机骨架物复合材料及其制备方法和应用 |
CN112604661A (zh) * | 2020-12-29 | 2021-04-06 | 复旦大学 | 亲水磁性锆基-有机金属碳骨架材料及其制备方法和应用 |
CN112831058A (zh) * | 2021-01-07 | 2021-05-25 | 中国农业大学 | 整体型cg-zif-8金属有机框架泡沫材料及其制备方法与应用 |
CN114778724A (zh) * | 2022-04-18 | 2022-07-22 | 江南大学 | 一种搅拌棒吸附-分散微萃取检测三唑类农药残留的方法 |
CN114778724B (zh) * | 2022-04-18 | 2024-03-26 | 江南大学 | 一种搅拌棒吸附-分散微萃取检测三唑类农药残留的方法 |
CN115487791A (zh) * | 2022-08-23 | 2022-12-20 | 中科检测技术服务(广州)股份有限公司 | 一种两亲型磁性固相萃取材料及其制备方法和在检测类固醇激素中的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN110658280B (zh) | 2023-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110658280A (zh) | 一种基于磁性金属有机骨架复合材料检测双酚类化合物的方法 | |
Chen et al. | Facile synthesis of magnetic covalent organic framework nanobeads and application to magnetic solid-phase extraction of trace estrogens from human urine | |
Gao et al. | A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk | |
Li et al. | Synthesis of a magnetic covalent organic framework as sorbents for solid-phase extraction of aflatoxins in food prior to quantification by liquid chromatography-mass spectrometry | |
Yuan et al. | Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals | |
Shi et al. | Magnetic covalent organic framework material: synthesis and application as a sorbent for polycyclic aromatic hydrocarbons | |
Wang et al. | Combined magnetic molecularly imprinted polymers with a ternary deep eutectic solvent to purify baicalein from the Scutellaria baicalensis Georgi by magnetic separation | |
CN105688869B (zh) | 一种磁性金属‑有机纳米管材料的制备方法及其应用 | |
Yuan et al. | Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues | |
Wu et al. | Polyamidoamine dendrimer decorated nanoparticles as an adsorbent for magnetic solid-phase extraction of tetrabromobisphenol A and 4-nonylphenol from environmental water samples | |
CN105312038B (zh) | 一种甲酰基苯硼酸修饰磁性纳米粒子及其制备和应用 | |
Liu et al. | Spherical covalent organic frameworks as advanced adsorbents for preconcentration and separation of phenolic endocrine disruptors, followed by high performance liquid chromatography | |
Niazipour et al. | Template-directed synthesis of three-dimensional metal organic framework 199-derived highly porous copper nano-foam fiber for solid-phase microextraction of some antibiotics prior to their quantification by High performance liquid chromatography | |
Avan et al. | CoFe2O4-MWCNTs modified screen printed carbon electrode coupled with magnetic CoFe2O4-MWCNTs based solid phase microextraction for the detection of bisphenol A | |
Chen et al. | Simultaneous enrichment of bisphenols and polyfluoroalkyl substances by cyclodextrin-fluorinated covalent organic frameworks membrane in food packaging samples | |
CN114409913A (zh) | 一种磁性金属有机框架材料及其制备方法和应用 | |
CN106770730B (zh) | 一种甲基汞和乙基汞测定方法 | |
CN106883411A (zh) | 超顺磁性核壳结构介孔分子印迹聚合物的制备及作为固相萃取剂的应用 | |
CN113295796B (zh) | 膜保护磁固相萃取-高效液相色谱检测牛奶中的雌激素 | |
CN109400889A (zh) | 一种磁性修饰的金属有机多孔材料及其制备和应用 | |
Fan et al. | Application of core–satellite polydopamine-coated Fe 3 O 4 nanoparticles–hollow porous molecularly imprinted polymer combined with HPLC-MS/MS for the quantification of macrolide antibiotics | |
CN105954404B (zh) | 采用uio‑66‑nh2材料测定血清中唾液酸含量的方法 | |
CN103769056B (zh) | 水样中芳氧苯氧羧酸酯类除草剂及其一级代谢物的吸附及含量检测方法 | |
CN104865323B (zh) | 一种血液及尿液中硫化氢的测定方法 | |
Wang et al. | Magnetic covalent organic frameworks for rapid solid-phase extraction of phthalate esters and bisphenol A in beverage samples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |