CN110655922B - Using In 3+ Wavelength tuning of ZnSe quantum dots with salts as dopants - Google Patents
Using In 3+ Wavelength tuning of ZnSe quantum dots with salts as dopants Download PDFInfo
- Publication number
- CN110655922B CN110655922B CN201910577676.XA CN201910577676A CN110655922B CN 110655922 B CN110655922 B CN 110655922B CN 201910577676 A CN201910577676 A CN 201910577676A CN 110655922 B CN110655922 B CN 110655922B
- Authority
- CN
- China
- Prior art keywords
- zinc
- nanostructure
- selenide
- indium
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical class [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 title claims abstract description 183
- 239000002019 doping agent Substances 0.000 title claims description 7
- 150000003839 salts Chemical class 0.000 title 1
- 239000002086 nanomaterial Substances 0.000 claims abstract description 249
- 238000000034 method Methods 0.000 claims abstract description 86
- 239000000872 buffer Substances 0.000 claims description 94
- 239000003446 ligand Substances 0.000 claims description 86
- 229910052725 zinc Inorganic materials 0.000 claims description 83
- 239000011701 zinc Substances 0.000 claims description 83
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 81
- 239000000203 mixture Substances 0.000 claims description 81
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 76
- 239000000463 material Substances 0.000 claims description 62
- 229910052711 selenium Inorganic materials 0.000 claims description 62
- 239000011669 selenium Substances 0.000 claims description 62
- RMZAYIKUYWXQPB-UHFFFAOYSA-N trioctylphosphane Chemical compound CCCCCCCCP(CCCCCCCC)CCCCCCCC RMZAYIKUYWXQPB-UHFFFAOYSA-N 0.000 claims description 36
- 239000002159 nanocrystal Substances 0.000 claims description 33
- 239000011541 reaction mixture Substances 0.000 claims description 33
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 32
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 31
- 150000002471 indium Chemical class 0.000 claims description 31
- 238000002156 mixing Methods 0.000 claims description 28
- 229910052717 sulfur Inorganic materials 0.000 claims description 26
- 239000011593 sulfur Substances 0.000 claims description 26
- VNDYJBBGRKZCSX-UHFFFAOYSA-L zinc bromide Chemical compound Br[Zn]Br VNDYJBBGRKZCSX-UHFFFAOYSA-L 0.000 claims description 26
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 claims description 26
- UAYWVJHJZHQCIE-UHFFFAOYSA-L zinc iodide Chemical compound I[Zn]I UAYWVJHJZHQCIE-UHFFFAOYSA-L 0.000 claims description 26
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 claims description 25
- -1 phosphine selenide Chemical class 0.000 claims description 25
- 239000002096 quantum dot Substances 0.000 claims description 24
- ZAKSIRCIOXDVPT-UHFFFAOYSA-N trioctyl(selanylidene)-$l^{5}-phosphane Chemical compound CCCCCCCCP(=[Se])(CCCCCCCC)CCCCCCCC ZAKSIRCIOXDVPT-UHFFFAOYSA-N 0.000 claims description 23
- 229910052793 cadmium Inorganic materials 0.000 claims description 22
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims description 22
- 238000006862 quantum yield reaction Methods 0.000 claims description 21
- ZMBHCYHQLYEYDV-UHFFFAOYSA-N trioctylphosphine oxide Chemical compound CCCCCCCCP(=O)(CCCCCCCC)CCCCCCCC ZMBHCYHQLYEYDV-UHFFFAOYSA-N 0.000 claims description 21
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 claims description 20
- BHHYHSUAOQUXJK-UHFFFAOYSA-L zinc fluoride Chemical compound F[Zn]F BHHYHSUAOQUXJK-UHFFFAOYSA-L 0.000 claims description 20
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 20
- 239000000243 solution Substances 0.000 claims description 19
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 claims description 16
- 239000011787 zinc oxide Substances 0.000 claims description 16
- LPEBYPDZMWMCLZ-CVBJKYQLSA-L zinc;(z)-octadec-9-enoate Chemical compound [Zn+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O LPEBYPDZMWMCLZ-CVBJKYQLSA-L 0.000 claims description 16
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 claims description 14
- 229910052738 indium Inorganic materials 0.000 claims description 14
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 13
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 claims description 13
- DLINORNFHVEIFE-UHFFFAOYSA-N hydrogen peroxide;zinc Chemical compound [Zn].OO DLINORNFHVEIFE-UHFFFAOYSA-N 0.000 claims description 13
- 238000005424 photoluminescence Methods 0.000 claims description 13
- 239000004246 zinc acetate Substances 0.000 claims description 13
- 229940102001 zinc bromide Drugs 0.000 claims description 13
- 239000011667 zinc carbonate Substances 0.000 claims description 13
- 235000004416 zinc carbonate Nutrition 0.000 claims description 13
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 13
- 239000011592 zinc chloride Substances 0.000 claims description 13
- 235000005074 zinc chloride Nutrition 0.000 claims description 13
- GTLDTDOJJJZVBW-UHFFFAOYSA-N zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 claims description 13
- 229940098697 zinc laurate Drugs 0.000 claims description 13
- 229940105125 zinc myristate Drugs 0.000 claims description 13
- 229940105296 zinc peroxide Drugs 0.000 claims description 13
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 claims description 13
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 claims description 13
- 229960001763 zinc sulfate Drugs 0.000 claims description 13
- 229910000368 zinc sulfate Inorganic materials 0.000 claims description 13
- MBBWTVUFIXOUBE-UHFFFAOYSA-L zinc;dicarbamodithioate Chemical compound [Zn+2].NC([S-])=S.NC([S-])=S MBBWTVUFIXOUBE-UHFFFAOYSA-L 0.000 claims description 13
- RXBXBWBHKPGHIB-UHFFFAOYSA-L zinc;diperchlorate Chemical compound [Zn+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O RXBXBWBHKPGHIB-UHFFFAOYSA-L 0.000 claims description 13
- GPYYEEJOMCKTPR-UHFFFAOYSA-L zinc;dodecanoate Chemical compound [Zn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O GPYYEEJOMCKTPR-UHFFFAOYSA-L 0.000 claims description 13
- PKJOUIVGCFHFTK-UHFFFAOYSA-L zinc;hexanoate Chemical compound [Zn+2].CCCCCC([O-])=O.CCCCCC([O-])=O PKJOUIVGCFHFTK-UHFFFAOYSA-L 0.000 claims description 13
- CHJMFFKHPHCQIJ-UHFFFAOYSA-L zinc;octanoate Chemical compound [Zn+2].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O CHJMFFKHPHCQIJ-UHFFFAOYSA-L 0.000 claims description 13
- NHXVNEDMKGDNPR-UHFFFAOYSA-N zinc;pentane-2,4-dione Chemical compound [Zn+2].CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O NHXVNEDMKGDNPR-UHFFFAOYSA-N 0.000 claims description 13
- GBFLQPIIIRJQLU-UHFFFAOYSA-L zinc;tetradecanoate Chemical compound [Zn+2].CCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCC([O-])=O GBFLQPIIIRJQLU-UHFFFAOYSA-L 0.000 claims description 13
- FBGUHQCIYMCZGX-UHFFFAOYSA-N CCC(C)P(=[Se])(C(C)CC)C(C)CC Chemical compound CCC(C)P(=[Se])(C(C)CC)C(C)CC FBGUHQCIYMCZGX-UHFFFAOYSA-N 0.000 claims description 11
- 230000005525 hole transport Effects 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- FIQMHBFVRAXMOP-UHFFFAOYSA-N triphenylphosphane oxide Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=O)C1=CC=CC=C1 FIQMHBFVRAXMOP-UHFFFAOYSA-N 0.000 claims description 10
- MNZAKDODWSQONA-UHFFFAOYSA-N 1-dibutylphosphorylbutane Chemical compound CCCCP(=O)(CCCC)CCCC MNZAKDODWSQONA-UHFFFAOYSA-N 0.000 claims description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 9
- IYMHCKVVJXJPDB-UHFFFAOYSA-N tributyl(selanylidene)-$l^{5}-phosphane Chemical compound CCCCP(=[Se])(CCCC)CCCC IYMHCKVVJXJPDB-UHFFFAOYSA-N 0.000 claims description 9
- WBDGXNMNZZDQGZ-UHFFFAOYSA-N C1(CCCCC1)[PH2]=[Se] Chemical compound C1(CCCCC1)[PH2]=[Se] WBDGXNMNZZDQGZ-UHFFFAOYSA-N 0.000 claims description 8
- VBXWCGWXDOBUQZ-UHFFFAOYSA-K diacetyloxyindiganyl acetate Chemical compound [In+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VBXWCGWXDOBUQZ-UHFFFAOYSA-K 0.000 claims description 8
- KDFCMIXBMVVIQJ-UHFFFAOYSA-N diphenyl(selanylidene)-lambda5-phosphane Chemical compound C=1C=CC=CC=1P(=[Se])C1=CC=CC=C1 KDFCMIXBMVVIQJ-UHFFFAOYSA-N 0.000 claims description 8
- CCIBBVZJEAZHEN-UHFFFAOYSA-N phenyl(selenido)phosphanium Chemical compound C1(=CC=CC=C1)[PH2]=[Se] CCIBBVZJEAZHEN-UHFFFAOYSA-N 0.000 claims description 8
- BHWOYTDRBNAVRI-UHFFFAOYSA-N trimethyl(selanylidene)-$l^{5}-phosphane Chemical compound CP(C)(C)=[Se] BHWOYTDRBNAVRI-UHFFFAOYSA-N 0.000 claims description 8
- FKIZDWBGWFWWOV-UHFFFAOYSA-N trimethyl(trimethylsilylselanyl)silane Chemical compound C[Si](C)(C)[Se][Si](C)(C)C FKIZDWBGWFWWOV-UHFFFAOYSA-N 0.000 claims description 8
- ZFVJLNKVUKIPPI-UHFFFAOYSA-N triphenyl(selanylidene)-$l^{5}-phosphane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)(=[Se])C1=CC=CC=C1 ZFVJLNKVUKIPPI-UHFFFAOYSA-N 0.000 claims description 8
- 229960001296 zinc oxide Drugs 0.000 claims description 8
- 229910003363 ZnMgO Inorganic materials 0.000 claims description 7
- 229910000058 selane Inorganic materials 0.000 claims description 7
- JKNHZOAONLKYQL-UHFFFAOYSA-K tribromoindigane Chemical compound Br[In](Br)Br JKNHZOAONLKYQL-UHFFFAOYSA-K 0.000 claims description 7
- FQVPFGDPYSIWTM-UHFFFAOYSA-N tributyl(sulfanylidene)-$l^{5}-phosphane Chemical compound CCCCP(=S)(CCCC)CCCC FQVPFGDPYSIWTM-UHFFFAOYSA-N 0.000 claims description 7
- CINYXYWQPZSTOT-UHFFFAOYSA-N 3-[3-[3,5-bis(3-pyridin-3-ylphenyl)phenyl]phenyl]pyridine Chemical compound C1=CN=CC(C=2C=C(C=CC=2)C=2C=C(C=C(C=2)C=2C=C(C=CC=2)C=2C=NC=CC=2)C=2C=C(C=CC=2)C=2C=NC=CC=2)=C1 CINYXYWQPZSTOT-UHFFFAOYSA-N 0.000 claims description 6
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 claims description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 6
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 claims description 6
- 150000001412 amines Chemical class 0.000 claims description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 6
- UENWRTRMUIOCKN-UHFFFAOYSA-N benzyl thiol Chemical compound SCC1=CC=CC=C1 UENWRTRMUIOCKN-UHFFFAOYSA-N 0.000 claims description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 6
- RZJRJXONCZWCBN-UHFFFAOYSA-N octadecane Chemical compound CCCCCCCCCCCCCCCCCC RZJRJXONCZWCBN-UHFFFAOYSA-N 0.000 claims description 6
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 claims description 6
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 6
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 claims description 6
- XCWPBWWTGHQKDR-UHFFFAOYSA-N 1,3-dithiolane-2-thione Chemical compound S=C1SCCS1 XCWPBWWTGHQKDR-UHFFFAOYSA-N 0.000 claims description 5
- ULIKDJVNUXNQHS-UHFFFAOYSA-N 2-Propene-1-thiol Chemical compound SCC=C ULIKDJVNUXNQHS-UHFFFAOYSA-N 0.000 claims description 5
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 5
- 239000007983 Tris buffer Substances 0.000 claims description 5
- RLECCBFNWDXKPK-UHFFFAOYSA-N bis(trimethylsilyl)sulfide Chemical compound C[Si](C)(C)S[Si](C)(C)C RLECCBFNWDXKPK-UHFFFAOYSA-N 0.000 claims description 5
- WNAHIZMDSQCWRP-UHFFFAOYSA-N dodecane-1-thiol Chemical compound CCCCCCCCCCCCS WNAHIZMDSQCWRP-UHFFFAOYSA-N 0.000 claims description 5
- PIOZWDBMINZWGJ-UHFFFAOYSA-N trioctyl(sulfanylidene)-$l^{5}-phosphane Chemical compound CCCCCCCCP(=S)(CCCCCCCC)CCCCCCCC PIOZWDBMINZWGJ-UHFFFAOYSA-N 0.000 claims description 5
- WCXKTQVEKDHQIY-UHFFFAOYSA-N 3-[3-[3-(3,5-dipyridin-3-ylphenyl)phenyl]-5-pyridin-3-ylphenyl]pyridine Chemical compound C1=CN=CC(C=2C=C(C=C(C=2)C=2C=NC=CC=2)C=2C=C(C=CC=2)C=2C=C(C=C(C=2)C=2C=NC=CC=2)C=2C=NC=CC=2)=C1 WCXKTQVEKDHQIY-UHFFFAOYSA-N 0.000 claims description 4
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 claims description 4
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 claims description 4
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 claims description 3
- RMSOEGBYNWXXBG-UHFFFAOYSA-N 1-chloronaphthalen-2-ol Chemical compound C1=CC=CC2=C(Cl)C(O)=CC=C21 RMSOEGBYNWXXBG-UHFFFAOYSA-N 0.000 claims description 3
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 claims description 3
- XNCMQRWVMWLODV-UHFFFAOYSA-N 1-phenylbenzimidazole Chemical compound C1=NC2=CC=CC=C2N1C1=CC=CC=C1 XNCMQRWVMWLODV-UHFFFAOYSA-N 0.000 claims description 3
- MUNFOTHAFHGRIM-UHFFFAOYSA-N 2,5-dinaphthalen-1-yl-1,3,4-oxadiazole Chemical compound C1=CC=C2C(C3=NN=C(O3)C=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 MUNFOTHAFHGRIM-UHFFFAOYSA-N 0.000 claims description 3
- ADENFOWRGOZGCW-UHFFFAOYSA-N 3,5-bis(4-tert-butylphenyl)-4-phenyl-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C(C)(C)C)C=C1 ADENFOWRGOZGCW-UHFFFAOYSA-N 0.000 claims description 3
- XURCIPRUUASYLR-UHFFFAOYSA-N Omeprazole sulfide Chemical compound N=1C2=CC(OC)=CC=C2NC=1SCC1=NC=C(C)C(OC)=C1C XURCIPRUUASYLR-UHFFFAOYSA-N 0.000 claims description 3
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 3
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 3
- UFVXQDWNSAGPHN-UHFFFAOYSA-K bis[(2-methylquinolin-8-yl)oxy]-(4-phenylphenoxy)alumane Chemical compound [Al+3].C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC=C([O-])C2=NC(C)=CC=C21.C1=CC([O-])=CC=C1C1=CC=CC=C1 UFVXQDWNSAGPHN-UHFFFAOYSA-K 0.000 claims description 3
- 150000001716 carbazoles Chemical class 0.000 claims description 3
- TWFKOYFJBHUHCH-UHFFFAOYSA-K diperchloryloxyindiganyl perchlorate Chemical compound [In+3].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O TWFKOYFJBHUHCH-UHFFFAOYSA-K 0.000 claims description 3
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 3
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229940038384 octadecane Drugs 0.000 claims description 3
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 claims description 3
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 claims description 3
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 claims description 3
- 150000004032 porphyrins Chemical class 0.000 claims description 3
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical compound C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 claims description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 3
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 3
- 229930192474 thiophene Natural products 0.000 claims description 3
- 150000003577 thiophenes Chemical class 0.000 claims description 3
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 claims description 3
- 125000005259 triarylamine group Chemical group 0.000 claims description 3
- RMUKCGUDVKEQPL-UHFFFAOYSA-K triiodoindigane Chemical compound I[In](I)I RMUKCGUDVKEQPL-UHFFFAOYSA-K 0.000 claims description 3
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 claims 5
- 229910000073 phosphorus hydride Inorganic materials 0.000 claims 4
- DFEHSRPOOGDXHU-UHFFFAOYSA-N hexadecanoic acid;zinc Chemical compound [Zn].CCCCCCCCCCCCCCCC(O)=O DFEHSRPOOGDXHU-UHFFFAOYSA-N 0.000 claims 3
- WDODWFPDZYSKIA-UHFFFAOYSA-N benzeneselenol Chemical compound [SeH]C1=CC=CC=C1 WDODWFPDZYSKIA-UHFFFAOYSA-N 0.000 claims 2
- GCFAUZGWPDYAJN-UHFFFAOYSA-N cyclohexyl 3-phenylprop-2-enoate Chemical compound C=1C=CC=CC=1C=CC(=O)OC1CCCCC1 GCFAUZGWPDYAJN-UHFFFAOYSA-N 0.000 claims 2
- 150000002540 isothiocyanates Chemical class 0.000 claims 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims 1
- VEPOHXYIFQMVHW-XOZOLZJESA-N 2,3-dihydroxybutanedioic acid (2S,3S)-3,4-dimethyl-2-phenylmorpholine Chemical compound OC(C(O)C(O)=O)C(O)=O.C[C@H]1[C@@H](OCCN1C)c1ccccc1 VEPOHXYIFQMVHW-XOZOLZJESA-N 0.000 claims 1
- ZVFQEOPUXVPSLB-UHFFFAOYSA-N 3-(4-tert-butylphenyl)-4-phenyl-5-(4-phenylphenyl)-1,2,4-triazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C(N1C=2C=CC=CC=2)=NN=C1C1=CC=C(C=2C=CC=CC=2)C=C1 ZVFQEOPUXVPSLB-UHFFFAOYSA-N 0.000 claims 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 claims 1
- LGHOYKSQIQISBI-UHFFFAOYSA-N acetic acid;indium Chemical compound [In].CC(O)=O LGHOYKSQIQISBI-UHFFFAOYSA-N 0.000 claims 1
- 239000004305 biphenyl Substances 0.000 claims 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 claims 1
- AOCTZXQONZALCQ-UHFFFAOYSA-N phenol;selenium Chemical compound [Se].OC1=CC=CC=C1 AOCTZXQONZALCQ-UHFFFAOYSA-N 0.000 claims 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 claims 1
- 239000011257 shell material Substances 0.000 description 173
- 239000010410 layer Substances 0.000 description 139
- 239000002243 precursor Substances 0.000 description 65
- 230000004888 barrier function Effects 0.000 description 48
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000003786 synthesis reaction Methods 0.000 description 25
- 238000006243 chemical reaction Methods 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 230000012010 growth Effects 0.000 description 17
- 239000000758 substrate Substances 0.000 description 17
- 238000000576 coating method Methods 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 14
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 14
- 239000002904 solvent Substances 0.000 description 14
- 239000003960 organic solvent Substances 0.000 description 13
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 12
- 239000004094 surface-active agent Substances 0.000 description 12
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 11
- 238000000103 photoluminescence spectrum Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 10
- 229940012185 zinc palmitate Drugs 0.000 description 10
- 229940057977 zinc stearate Drugs 0.000 description 10
- GJAPSKMAVXDBIU-UHFFFAOYSA-L zinc;hexadecanoate Chemical compound [Zn+2].CCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCC([O-])=O GJAPSKMAVXDBIU-UHFFFAOYSA-L 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 8
- 238000007792 addition Methods 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000003595 mist Substances 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 239000002356 single layer Substances 0.000 description 8
- 238000004528 spin coating Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000002120 nanofilm Substances 0.000 description 7
- 239000002070 nanowire Substances 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- 229910021617 Indium monochloride Inorganic materials 0.000 description 6
- 239000005639 Lauric acid Substances 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 6
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 6
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 description 6
- 238000001802 infusion Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229910052714 tellurium Inorganic materials 0.000 description 6
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 6
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 150000003958 selenols Chemical class 0.000 description 5
- 238000004627 transmission electron microscopy Methods 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- YGWBZFDBSTZZHD-UHFFFAOYSA-N tritert-butyl(selanylidene)-$l^{5}-phosphane Chemical compound CC(C)(C)P(=[Se])(C(C)(C)C)C(C)(C)C YGWBZFDBSTZZHD-UHFFFAOYSA-N 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 235000021314 Palmitic acid Nutrition 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- MZSJGCPBOVTKHR-UHFFFAOYSA-N isothiocyanatocyclohexane Chemical compound S=C=NC1CCCCC1 MZSJGCPBOVTKHR-UHFFFAOYSA-N 0.000 description 3
- 239000005001 laminate film Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- IJRVLVIFMRWJRQ-UHFFFAOYSA-N nitric acid zinc Chemical compound [Zn].O[N+]([O-])=O IJRVLVIFMRWJRQ-UHFFFAOYSA-N 0.000 description 3
- QJAOYSPHSNGHNC-UHFFFAOYSA-N octadecane-1-thiol Chemical compound CCCCCCCCCCCCCCCCCCS QJAOYSPHSNGHNC-UHFFFAOYSA-N 0.000 description 3
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 235000021313 oleic acid Nutrition 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 3
- 125000003944 tolyl group Chemical group 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- AOQKGYRILLEVJV-UHFFFAOYSA-N 4-naphthalen-1-yl-3,5-diphenyl-1,2,4-triazole Chemical compound C1=CC=CC=C1C(N1C=2C3=CC=CC=C3C=CC=2)=NN=C1C1=CC=CC=C1 AOQKGYRILLEVJV-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- CBFCDTFDPHXCNY-UHFFFAOYSA-N icosane Chemical compound CCCCCCCCCCCCCCCCCCCC CBFCDTFDPHXCNY-UHFFFAOYSA-N 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- JXTPJDDICSTXJX-UHFFFAOYSA-N n-Triacontane Natural products CCCCCCCCCCCCCCCCCCCCCCCCCCCCCC JXTPJDDICSTXJX-UHFFFAOYSA-N 0.000 description 2
- WTEWXIOJLNVYBZ-UHFFFAOYSA-N n-[4-[4-(4-ethenyl-n-naphthalen-1-ylanilino)phenyl]phenyl]-n-(4-ethenylphenyl)naphthalen-1-amine Chemical compound C1=CC(C=C)=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC(C=C)=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 WTEWXIOJLNVYBZ-UHFFFAOYSA-N 0.000 description 2
- VAMFXQBUQXONLZ-UHFFFAOYSA-N n-alpha-eicosene Natural products CCCCCCCCCCCCCCCCCCC=C VAMFXQBUQXONLZ-UHFFFAOYSA-N 0.000 description 2
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical group CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 2
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- 150000002988 phenazines Chemical class 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- IYKVLICPFCEZOF-UHFFFAOYSA-N selenourea Chemical class NC(N)=[Se] IYKVLICPFCEZOF-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229940032094 squalane Drugs 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 238000002207 thermal evaporation Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 229910021654 trace metal Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 1
- NKJOXAZJBOMXID-UHFFFAOYSA-N 1,1'-Oxybisoctane Chemical compound CCCCCCCCOCCCCCCCC NKJOXAZJBOMXID-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 229940106006 1-eicosene Drugs 0.000 description 1
- FIKTURVKRGQNQD-UHFFFAOYSA-N 1-eicosene Natural products CCCCCCCCCCCCCCCCCC=CC(O)=O FIKTURVKRGQNQD-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- ZSBXGIUJOOQZMP-JLNYLFASSA-N Matrine Chemical compound C1CC[C@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-JLNYLFASSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920000144 PEDOT:PSS Polymers 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- IBQKNIQGYSISEM-UHFFFAOYSA-N [Se]=[PH3] Chemical group [Se]=[PH3] IBQKNIQGYSISEM-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- FEYBQJQBTXMRPU-UHFFFAOYSA-N butyl(oxido)phosphanium Chemical compound CCCC[PH2]=O FEYBQJQBTXMRPU-UHFFFAOYSA-N 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000012733 comparative method Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- LAWOZCWGWDVVSG-UHFFFAOYSA-N dioctylamine Chemical compound CCCCCCCCNCCCCCCCC LAWOZCWGWDVVSG-UHFFFAOYSA-N 0.000 description 1
- ZTPZXOVJDMQVIK-UHFFFAOYSA-N dodecane-1-selenol Chemical compound CCCCCCCCCCCC[SeH] ZTPZXOVJDMQVIK-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000012705 liquid precursor Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ATHHXGZTWNVVOU-UHFFFAOYSA-N monomethyl-formamide Natural products CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- QWDGPLAREJUSJA-UHFFFAOYSA-N octane-1-selenol Chemical compound CCCCCCCC[SeH] QWDGPLAREJUSJA-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007761 roller coating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 229940031439 squalene Drugs 0.000 description 1
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229950011008 tetrachloroethylene Drugs 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ISXOBTBCNRIIQO-UHFFFAOYSA-N tetrahydrothiophene 1-oxide Chemical compound O=S1CCCC1 ISXOBTBCNRIIQO-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
- SCPJDMPQFQJFAU-UHFFFAOYSA-N tricyclohexyl(selanylidene)-$l^{5}-phosphane Chemical compound C1CCCCC1P(C1CCCCC1)(=[Se])C1CCCCC1 SCPJDMPQFQJFAU-UHFFFAOYSA-N 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- SRWMQSFFRFWREA-UHFFFAOYSA-M zinc formate Chemical compound [Zn+2].[O-]C=O SRWMQSFFRFWREA-UHFFFAOYSA-M 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/88—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
- C09K11/881—Chalcogenides
- C09K11/883—Chalcogenides with zinc or cadmium
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/823—Materials of the light-emitting regions comprising only Group II-VI materials, e.g. ZnO
- H10H20/8232—Materials of the light-emitting regions comprising only Group II-VI materials, e.g. ZnO characterised by the dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B19/00—Selenium; Tellurium; Compounds thereof
- C01B19/007—Tellurides or selenides of metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/817—Bodies characterised by the crystal structures or orientations, e.g. polycrystalline, amorphous or porous
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/115—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/84—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
- Y10T428/2991—Coated
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明涉及纳米技术领域。更具体地,本发明涉及高发光的纳米结构,特别是包括铟掺杂的ZnSe核及ZnS和/或ZnSe壳层的高发光纳米结构。本发明还涉及产生这种纳米结构的方法。
The present invention relates to the field of nanotechnology. More specifically, the invention relates to highly luminescent nanostructures, in particular highly luminescent nanostructures comprising an indium-doped ZnSe core and a ZnS and/or ZnSe shell. The invention also relates to methods of producing such nanostructures.
Description
技术领域Technical field
本发明涉及纳米技术领域。更具体地,本发明涉及高发光的纳米结构,特别是包括铟掺杂的ZnSe核及ZnS和/或ZnSe壳层的高发光的纳米结构。本发明还涉及产生这种纳米结构的方法。The present invention relates to the field of nanotechnology. More specifically, the present invention relates to highly luminescent nanostructures, in particular highly luminescent nanostructures comprising an indium-doped ZnSe core and a ZnS and/or ZnSe shell. The invention also relates to methods of producing such nanostructures.
背景技术Background technique
半导体纳米结构可以结合到各种电子和光学器件中。这种纳米结构的电学和光学性质例如根据它们的组成、形状和尺寸而变化。例如,半导体纳米颗粒的尺寸可调特性对于诸如发光二极管(LED)、激光和生物医学标记的应用非常令人感兴趣。高发光的纳米结构对于这种应用是特别理想的。Semiconductor nanostructures can be incorporated into a variety of electronic and optical devices. The electrical and optical properties of such nanostructures vary, for example, depending on their composition, shape and size. For example, the size-tunable properties of semiconductor nanoparticles are of great interest for applications such as light-emitting diodes (LEDs), lasers, and biomedical labeling. Highly luminescent nanostructures are particularly ideal for this application.
为了充分利用纳米结构在如LED和显示器的应用中的潜力,纳米结构需要同时满足五个标准:窄和对称发射光谱、高光致发光(PL)量子产率(QYs)、高光学稳定性、生态友好的材料和低成本的大规模生产方法。以前关于高发射和颜色可调量子点的大多数研究都集中在含有镉、汞或铅的材料上。Wang,A.等,Nanoscale 7:2951-2959(2015)。但是,越来越多的人担心镉、汞或铅等有毒物质对人类健康和环境构成严重威胁。而且,European Union'sRestriction of Hazardous Substances规则禁止任何含有超过微量的这些物质的消费电子产品。因此,需要生产不含镉、汞和铅的材料用于生产LED和显示器。To fully exploit the potential of nanostructures in applications such as LEDs and displays, nanostructures need to simultaneously meet five criteria: narrow and symmetric emission spectra, high photoluminescence (PL) quantum yields (QYs), high optical stability, and ecological Friendly materials and low-cost mass production methods. Most previous research on highly emissive and color-tunable quantum dots has focused on materials containing cadmium, mercury, or lead. Wang, A. et al., Nanoscale 7: 2951-2959 (2015). However, there are growing concerns that toxic substances such as cadmium, mercury or lead pose serious threats to human health and the environment. Furthermore, the European Union's Restriction of Hazardous Substances rules ban any consumer electronics containing more than trace amounts of these substances. Therefore, there is a need to produce materials that are free of cadmium, mercury and lead for the production of LEDs and displays.
在类似于现有有机发光二极管(OLED)的显示器架构中使用胶体纳米晶体作为发光体具有显著的兴趣,其由于需要许多高真空沉积设备而生产成本高,产率低,且它们的发射波长只能通过改变发射分子来改变。量子点发光二极管(QLED)提供了诸如喷墨印刷的廉价生产方法的前景,以及利用量子局限效应通过改变发射体颗粒的尺寸来调节发射波长的能力。目前,性能最高的QLED使用Cd(这种物质目前在欧洲受到限制),并且很可能在其他地方也受到限制。There is significant interest in using colloidal nanocrystals as emitters in display architectures similar to existing organic light-emitting diodes (OLEDs), which are expensive to produce, have low yields due to the need for many high vacuum deposition equipment, and their emission wavelengths are only Can be changed by changing the emitting molecule. Quantum dot light-emitting diodes (QLEDs) offer the prospect of cheap production methods such as inkjet printing, as well as the ability to exploit quantum confinement effects to tune the emission wavelength by changing the size of the emitter particles. Currently, the highest-performing QLEDs use Cd (a substance that is currently restricted in Europe) and is likely to be restricted elsewhere.
ZnSe是用于蓝色电致发光量子点的有吸引力的材料,因为不需要镉或其他受限制的材料。在显示器应用中使用ZnSe的一个重要障碍是不能制成具有足够长的波长的纯ZnSe以达到所需的CIE坐标,并且随着发射波长增加到435nm以上,光致发光量子产率显著受损。ZnSe is an attractive material for blue electroluminescent quantum dots because no cadmium or other restricted materials are required. An important obstacle to the use of ZnSe in display applications is that pure ZnSe cannot be made with a wavelength long enough to achieve the required CIE coordinates, and the photoluminescence quantum yield is significantly compromised as the emission wavelength increases above 435 nm.
需要制备峰值波长高于435nm的纳米结构组合物,其不牺牲纯ZnSe量子点的高光致发光量子产率。There is a need to prepare nanostructured compositions with peak wavelengths higher than 435 nm that do not sacrifice the high photoluminescence quantum yield of pure ZnSe quantum dots.
发明内容Contents of the invention
本公开涉及一种纳米结构,其包含被至少一个壳包围的核,其中所述核包含ZnSe和铟掺杂剂,其中所述至少一个壳包含ZnS,并且其中所述纳米结构的发射波长在约435nm和约500nm之间。The present disclosure relates to a nanostructure comprising a core surrounded by at least one shell, wherein the core comprises ZnSe and indium dopants, wherein the at least one shell comprises ZnS, and wherein the nanostructure has an emission wavelength in the range of approximately Between 435nm and approximately 500nm.
在一些实施方案中,纳米结构的发射波长在440nm和480nm之间。在一些实施方案中,纳米结构的发射波长在440nm和460nm之间。In some embodiments, the nanostructures emit at a wavelength between 440 nm and 480 nm. In some embodiments, the nanostructures have emission wavelengths between 440 nm and 460 nm.
在一些实施方案中,纳米结构包含被一个壳包围的核。In some embodiments, the nanostructure includes a core surrounded by a shell.
在一些实施方案中,纳米结构包含被至少一个壳包围的核,其中至少一个壳包含3至8个ZnS单层。In some embodiments, the nanostructure includes a core surrounded by at least one shell, wherein at least one shell contains 3 to 8 ZnS monolayers.
在一些实施方案中,纳米结构包含被至少一个壳包围的核,其中至少一个壳包含约6个ZnS单层。In some embodiments, the nanostructure includes a core surrounded by at least one shell, wherein at least one shell contains about 6 ZnS monolayers.
在一些实施方案中,纳米结构还包含在核和至少一个壳之间的缓冲层。在一些实施方案中,缓冲层包含ZnSe。在一些实施方案中,缓冲层包含2至6个ZnSe单层。在一些实施方案中,缓冲层包含约4个ZnSe单层。In some embodiments, the nanostructure further includes a buffer layer between the core and at least one shell. In some embodiments, the buffer layer includes ZnSe. In some embodiments, the buffer layer contains 2 to 6 ZnSe monolayers. In some embodiments, the buffer layer contains about 4 ZnSe monolayers.
在一些实施方案中,纳米结构的光致发光量子产率为50%至90%。在一些实施方案中,纳米结构的光致发光量子产率为60%至90%。In some embodiments, the nanostructures have a photoluminescence quantum yield of 50% to 90%. In some embodiments, the nanostructures have a photoluminescence quantum yield of 60% to 90%.
在一些实施方案中,纳米结构的FWHM在约10nm和约40nm之间。在一些实施方案中,纳米结构的FWHM在约10nm至约30nm之间。In some embodiments, the FWHM of the nanostructure is between about 10 nm and about 40 nm. In some embodiments, the nanostructures have a FWHM between about 10 nm and about 30 nm.
在一些实施方案中,纳米结构包含含有2至6个ZnSe单层的缓冲层和含有3至8个ZnS单层的至少一个壳。In some embodiments, the nanostructure includes a buffer layer containing 2 to 6 ZnSe monolayers and at least one shell containing 3 to 8 ZnS monolayers.
在一些实施方案中,纳米结构是量子点。In some embodiments, the nanostructures are quantum dots.
在一些实施方案中,纳米结构不含镉。In some embodiments, the nanostructures are cadmium-free.
在一些实施方案中,纳米结构用于装置中。In some embodiments, nanostructures are used in devices.
本公开涉及一种产生纳米晶体核的方法,包括:The present disclosure relates to a method of producing nanocrystal cores, comprising:
(a)混合硒源和至少一种配体以产生反应混合物;和(a) mixing a source of selenium and at least one ligand to produce a reaction mixture; and
(b)使(a)中得到的反应混合物与锌源和至少一种铟盐接触;(b) contacting the reaction mixture obtained in (a) with a zinc source and at least one indium salt;
以提供包含ZnSe和铟掺杂剂的纳米晶体核。to provide a nanocrystal core containing ZnSe and indium dopants.
在一些实施方案中,(a)中的硒源选自三辛基硒化膦、三(正丁基)硒化膦、三(仲丁基)硒化膦、三(叔丁基)硒化膦、三甲基硒化膦、三苯基硒化膦、二苯基硒化膦、苯基硒化膦、环己基硒化膦、八硒醇、十二硒醇、硒酚、元素硒、硒化氢、双(三甲基甲硅烷基)硒化物及其混合物。在一些实施方案中,(a)中的硒源是三辛基硒化膦。In some embodiments, the selenium source in (a) is selected from trioctylphosphine selenide, tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, tris(tert-butyl)phosphine selenide Phosphine, trimethylphosphine selenide, triphenylphosphine selenide, diphenylphosphine selenide, phenylphosphine selenide, cyclohexylphosphine selenide, octaselenol, dodeceselenol, selenol, elemental selenium, Hydrogen selenide, bis(trimethylsilyl)selenide and mixtures thereof. In some embodiments, the selenium source in (a) is trioctylphosphine selenide.
在一些实施方案中,(a)中的至少一种配体选自三辛基氧化膦、三辛基膦、二苯基膦、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,(a)中的至少一种配体是三辛基膦。In some embodiments, at least one ligand in (a) is selected from trioctylphosphine oxide, trioctylphosphine, diphenylphosphine, triphenylphosphine oxide, and tributylphosphine oxide. In some embodiments, at least one ligand in (a) is trioctylphosphine.
在一些实施方案中,(b)中的锌源选自二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌和硫酸锌。在一些实施方案中,(b)中的锌源是二乙基锌。In some embodiments, the zinc source in (b) is selected from diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate , zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate and zinc sulfate. In some embodiments, the zinc source in (b) is diethylzinc.
在一些实施方案中,(b)中的铟盐选自溴化铟、氯化铟、氟化铟、碘化铟、硝酸铟、高氯酸铟、氢氧化铟、乙酸铟及其混合物。在一些实施方案中,(b)中的铟盐选自溴化铟、氯化铟或乙酸铟。在一些实施方案中,(b)中的铟盐是氯化铟。在一些实施方案中,(b)中的铟盐是乙酸铟。In some embodiments, the indium salt in (b) is selected from the group consisting of indium bromide, indium chloride, indium fluoride, indium iodide, indium nitrate, indium perchlorate, indium hydroxide, indium acetate, and mixtures thereof. In some embodiments, the indium salt in (b) is selected from indium bromide, indium chloride, or indium acetate. In some embodiments, the indium salt in (b) is indium chloride. In some embodiments, the indium salt in (b) is indium acetate.
在一些实施方案中,产生纳米晶体核的方法还包括:In some embodiments, the method of generating nanocrystal cores further includes:
(c)使(b)中的反应混合物与锌源和硒源接触。(c) Contacting the reaction mixture in (b) with a zinc source and a selenium source.
在一些实施方案中,(c)中的锌源选自二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌和硫酸锌。在一些实施方案中,(c)中的锌源是二乙基锌。In some embodiments, the zinc source in (c) is selected from diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate , zinc cyanide, zinc nitrate, zinc oxide, zinc peroxide, zinc perchlorate and zinc sulfate. In some embodiments, the zinc source in (c) is diethylzinc.
在一些实施方案中,(c)中的硒源选自三辛基硒化膦、三(正丁基)硒化膦、三(仲丁基)硒化膦、三(叔丁基)硒化膦、三甲基硒化膦、三苯基硒化膦、二苯基硒化膦、苯基硒化膦、环己基硒化膦、八硒醇、十二硒醇、硒酚、元素硒、硒化氢、双(三甲基甲硅烷基)硒化物及其混合物。在一些实施方案中,(c)中的硒源是三辛基硒化膦。In some embodiments, the selenium source in (c) is selected from trioctylphosphine selenide, tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, tris(tert-butyl)phosphine selenide Phosphine, trimethylphosphine selenide, triphenylphosphine selenide, diphenylphosphine selenide, phenylphosphine selenide, cyclohexylphosphine selenide, octaselenol, dodeceselenol, selenol, elemental selenium, Hydrogen selenide, bis(trimethylsilyl)selenide and mixtures thereof. In some embodiments, the selenium source in (c) is trioctylphosphine selenide.
在一些实施方案中,(a)中的混合在250℃至350℃的温度下进行。在一些实施方案中,(a)中的混合温度为约300℃。In some embodiments, mixing in (a) is performed at a temperature of 250°C to 350°C. In some embodiments, the mixing temperature in (a) is about 300°C.
在一些实施方案中,(b)中的接触在250℃至350℃的温度下进行。在一些实施方案中,(b)中的接触在约300℃的温度下下进行。In some embodiments, contacting in (b) is performed at a temperature of 250°C to 350°C. In some embodiments, contacting in (b) is performed at a temperature of about 300°C.
在一些实施方案中,(b)中的接触还包含至少一种配体。In some embodiments, the contact in (b) further comprises at least one ligand.
在一些实施方案中,(c)中的接触是在250℃至350℃之间的温度。在一些实施方案中,(c)中的接触是在约300℃的温度下。In some embodiments, the contacting in (c) is at a temperature between 250°C and 350°C. In some embodiments, the contacting in (c) is at a temperature of about 300°C.
在一些实施方案中,(c)中的接触还包含至少一种配体。在一些实施方案中,至少一种配体是三辛基膦或二苯基膦。In some embodiments, the contact in (c) further comprises at least one ligand. In some embodiments, at least one ligand is trioctylphosphine or diphenylphosphine.
在一些实施方案中,(a)中的硒源是三辛基硒化膦,(b)中的锌源是二乙基锌,和(b)中的铟盐是氯化铟。In some embodiments, the selenium source in (a) is trioctylphosphine selenide, the zinc source in (b) is diethylzinc, and the indium salt in (b) is indium chloride.
在一些实施方案中,(a)和(c)中的硒源是三辛基硒化膦,(b)和(c)中的锌源是二乙基锌,(b)中的铟盐是氯化铟。In some embodiments, the selenium source in (a) and (c) is trioctylphosphine selenide, the zinc source in (b) and (c) is diethylzinc, and the indium salt in (b) is Indium chloride.
本公开涉及一种产生纳米结构的方法,所述纳米结构包含核和至少一个壳,该方法包括:The present disclosure relates to a method of producing a nanostructure comprising a core and at least one shell, the method comprising:
(d)将通过本文所述方法制备的纳米晶体与包含锌源和硫源的溶液混合;和(d) mixing nanocrystals prepared by the methods described herein with a solution containing a zinc source and a sulfur source; and
(e)任选重复(d);(e) optionally repeat (d);
以产生包含核和至少一个壳的纳米结构。to produce a nanostructure comprising a core and at least one shell.
在一些实施方案中,(d)中的混合温度为20℃至310℃。在一些实施方案中,(d)中的混合在20℃至100℃的温度下进行。In some embodiments, the mixing temperature in (d) is from 20°C to 310°C. In some embodiments, mixing in (d) is performed at a temperature of 20°C to 100°C.
在一些实施方案中,(d)的锌源选自二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌、油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。In some embodiments, the zinc source of (d) is selected from the group consisting of diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, Zinc cyanide, zinc nitrate, zinc oleate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate , zinc dithiocarbamate, zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate or mixtures thereof.
在一些实施方案中,(d)的硫源选自元素硫、辛硫醇、十二烷硫醇、十八烷硫醇、三丁基膦硫化物、异硫氰酸环己酯、α-甲苯硫醇、三硫代碳酸乙烯酯、烯丙基硫醇、双(三甲基甲硅烷基)硫化物、三辛基膦硫化物及其混合物。In some embodiments, the sulfur source of (d) is selected from the group consisting of elemental sulfur, octyl mercaptan, dodecyl mercaptan, octadecanethiol, tributylphosphine sulfide, cyclohexyl isothiocyanate, alpha- Toluene mercaptan, ethylene trithiocarbonate, allyl mercaptan, bis(trimethylsilyl) sulfide, trioctylphosphine sulfide and mixtures thereof.
本公开涉及一种产生纳米结构的方法,所述纳米结构包含核、缓冲层和至少一个壳,该方法包括:The present disclosure relates to a method of producing a nanostructure comprising a core, a buffer layer and at least one shell, the method comprising:
(d)将通过本文所述方法制备的纳米晶体与包含锌源和硒源的溶液混合;(d) mixing nanocrystals prepared by the methods described herein with a solution containing a zinc source and a selenium source;
(e)任选地重复(d);(e) optionally repeat (d);
(f)将(e)的反应混合物与包含锌源和硫源的溶液混合;和(f) mixing the reaction mixture of (e) with a solution containing a zinc source and a sulfur source; and
(g)任选地重复(f);(g) optionally repeat (f);
以产生包含核、缓冲层和至少一个壳的纳米结构。To produce a nanostructure comprising a core, a buffer layer and at least one shell.
在一些实施方案中,(d)中的混合在20℃至310℃的温度下进行。在一些实施方案中,(d)中的混合在20℃至100℃的温度下进行。In some embodiments, mixing in (d) is performed at a temperature of 20°C to 310°C. In some embodiments, mixing in (d) is performed at a temperature of 20°C to 100°C.
在一些实施方案中,(d)的锌源选自二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌、油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。In some embodiments, the zinc source of (d) is selected from the group consisting of diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, Zinc cyanide, zinc nitrate, zinc oleate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate , zinc dithiocarbamate, zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate or mixtures thereof.
在一些实施方案中,(d)的硒源选自三辛基硒化膦、三(正丁基)硒化膦、三(仲丁基)硒化膦、三(叔丁基)硒化膦、三甲基硒化膦、三苯基硒化膦、二苯基硒化膦、苯基硒化膦、环己基硒化膦、八硒醇、十二硒醇、硒酚、元素硒、硒化氢、双(三甲基甲硅烷基)硒化物及其混合物。In some embodiments, the selenium source of (d) is selected from trioctylphosphine selenide, tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, tris(tert-butyl)phosphine selenide , trimethylphosphine selenide, triphenylphosphine selenide, diphenylphosphine selenide, phenylphosphine selenide, cyclohexylphosphine selenide, octaselenol, dodeceselenol, selenol, elemental selenium, selenium Hydrogen, bis(trimethylsilyl)selenide and mixtures thereof.
在一些实施方案中,(f)的锌源选自二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌、油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。In some embodiments, the zinc source of (f) is selected from the group consisting of diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, Zinc cyanide, zinc nitrate, zinc oleate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate , zinc dithiocarbamate, zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate or mixtures thereof.
在一些实施方案中,(f)的硫源选自元素硫、辛硫醇、十二烷硫醇、十八烷硫醇、三丁基膦硫化物、异硫氰酸环己酯、α-甲苯硫醇、三硫代碳酸乙烯酯、烯丙基硫醇、双(三甲基甲硅烷基)硫化物、三辛基膦硫化物及其混合物。In some embodiments, the sulfur source of (f) is selected from the group consisting of elemental sulfur, octyl mercaptan, dodecyl mercaptan, octadecanethiol, tributylphosphine sulfide, cyclohexyl isothiocyanate, alpha- Toluene mercaptan, ethylene trithiocarbonate, allyl mercaptan, bis(trimethylsilyl) sulfide, trioctylphosphine sulfide and mixtures thereof.
在一些实施方案中,(e)中的接触在200℃至350℃的温度下进行。In some embodiments, contacting in (e) is performed at a temperature of 200°C to 350°C.
在一些实施方案中,(f)中的接触在200℃至350℃的温度下进行。在一些实施方案中,(f)中的接触温度为约310℃。In some embodiments, contacting in (f) is performed at a temperature of 200°C to 350°C. In some embodiments, the contact temperature in (f) is about 310°C.
在一些实施方案中,(d)中的混合还包含至少一种配体。在一些实施方案中,所述至少一种配体选自三辛基氧化膦、三辛基膦、二苯基膦、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,至少一种配体是三辛基膦或三辛基氧化膦。In some embodiments, the mixture in (d) further includes at least one ligand. In some embodiments, the at least one ligand is selected from trioctylphosphine oxide, trioctylphosphine, diphenylphosphine, triphenylphosphine oxide, and tributylphosphine oxide. In some embodiments, at least one ligand is trioctylphosphine or trioctylphosphine oxide.
在一些实施方案中,(f)中的混合物还包含至少一种配体。In some embodiments, the mixture in (f) further includes at least one ligand.
在一些实施方案中,所述至少一种配体选自三辛基氧化膦、三辛基膦、二苯基膦、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,至少一种配体是三辛基膦或三辛基氧化膦。In some embodiments, the at least one ligand is selected from trioctylphosphine oxide, trioctylphosphine, diphenylphosphine, triphenylphosphine oxide, and tributylphosphine oxide. In some embodiments, at least one ligand is trioctylphosphine or trioctylphosphine oxide.
本公开涉及一种发光二极管,包括:The present disclosure relates to a light emitting diode, including:
(a)阳极;(a) Anode;
(b)阴极;和(b) cathode; and
(c)包含纳米结构的发光层。(c) Light-emitting layer containing nanostructures.
在一些实施方案中,发光二极管还包含空穴传输层。在一些实施方案中,空穴传输层包含选自胺、三芳基胺、噻吩、咔唑、酞菁、卟啉及其组合的材料。在一些实施方案中,空穴传输层包含N,N'-二(萘-1-基)-N,N'-双(4-乙烯基苯基)-4,4'-二胺。In some embodiments, the light emitting diode further includes a hole transport layer. In some embodiments, the hole transport layer includes a material selected from the group consisting of amines, triarylamines, thiophenes, carbazoles, phthalocyanines, porphyrins, and combinations thereof. In some embodiments, the hole transport layer includes N,N'-bis(naphth-1-yl)-N,N'-bis(4-vinylphenyl)-4,4'-diamine.
在一些实施方案中,发光二极管还包含电子传输层。在一些实施方案中,电子传输层包含选自咪唑、吡啶、嘧啶、哒嗪、吡嗪(pyraxine)、噁二唑、喹啉、喹喔啉、蒽、苯并蒽、芘、苝、苯并咪唑、三嗪、酮、氧化膦、吩嗪、菲咯啉、三芳基硼烷、金属氧化物及其组合的材料。在一些实施方案中,电子传输层包含1,3-双(3,5-二吡啶-3-基苯基)苯(B3PyPB)、浴铜灵(bathocuproine)、红菲咯啉、3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑、2-(4-联苯基)-5-苯基-1,3,4-噁二唑、3,5-双(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑、双(8-羟基-2-甲基喹啉)-(4-苯基苯氧基)铝、2,5-双(1-萘基)-1,3,4-噁二唑、3,5-二苯基-4-(1-萘基)-1H-1,2,4-三唑、1,3,5-三(间-吡啶-3-基苯基)苯(TmPyPB)、2,2’,2”-(1,3,5-苯三基(benzinetriyl))-三(1-苯基-1-H-苯并咪唑)(TPBi)、三-(8-羟基喹啉)铝、TiO2、ZnO、SnO2、SiO2、ZrO2或ZnMgO。在一些实施方案中,电子传输层包含ZnMgO。In some embodiments, the light emitting diode further includes an electron transport layer. In some embodiments, the electron transport layer comprises imidazole, pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline, quinoxaline, anthracene, benzanthracene, pyrene, perylene, benzo Materials of imidazoles, triazines, ketones, phosphine oxides, phenazines, phenanthrolines, triarylboranes, metal oxides and combinations thereof. In some embodiments, the electron transport layer includes 1,3-bis(3,5-dipyridin-3-ylphenyl)benzene (B3PyPB), bathocuproine, bathophenanthroline, 3-(dipyridin-3-ylphenyl)benzene (B3PyPB), Phenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, 2-(4-biphenyl)-5-phenyl- 1,3,4-oxadiazole, 3,5-bis(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, bis(8-hydroxy-2-methyl Quinoline)-(4-phenylphenoxy)aluminum, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 3,5-diphenyl-4-(1 -naphthyl)-1H-1,2,4-triazole, 1,3,5-tris(m-pyridin-3-ylphenyl)benzene (TmPyPB), 2,2',2″-(1, 3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), tris-(8-hydroxyquinoline)aluminum, TiO 2 , ZnO, SnO 2 , SiO2 , ZrO2 , or ZnMgO. In some embodiments, the electron transport layer includes ZnMgO.
附图说明Description of drawings
图1是显示纳米晶体核的发射波长的线图,所述纳米晶体核包含(1)纯ZnSe;(2)掺杂1.69%In的ZnSe,使用InCl3作为In前体;(3)掺杂0.597%In的ZnSe,使用In(OC(=O)CH3)3作为In前体;和(4)掺杂0.270%In的ZnSe,使用InCl3作为In前体。Figure 1 is a line graph showing the emission wavelength of a nanocrystal core containing (1) pure ZnSe; (2) ZnSe doped with 1.69% In using InCl as the In precursor; ( 3 ) doped ZnSe with 0.597% In, using In(OC(=O) CH3 ) 3 as the In precursor; and (4) ZnSe doped with 0.270% In, using InCl3 as the In precursor.
图2是ZnSe/ZnS量子点的光致发光光谱,其包含使用未掺杂的ZnSe制备的纳米晶体核。Figure 2 is the photoluminescence spectrum of ZnSe/ZnS quantum dots containing nanocrystalline cores prepared using undoped ZnSe.
图3是铟掺杂的ZnSe/ZnS量子点的光致发光光谱,其包含使用In(OC(=O)CH3)3作为In前体制备的具有0.112%In的纳米晶体核。Figure 3 is the photoluminescence spectrum of indium-doped ZnSe/ZnS quantum dots containing nanocrystalline cores with 0.112% In prepared using In(OC(=O)CH3)3 as In precursor.
图4是(1)包含使用未掺杂的ZnSe制备的纳米晶体核的ZnSe/ZnS量子点;和(2),其包含使用InCl3作为In前体制备的具有0.597%In的纳米晶体核的铟掺杂ZnSe/ZnS量子点的电致发光光谱。Figure 4 is (1) a ZnSe/ZnS quantum dot containing a nanocrystalline core prepared using undoped ZnSe; and (2) a ZnSe/ZnS quantum dot containing a nanocrystalline core prepared using InCl as the In precursor with 0.597% In. Electroluminescence spectrum of indium-doped ZnSe/ZnS quantum dots.
图5是显示使用(1)包含使用未掺杂的ZnSe制备的纳米晶体核的ZnSe/ZnS量子点;和(2)包含使用InCl3作为In前体制备的具有0.597%In的纳米晶体核的铟掺杂ZnSe/ZnS量子点制备的器件的寿命的线图。Figure 5 is a graph showing the use of (1) ZnSe/ZnS quantum dots containing nanocrystalline cores prepared using undoped ZnSe; and (2) nanocrystalline cores containing 0.597% In prepared using InCl3 as the In precursor. Line graph of the lifetime of devices prepared by indium-doped ZnSe/ZnS quantum dots.
图6是铟掺杂的ZnSe/ZnS量子点的电致发光光谱,其包含使用In(OC(=O)CH3)3作为In前体制备的具有0.112%In的纳米晶体核。Figure 6 is the electroluminescence spectrum of indium-doped ZnSe/ZnS quantum dots containing nanocrystalline cores with 0.112% In prepared using In(OC(=O)CH3)3 as In precursor.
具体实施方式Detailed ways
定义definition
除非另外定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。以下定义是对本领域中的那些的补充和针对本申请,并且不应转用于任何相关或不相关的情况,例如,任何共同拥有的专利或申请。尽管与本文描述的那些类似或等同的任何方法和材料可用于本发明测试的实践,但本文描述了优选的材料和方法。因此,这里使用的术语仅用于描述特定实施方式的目的,而不是限制性的。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The following definitions are supplementary to those in the art and specific to this application, and should not be transferred to any related or unrelated context, e.g., any commonly owned patents or applications. Although any methods and materials similar or equivalent to those described herein can be used in the practice of testing of the present invention, the preferred materials and methods are described herein. Accordingly, the terminology used herein is for the purpose of describing particular embodiments only and is not limiting.
如在本说明书和所附权利要求中所使用的,单数形式“一”、“一个”和“该”包括复数指示物,除非上下文另有明确说明。因此,例如,提及“纳米结构”包括多个这样的纳米结构,等等。As used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to a "nanostructure" includes a plurality of such nanostructures, and so on.
本文使用的术语“约”表示给定量的值变化如此描述的值的+/-10%,或该值的+/-5%,或该值的+/1%。例如,“约100nm”涵盖从90nm到110nm(包括90nm和110nm)的一系列尺寸。The term "about" as used herein means that the value of a given quantity varies by +/-10% of the value so described, or +/-5% of the value, or +/1% of the value. For example, "about 100 nm" encompasses a range of sizes from 90 nm to 110 nm (inclusive).
“纳米结构”是至少一个尺寸区域或特征维度具有小于约500nm的尺寸的结构。在一些实施方案中,纳米结构具有小于约200nm,小于约100nm、小于约50nm、小于约20nm或小于约10nm的尺寸。通常,区域或特征维度将沿着结构的最小轴。这种结构的实例包括纳米线、纳米棒、纳米管、分支纳米结构、纳米四角结构(nanotetrapod)、三角结构(tripod)、双角结构(bipod)、纳米晶体/纳米点、量子点、纳米颗粒等。纳米结构可以是例如基本上晶体的,基本上单晶的、多晶的、非晶的或其组合。在一些实施方案中,纳米结构的三个维度中的每一个具有小于约500nm、小于约200nm、小于约100nm、小于约50nm、小于约20nm或小于约10nm的尺寸。A "nanostructure" is a structure that has at least one dimensional region or characteristic dimension less than about 500 nm in size. In some embodiments, the nanostructures have dimensions of less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. Typically, the area or feature dimension will be along the smallest axis of the structure. Examples of such structures include nanowires, nanorods, nanotubes, branched nanostructures, nanotetrapods, tripods, bipods, nanocrystals/nanodots, quantum dots, nanoparticles wait. Nanostructures may be, for example, substantially crystalline, substantially monocrystalline, polycrystalline, amorphous, or combinations thereof. In some embodiments, each of the three dimensions of the nanostructure has a size of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm.
当用于提及纳米结构时,术语“异质结构”是指以至少两种不同和/或可区别的材料类型为特征的纳米结构。通常,纳米结构的一个区域包含第一材料类型,而纳米结构的第二区域包含第二材料类型。在某些实施方案中,纳米结构包含第一材料的核和第二(或第三,等)材料的至少一个壳,其中不同的材料类型例如绕纳米线的长轴、分支纳米线的臂的长轴或纳米晶体的中心径向分布。壳可以但不必完全覆盖被认为是壳的邻近材料,或者使纳米结构被认为是异质结构;例如,以覆盖有第二材料的小岛的一种材料的核为特征的纳米晶体是异质结构。在其他实施方案中,不同的材料类型分布在纳米结构内的不同位置;例如,沿着纳米线的主(长)轴或沿着分支纳米线的臂的长轴。异质结构内的不同区域可包含完全不同的材料,或者不同区域可包含具有不同掺杂剂或不同浓度的相同掺杂剂的基质材料(例如,硅)。When used in reference to nanostructures, the term "heterostructure" refers to nanostructures characterized by at least two different and/or distinguishable material types. Typically, one region of the nanostructure contains a first material type and a second region of the nanostructure contains a second material type. In certain embodiments, a nanostructure includes a core of a first material and at least one shell of a second (or third, etc.) material, where different material types, e.g., about the long axis of the nanowire, branching the arms of the nanowire The long axis or center radial distribution of the nanocrystal. A shell may, but need not, completely cover adjacent material to be considered a shell, or for a nanostructure to be considered a heterostructure; for example, a nanocrystal characterized by a core of one material covered with islands of a second material is heterogeneous structure. In other embodiments, different material types are distributed at different locations within the nanostructure; for example, along the main (long) axis of the nanowire or along the long axis of the arms of a branched nanowire. Different regions within the heterostructure may contain completely different materials, or different regions may contain a matrix material (eg, silicon) with different dopants or different concentrations of the same dopant.
如本文所用,纳米结构的“直径”是指垂直于纳米结构的第一轴的横截面的直径,其中第一轴相对于第二轴和第三轴具有最大的长度差异(第二和第三轴是长度最接近彼此相等的两个轴)。第一轴不一定是纳米结构的最长轴;例如,对于盘状纳米结构,横截面是垂直于盘的短纵轴的基本上圆形的横截面。在横截面不是圆形的情况下,直径是该横截面的长轴和短轴的平均值。对于细长或高纵横比的纳米结构,例如纳米线,横跨垂直于纳米线的最长轴的横截面测量直径。对于球形纳米结构,通过球体的中心从一侧到另一侧测量直径。As used herein, the "diameter" of a nanostructure refers to the diameter of a cross-section perpendicular to a first axis of the nanostructure, where the first axis has the greatest difference in length relative to the second and third axes (the second and third axes). axes are the two axes whose lengths are closest to being equal to each other). The first axis is not necessarily the longest axis of the nanostructure; for example, for a disk-shaped nanostructure, the cross-section is a substantially circular cross-section perpendicular to the short longitudinal axis of the disk. Where the cross-section is not circular, the diameter is the average of the major and minor axes of the cross-section. For elongated or high aspect ratio nanostructures, such as nanowires, the diameter is measured across a cross-section perpendicular to the longest axis of the nanowire. For spherical nanostructures, the diameter is measured from side to side through the center of the sphere.
当关于纳米结构使用时,术语“晶体”或“基本晶体”是指纳米结构通常在结构的一个或多个维度上表现出长程有序的事实。本领域技术人员将理解,术语“长程有序”将取决于特定纳米结构的绝对尺寸,因为单晶的有序性不能延伸超出晶体的边界。在这种情况下,“长程有序”意味着至少在纳米结构尺度的大部分上基本上有序。在一些情况下,纳米结构可以具有氧化物或其他涂层,或者可以包括核和至少一个壳。在这种情况下,应当理解,氧化物、壳或其他涂层可以但不必表现出这种有序性(例如,它可以是非晶的、多晶的或其他形式)。在这种情况下,短语“晶体”、“基本上晶体”、“基本上单晶”或“单晶”是指纳米结构的中心核(不包括涂层或壳)。本文所用的术语“晶体”或“基本上晶体”也旨在包括包含各种缺陷、堆垛层错、原子取代等的结构,只要该结构表现出基本上的长程有序(例如,在纳米结构或其核的至少一个轴的至少80%长度上有序)。另外,应当理解,纳米结构的核与外部之间或核与相邻壳之间或壳与第二相邻壳之间的界面可包含非结晶区域,和甚至可以是非晶的。这不阻止纳米结构是如本文所定义的晶体或基本上晶体的。When used with respect to nanostructures, the term "crystalline" or "elementary crystalline" refers to the fact that nanostructures typically exhibit long-range order in one or more dimensions of the structure. Those skilled in the art will understand that the term "long-range order" will depend on the absolute size of the particular nanostructure, since the ordering of a single crystal cannot extend beyond the boundaries of the crystal. In this context, "long-range order" means essentially ordered over at least a large portion of the nanostructure scale. In some cases, the nanostructure may have an oxide or other coating, or may include a core and at least one shell. In this case, it will be understood that the oxide, shell, or other coating may, but need not, exhibit such ordering (eg, it may be amorphous, polycrystalline, or otherwise). In this context, the phrase "crystalline", "substantially crystalline", "substantially single crystalline" or "single crystal" refers to the central core of the nanostructure (excluding coatings or shells). The term "crystalline" or "substantially crystalline" as used herein is also intended to include structures containing various defects, stacking faults, atomic substitutions, etc., so long as the structure exhibits substantial long-range order (e.g., in nanostructures or at least 80% of the length of at least one axis of its core is ordered). Additionally, it should be understood that the interface between the core and the exterior of a nanostructure, or between the core and an adjacent shell, or between a shell and a second adjacent shell, may contain amorphous regions, and may even be amorphous. This does not prevent the nanostructure from being crystalline or substantially crystalline as defined herein.
当关于纳米结构使用时,术语“单晶”表示纳米结构基本上是的并且基本上包含单晶。当相对于包含核和一个或多个壳的纳米结构异质结构使用时,“单晶”表示核基本上是晶体的并且基本上包含单晶。When used in relation to a nanostructure, the term "single crystal" means that the nanostructure is essentially and consists essentially of a single crystal. "Single crystal" when used with respect to a nanostructured heterostructure comprising a core and one or more shells means that the core is substantially crystalline and contains substantially a single crystal.
“纳米晶体”是基本上单晶的纳米结构。因此,纳米晶体具有至少一个尺寸小于约500nm的区域或特征维度。在一些实施方案中,纳米晶体的尺寸小于约200nm、小于约100nm、小于约50nm、小于约20nm或小于约10nm。术语“纳米晶体”旨在涵盖包含各种缺陷、堆垛层错、原子取代等的基本上单晶的纳米结构,以及没有这种缺陷、错误或取代的基本上单晶的纳米结构。在包括核和一个或多个壳的纳米晶体异质结构的情况下,纳米晶体的核通常基本上是单晶的,但壳不必需是。在一些实施方案中,纳米晶体的三个维度中的每一个具有小于约500nm、小于约200nm、小于约100nm、小于约50nm、小于约20nm或小于约10nm的尺寸。"Nanocrystals" are nanostructures that are essentially single crystals. Thus, a nanocrystal has at least one domain or characteristic dimension that has a dimension less than about 500 nm. In some embodiments, the size of the nanocrystals is less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm. The term "nanocrystal" is intended to encompass substantially single-crystalline nanostructures that contain various defects, stacking faults, atomic substitutions, and the like, as well as substantially single-crystalline nanostructures that are free of such defects, errors, or substitutions. In the case of nanocrystal heterostructures that include a core and one or more shells, the core of the nanocrystal is typically substantially monocrystalline, but the shell need not be. In some embodiments, each of the three dimensions of the nanocrystal has a size of less than about 500 nm, less than about 200 nm, less than about 100 nm, less than about 50 nm, less than about 20 nm, or less than about 10 nm.
术语“量子点”(或“点”)是指表现出量子局限或激子局限的纳米晶体。量子点在材料性质上可以是基本上均质的,或者在某些实施方案中,可以是异质的,例如包括核和至少一个壳。量子点的光学性质可受其粒度、化学组成和/或表面组成的影响,并且可通过本领域可获得的合适的光学测试来确定。调整纳米晶体尺寸的能力,例如,在约1nm和约15nm的范围内,使得能够在整个光谱中进行光发射覆盖,从而在显色性方面提供极大的多用性。The term "quantum dot" (or "dot") refers to a nanocrystal exhibiting quantum confinement or exciton confinement. Quantum dots may be substantially homogeneous in material properties or, in certain embodiments, may be heterogeneous, such as including a core and at least one shell. The optical properties of quantum dots can be affected by their particle size, chemical composition, and/or surface composition, and can be determined by suitable optical tests available in the art. The ability to tune the size of nanocrystals, for example, in the range of about 1 nm and about 15 nm, enables light emission coverage across the spectrum, providing great versatility in color rendering.
“配体”是能够与纳米结构的一个或多个面相互作用(无论是弱还是强的)的分子,例如通过与纳米结构表面的共价、离子、范德华力或其他分子相互作用。A "ligand" is a molecule capable of interacting, whether weakly or strongly, with one or more faces of a nanostructure, such as through covalent, ionic, van der Waals or other molecular interactions with the surface of the nanostructure.
“光致发光量子产率”是例如通过纳米结构或纳米结构群体发射的光子与吸收的光子的比率。如本领域中已知的,量子产率通常通过使用具有已知量子产率值的充分表征的标准样品的比较方法来确定。"Photoluminescence quantum yield" is, for example, the ratio of photons emitted to photons absorbed by a nanostructure or population of nanostructures. As is known in the art, quantum yield is typically determined by comparative methods using well-characterized standard samples with known quantum yield values.
“峰值发射波长”(PWL)是光源的辐射发射光谱达到其最大值的波长。"Peak emission wavelength" (PWL) is the wavelength at which the radiative emission spectrum of a light source reaches its maximum.
如本文所用,术语“壳”是指沉积在核上或沉积在相同或不同组成的先前沉积的壳上的材料,且其由单一作用的壳材料沉积产生。确切的壳厚度取决于材料以及前体输入和转化,并且可以以纳米或单层来报告。如本文所用,“目标壳厚度”是指用于计算所需前体量的预期壳厚度。如本文所用,“实际壳厚度”是指合成后实际沉积的壳材料量,并且可以通过本领域已知的方法测量。举例来说,可以通过比较在壳合成之前和之后从纳米晶体的透射电子显微镜(TEM)图像确定的粒径来测定实际壳厚度。As used herein, the term "shell" refers to material deposited on a core or on a previously deposited shell of the same or different composition, and which results from the deposition of a single acting shell material. The exact shell thickness depends on the material as well as precursor input and transformation, and can be reported in nanometers or monolayers. As used herein, "target shell thickness" refers to the expected shell thickness used in calculating the required amount of precursor. As used herein, "actual shell thickness" refers to the amount of shell material actually deposited after synthesis, and can be measured by methods known in the art. For example, the actual shell thickness can be determined by comparing the particle size determined from transmission electron microscopy (TEM) images of the nanocrystals before and after shell synthesis.
如本文所用,术语“单层”是壳厚度的测量单位,其源自壳材料的块状晶体结构,作为相关晶格平面之间的最近距离。举例来说,对于立方晶格结构,一个单层的厚度被确定为[111]方向上相邻晶格平面之间的距离。举例来说,立方ZnSe的一个单层对应于0.328nm,和立方ZnS的一个单层对应于0.31nm厚度。单层合金材料的厚度可以通过Vegard定律从合金组成确定。As used herein, the term "monolayer" is a unit of measurement of shell thickness derived from the bulk crystal structure of the shell material as the closest distance between relevant lattice planes. For example, for cubic lattice structures, the thickness of a single layer is determined as the distance between adjacent lattice planes in the [111] direction. For example, a single layer of cubic ZnSe corresponds to a thickness of 0.328 nm, and a single layer of cubic ZnS corresponds to a thickness of 0.31 nm. The thickness of a single layer of alloy material can be determined from the alloy composition through Vegard's law.
如本文所用,术语“半峰全宽”(FWHM)是量子点的尺寸分布的量度。量子点的发射光谱通常具有高斯曲线的形状。高斯曲线的宽度定义为FWHM,并给出了粒子尺寸分布的概念。较小的FWHM对应于较窄的量子点纳米晶体尺寸分布。FWHM还取决于发射波长最大值。As used herein, the term "full width at half maximum" (FWHM) is a measure of the size distribution of a quantum dot. The emission spectrum of quantum dots usually has the shape of a Gaussian curve. The width of the Gaussian curve is defined as FWHM and gives the concept of particle size distribution. Smaller FWHM corresponds to a narrower quantum dot nanocrystal size distribution. FWHM also depends on the emission wavelength maximum.
如本文所用,术语“外部量子效率”(EQE)是从发光二极管(LED)发射的光子数与通过器件的电子数之比。EQE测量LED如何有效地将电子转换为光子并允许它们逃逸。EQE可使用以下公式测量:As used herein, the term "external quantum efficiency" (EQE) is the ratio of the number of photons emitted from a light-emitting diode (LED) to the number of electrons passing through the device. EQE measures how effectively an LED converts electrons into photons and allows them to escape. EQE can be measured using the following formula:
EQE=[注入效率]×[固态量子产率]×[提取效率]EQE=[Injection Efficiency]×[Solid State Quantum Yield]×[Extraction Efficiency]
其中:in:
注入效率=通过器件注入有源区(active region)的电子的比例;Injection efficiency = the proportion of electrons injected into the active region through the device;
固态量子产率=有源区中辐射性的且因此产生光子的所有电子-空穴复合的比例;和Solid-state quantum yield = the proportion of all electron-hole recombination in the active region that is radiative and therefore produces photons; and
提取效率=从器件逃逸的在有源区中产生的光子的比例。Extraction efficiency = the proportion of photons generated in the active region that escape from the device.
除非另有明确说明,否则本文列出的范围是包括性的。Unless otherwise expressly stated, the ranges set forth herein are inclusive.
本文定义或以其他方式表征了各种附加术语。Various additional terms are defined or otherwise characterized herein.
纳米结构的产生Generation of nanostructures
用于胶体合成各种纳米结构的方法是本领域已知的。此类方法包括用于控制纳米结构生长的技术,例如,用于控制所得纳米结构的尺寸和/或形状分布。Methods for colloidal synthesis of various nanostructures are known in the art. Such methods include techniques for controlling the growth of nanostructures, for example, for controlling the size and/or shape distribution of the resulting nanostructures.
在典型的胶体合成中,通过将经历热解的前体快速注入热溶液(例如,热溶剂和/或表面活性剂)中来制备半导体纳米结构。前体可以同时或顺序注入。前体迅速反应以形成核(nuclei)。纳米结构生长通过向核添加单体而发生。In typical colloidal synthesis, semiconductor nanostructures are prepared by rapidly injecting precursors that undergo pyrolysis into a hot solution (e.g., hot solvents and/or surfactants). Precursors can be injected simultaneously or sequentially. The precursors react rapidly to form nuclei. Nanostructure growth occurs by adding monomers to the core.
表面活性剂分子与纳米结构的表面相互作用。在生长温度下,表面活性剂分子快速吸附和从纳米结构表面解吸,从而允许在纳米结构中添加和/或去除原子而同时抑制生长的纳米结构的聚集。通常,与纳米结构表面弱配位的表面活性剂允许纳米结构快速生长,而与纳米结构表面更强结合的表面活性剂导致较慢的纳米结构生长。表面活性剂还可以与一种(或多种)前体相互作用以减缓纳米结构的生长。Surface interaction of surfactant molecules with nanostructures. At growth temperatures, surfactant molecules rapidly adsorb and desorb from the nanostructure surface, allowing the addition and/or removal of atoms in the nanostructure while inhibiting aggregation of the growing nanostructure. Typically, surfactants that coordinate weakly with the nanostructure surface allow rapid nanostructure growth, whereas surfactants that bind more strongly to the nanostructure surface result in slower nanostructure growth. Surfactants can also interact with the precursor (or precursors) to slow down the growth of nanostructures.
在单一表面活性剂存在下的纳米结构生长通常导致球形纳米结构。然而,使用两种或更多种表面活性剂的混合物允许控制生长以使得如果例如两种(或更多种)表面活性剂差异地吸附到生长的纳米结构的不同晶相面,可以产生非球形纳米结构。Nanostructure growth in the presence of a single surfactant usually results in spherical nanostructures. However, using a mixture of two or more surfactants allows for controlled growth such that non-spherical shapes can be produced if, for example, the two (or more) surfactants adsorb differentially to different crystalline phase faces of the growing nanostructure. Nano-structure.
因此,已知许多参数影响纳米结构生长并且可以独立地或组合地操纵以控制所得纳米结构的尺寸和/或形状分布。这些包括例如温度(成核和/或生长)、前体组成、时间依赖性前体浓度、前体彼此的比率、表面活性剂组成、表面活性剂数量和表面活性剂彼此的比率和/或与前体的比率。Therefore, many parameters are known to influence nanostructure growth and can be manipulated independently or in combination to control the size and/or shape distribution of the resulting nanostructures. These include, for example, temperature (nucleation and/or growth), precursor composition, time-dependent precursor concentration, ratios of precursors to each other, surfactant composition, surfactant amounts and ratios of surfactants to each other and/or to Precursor ratio.
例如,在美国专利No.6,225,198、6,322,901、6,207,229、6,607,829、7,060,243、7,374,824、6,861,155、7,125,605、7,566,476、8,158,193和8,101,234以及美国专利申请公开No.2011/0262752和2011/0263062中描述了II-VI族纳米结构的合成。For example, in U.S. Patent Nos. 6,225,198, 6,322,901, 6,207,229, 6,607,829, 7,060,243, 7,374,824, 6,861,155, 7,125,605, 7,566,476, 8,158,193, and 8,101,234 and U.S. Patent Application Publication No. 2 Group II-VI nanoparticles are described in 011/0262752 and 2011/0263062 Synthesis of structures.
尽管II-VI族纳米结构如CdSe/CdS/ZnS核/壳量子点可以表现出期望的发光性能,但如上所述,诸如镉的毒性的问题限制了可以使用这种纳米结构的应用。因此非常需要具有有利发光性能的毒性较小的替代品。Although II-VI nanostructures such as CdSe/CdS/ZnS core/shell quantum dots can exhibit desirable luminescent properties, as mentioned above, issues such as the toxicity of cadmium limit the applications in which such nanostructures can be used. Less toxic alternatives with favorable luminescent properties are therefore highly desirable.
在一些实施方案中,纳米结构不含镉。如本文所用,术语“不含镉”是指纳米结构含有少于100ppm重量的镉。Restriction of Hazardous Substances(RoHS)合规性定义要求原始均质前体材料中不超过0.01重量%(100ppm)的镉。本发明的无Cd纳米结构的镉含量受前体材料中痕量金属浓度的限制。无Cd纳米结构的前体材料中的痕量金属(包括镉)浓度通过电感耦合等离子体质谱(ICP-MS)分析来测量,并且是十亿分之一(ppb)水平。在一些实施方案中,“不含镉”的纳米结构含有少于约50ppm、少于约20ppm、少于约10ppm或少于约1ppm的镉。In some embodiments, the nanostructures are cadmium-free. As used herein, the term "cadmium-free" means that the nanostructure contains less than 100 ppm cadmium by weight. Restriction of Hazardous Substances (RoHS) compliance definition requires no more than 0.01% by weight (100ppm) cadmium in the original homogeneous precursor material. The cadmium content of the Cd-free nanostructures of the present invention is limited by the trace metal concentration in the precursor material. Trace metal (including cadmium) concentrations in Cd-free nanostructured precursor materials were measured by inductively coupled plasma mass spectrometry (ICP-MS) analysis and are at parts per billion (ppb) levels. In some embodiments, "cadmium-free" nanostructures contain less than about 50 ppm, less than about 20 ppm, less than about 10 ppm, or less than about 1 ppm cadmium.
铟掺杂的ZnSe核的产生Generation of Indium-Doped ZnSe Cores
纳米结构包括铟掺杂的ZnSe核和ZnS壳。在一些实施方案中,纳米结构是铟掺杂的ZnSe/ZnS核/壳纳米结构。在一些实施方案中,纳米结构是铟掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳纳米结构。The nanostructure consists of an indium-doped ZnSe core and a ZnS shell. In some embodiments, the nanostructures are indium-doped ZnSe/ZnS core/shell nanostructures. In some embodiments, the nanostructure is an indium-doped ZnSe/ZnSe/ZnS core/buffer/shell nanostructure.
如本文所用,术语“成核期”是指铟掺杂的ZnSe核的核心的形成。如本文所用,术语“生长期”是指将ZnS或ZnSe层施加到核核心的生长过程。As used herein, the term "nucleation period" refers to the formation of a core of indium-doped ZnSe nuclei. As used herein, the term "growth phase" refers to the growth process in which a layer of ZnS or ZnSe is applied to the core.
铟掺杂的ZnSe核的直径可以通过改变所提供的前体的量来控制。铟掺杂的ZnSe核的直径可以使用本领域技术人员已知的技术来确定。在一些实施方案中,使用透射电子显微镜(TEM)测定铟掺杂的ZnSe核的直径。The diameter of the indium-doped ZnSe core can be controlled by varying the amount of precursor provided. The diameter of the indium-doped ZnSe core can be determined using techniques known to those skilled in the art. In some embodiments, the diameter of the indium-doped ZnSe core is determined using transmission electron microscopy (TEM).
在一些实施方案中,每个铟掺杂的ZnSe核的直径为约1.0nm-约7.0nm、约1.0nm-约6.0nm、约1.0nm-约5.0nm、约1.0nm-约4.0nm、约1.0nm-约3.0nm、约1.0nm-约2.0nm、约2.0nm-约7.0nm、约2.0nm-约6.0nm、约2.0nm-约5.0nm、约2.0nm-约4.0nm、约2.0nm-约3.0nm、约3.0nm-约7.0nm、约3.0nm-约6.0nm、约3.0nm-约5.0nm、约3.0nm-约4.0nm、约4.0nm-约7.0nm、约4.0nm-约6.0nm、约4.0nm-约5.0nm、约5.0nm-约7.0nm、约5.0nm-约6.0nm或约6.0nm-约7.0nm。在一些实施方案中,铟掺杂的ZnSe核的直径为约4.0nm至约5.0nm。In some embodiments, each indium-doped ZnSe core has a diameter from about 1.0 nm to about 7.0 nm, from about 1.0 nm to about 6.0 nm, from about 1.0 nm to about 5.0 nm, from about 1.0 nm to about 4.0 nm, from about 1.0nm-about 3.0nm, about 1.0nm-about 2.0nm, about 2.0nm-about 7.0nm, about 2.0nm-about 6.0nm, about 2.0nm-about 5.0nm, about 2.0nm-about 4.0nm, about 2.0nm - about 3.0nm, about 3.0nm - about 7.0nm, about 3.0nm - about 6.0nm, about 3.0nm - about 5.0nm, about 3.0nm - about 4.0nm, about 4.0nm - about 7.0nm, about 4.0nm - about 6.0nm, about 4.0nm to about 5.0nm, about 5.0nm to about 7.0nm, about 5.0nm to about 6.0nm, or about 6.0nm to about 7.0nm. In some embodiments, the indium-doped ZnSe core has a diameter of about 4.0 nm to about 5.0 nm.
在一些实施方案中,本发明提供一种产生铟掺杂的ZnSe纳米晶体的方法,包括:In some embodiments, the invention provides a method of producing indium-doped ZnSe nanocrystals, comprising:
(a)混合硒源和至少一种配体以产生反应混合物;和(a) mixing a source of selenium and at least one ligand to produce a reaction mixture; and
(b)使(a)中得到的反应混合物与锌源和铟盐接触;(b) contacting the reaction mixture obtained in (a) with a zinc source and an indium salt;
以提供铟掺杂的ZnSe纳米晶体。To provide indium-doped ZnSe nanocrystals.
在一些实施例中,该方法还包括:In some embodiments, the method further includes:
(c)使(b)中的反应混合物与锌源和硒源接触;(c) contacting the reaction mixture in (b) with a zinc source and a selenium source;
以提供铟掺杂的ZnSe纳米晶体。To provide indium-doped ZnSe nanocrystals.
在一些实施方案中,硒源选自三辛基硒化膦、三(正丁基)硒化膦、三(仲丁基)硒化膦、三(叔丁基)硒化膦、三甲基硒化膦、三苯基硒化膦、二苯基硒化膦、苯基硒化膦、环己基硒化膦、八硒醇、十二硒醇、硒酚、元素硒、硒化氢、双(三甲基甲硅烷基)硒化物以及它们的混合物。在一些实施方案中,硒源是三辛基硒化膦(TOPSe)。In some embodiments, the selenium source is selected from trioctylphosphine selenide, tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, tris(tert-butyl)phosphine selenide, trimethyl Phosphine selenide, triphenylphosphine selenide, diphenylphosphine selenide, phenylphosphine selenide, cyclohexylphosphine selenide, octaselenol, dodeceselenol, selenol, elemental selenium, hydrogen selenide, bisselenide (Trimethylsilyl)selenide and mixtures thereof. In some embodiments, the selenium source is trioctylphosphine selenide (TOPSe).
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、氧化锌、过氧化锌、高氯酸锌或硫酸锌。在一些实施方案中、锌源是二乙基锌或二甲基锌。在一些实施方案中,锌源是二乙基锌。In some embodiments, the zinc source is a dialkyl zinc compound. In some embodiments, the zinc source is diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, nitric acid Zinc, zinc oxide, zinc peroxide, zinc perchlorate or zinc sulfate. In some embodiments, the zinc source is diethyl zinc or dimethyl zinc. In some embodiments, the zinc source is diethylzinc.
在一些实施方案中,铟盐选自溴化铟、氯化铟、氟化铟、碘化铟、硝酸铟、高氯酸铟、氢氧化铟、乙酸铟及其混合物。在一些实施方案中,铟盐是氯化铟、溴化铟或乙酸铟。在一些实施方案中,铟盐是氯化铟。在一些实施方案中,铟盐是溴化铟。在一些实施方案中,铟盐是乙酸铟。In some embodiments, the indium salt is selected from the group consisting of indium bromide, indium chloride, indium fluoride, indium iodide, indium nitrate, indium perchlorate, indium hydroxide, indium acetate, and mixtures thereof. In some embodiments, the indium salt is indium chloride, indium bromide, or indium acetate. In some embodiments, the indium salt is indium chloride. In some embodiments, the indium salt is indium bromide. In some embodiments, the indium salt is indium acetate.
在一些实施方案中,铟盐与锌源的摩尔百分比为约0.01%至约2%、约0.01%至约1%、约0.01%至约0.5%、约0.01%至约0.1%、约0.01%至约0.05%、约0.01%至约0.03%、约0.03%至约2%、约0.03%至约1%、约0.03%至约0.5%、约0.03%至约0.1%、约0.03%至约0.05%、约0.05%至约2%、约0.05%至约1%、约0.05%至约0.5%、约0.05%至约0.1%、约0.1%至约2%、约0.1%至约1%、约0.1%至约0.5%、约0.5%至约2%、约0.5%至约1%或约1%至约2%。在一些实施方案中,铟盐与锌源的摩尔百分比为约0.1%至约1%。在一些实施方案中,铟盐与锌源的摩尔百分比为约0.3%。In some embodiments, the mole percentage of indium salt to zinc source is about 0.01% to about 2%, about 0.01% to about 1%, about 0.01% to about 0.5%, about 0.01% to about 0.1%, about 0.01% to about 0.05%, about 0.01% to about 0.03%, about 0.03% to about 2%, about 0.03% to about 1%, about 0.03% to about 0.5%, about 0.03% to about 0.1%, about 0.03% to about 0.05%, about 0.05% to about 2%, about 0.05% to about 1%, about 0.05% to about 0.5%, about 0.05% to about 0.1%, about 0.1% to about 2%, about 0.1% to about 1% , about 0.1% to about 0.5%, about 0.5% to about 2%, about 0.5% to about 1%, or about 1% to about 2%. In some embodiments, the mole percent of indium salt to zinc source is from about 0.1% to about 1%. In some embodiments, the mole percent of indium salt to zinc source is about 0.3%.
在一些实施方案中,铟掺杂的ZnSe核在至少一种纳米结构配体的存在下合成。配体可以例如增强纳米结构在溶剂或聚合物中的可混溶性(从而允许纳米结构分布在整个组合物中以使得纳米结构不聚集在一起),增加纳米结构的量子产率和/或保持纳米结构发光(例如,当将纳米结构合并到基质中时)。在一些实施方案中,用于核合成和用于壳合成的配体是相同的。在一些实施方案中,用于核合成和壳合成的配体是不同的。合成后,纳米结构表面上的任何配体可以与具有其他所需性质的不同配体交换。配体的实例公开于美国专利申请公开No.2005/0205849、2008/0105855、2008/0118755、2009/0065764、2010/0140551、2013/0345458、2014/0151600、2014/0264189和2014/0001405中。In some embodiments, the indium-doped ZnSe core is synthesized in the presence of at least one nanostructured ligand. Ligands can, for example, enhance the miscibility of the nanostructures in solvents or polymers (thus allowing the nanostructures to be distributed throughout the composition so that the nanostructures do not clump together), increase the quantum yield of the nanostructures and/or maintain nanostructures. Structural luminescence (for example, when nanostructures are incorporated into a matrix). In some embodiments, the ligands used for core synthesis and shell synthesis are the same. In some embodiments, the ligands used for core synthesis and shell synthesis are different. After synthesis, any ligands on the surface of the nanostructure can be exchanged with different ligands with other desired properties. Examples of ligands are disclosed in U.S. Patent Application Publication Nos. 2005/0205849, 2008/0105855, 2008/0118755, 2009/0065764, 2010/0140551, 2013/0345458, 2014/0151600, 2014/0264189, and 2014/00 01405 in.
在一些实施方案中,适合于合成纳米结构核,包括铟掺杂的ZnSe核,的配体是本领域技术人员已知的。在一些实施方案中,配体是选自月桂酸、己酸、肉豆蔻酸、棕榈酸、硬脂酸和油酸的脂肪酸。在一些实施方案中,配体是有机膦或有机膦氧化物,其选自三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,配体是选自十二烷基胺、油胺、十六烷基胺和十八烷基胺的胺。在一些实施方案中,配体是三辛基膦(TOP)。在一些实施方案中,配体是油胺。In some embodiments, suitable ligands for the synthesis of nanostructured cores, including indium-doped ZnSe cores, are known to those skilled in the art. In some embodiments, the ligand is a fatty acid selected from the group consisting of lauric acid, caproic acid, myristic acid, palmitic acid, stearic acid, and oleic acid. In some embodiments, the ligand is an organophosphine or organophosphine oxide selected from trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), diphenylphosphine (DPP), triphenylphosphine oxide and tributylphosphine oxide. In some embodiments, the ligand is an amine selected from the group consisting of dodecylamine, oleylamine, cetylamine, and octadecylamine. In some embodiments, the ligand is trioctylphosphine (TOP). In some embodiments, the ligand is oleylamine.
在一些实施方案中,铟掺杂的ZnSe核在配体混合物的存在下产生。在一些实施方案中,铟掺杂的ZnSe核在包含2、3、4、5或6种不同配体的混合物存在下产生。在一些实施方案中,铟掺杂的ZnSe核在包含3种不同配体的混合物存在下产生。在一些实施方案中,配体混合物包含油胺、二苯基膦和三辛基膦。In some embodiments, indium-doped ZnSe cores are produced in the presence of a ligand mixture. In some embodiments, indium-doped ZnSe cores are produced in the presence of mixtures containing 2, 3, 4, 5, or 6 different ligands. In some embodiments, an indium-doped ZnSe core is produced in the presence of a mixture containing 3 different ligands. In some embodiments, the ligand mixture includes oleylamine, diphenylphosphine, and trioctylphosphine.
在一些实施方案中,硒源和配体在250℃至350℃、250℃至320℃、250℃至300℃、250℃至290℃、250℃至280℃、250℃至270℃、270℃至350℃、270℃至320℃、270℃至300℃、270℃至290℃、270℃至280℃、280℃至350℃、280℃至320℃、280℃至300℃、280℃至290℃、290℃至350℃、290℃至320℃、290℃至300℃、300℃至350℃、300℃至320℃或320℃至350℃的反应温度下混合。在一些实施方案中,硒源和配体在约300℃的反应温度下混合。In some embodiments, the selenium source and ligand are at 250°C to 350°C, 250°C to 320°C, 250°C to 300°C, 250°C to 290°C, 250°C to 280°C, 250°C to 270°C, 270°C to 350℃, 270℃ to 320℃, 270℃ to 300℃, 270℃ to 290℃, 270℃ to 280℃, 280℃ to 350℃, 280℃ to 320℃, 280℃ to 300℃, 280℃ to 290℃ ℃, 290 ℃ to 350 ℃, 290 ℃ to 320 ℃, 290 ℃ to 300 ℃, 300 ℃ to 350 ℃, 300 ℃ to 320 ℃ or 320 ℃ to 350 ℃ reaction temperature. In some embodiments, the selenium source and ligand are mixed at a reaction temperature of about 300°C.
在一些实施方案中,硒源和配体混合后的反应混合物在反应温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15至20分钟。In some embodiments, the reaction mixture after mixing the selenium source and the ligand is maintained at the reaction temperature for 2 to 20 minutes, 2 to 15 minutes, 2 to 10 minutes, 2 to 8 minutes, 2 to 5 minutes, 5 to 20 minutes , 5 to 15 minutes, 5 to 10 minutes, 5 to 8 minutes, 8 to 20 minutes, 8 to 15 minutes, 8 to 10 minutes, 10 to 20 minutes, 10 to 15 minutes or 15 to 20 minutes.
在一些实施方案中,在250℃至350℃、250℃至320℃、250℃至300℃、250℃至290℃、250℃至280℃、250℃至270℃、270℃至350℃、270℃至320℃、270℃至300℃、270℃至290℃、270℃至280℃、280℃至350℃、280℃至320℃、280℃至300℃、280℃至290℃、290℃至350℃、290℃至320℃、290℃至300℃、300℃至350℃、300℃至320℃或320℃至350℃的反应温度下将铟盐和锌源添加至配体源和硒源的混合物中。在一些实施方案中,在约300℃的反应温度下将铟盐和锌源加入配体源和硒源的混合物中。In some embodiments, at 250°C to 350°C, 250°C to 320°C, 250°C to 300°C, 250°C to 290°C, 250°C to 280°C, 250°C to 270°C, 270°C to 350°C, 270 ℃ to 320℃, 270℃ to 300℃, 270℃ to 290℃, 270℃ to 280℃, 280℃ to 350℃, 280℃ to 320℃, 280℃ to 300℃, 280℃ to 290℃, 290℃ to Adding the indium salt and the zinc source to the ligand source and the selenium source at a reaction temperature of 350°C, 290°C to 320°C, 290°C to 300°C, 300°C to 350°C, 300°C to 320°C, or 320°C to 350°C in the mixture. In some embodiments, the indium salt and zinc source are added to the mixture of ligand source and selenium source at a reaction temperature of about 300°C.
在一些实施方案中,反应混合物-在加入铟盐和锌源之后-在反应温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2分钟至5分钟、5分钟至20分钟、5分钟至15分钟、5分钟至10分钟、5分钟至8分钟、8分钟至20分钟、8分钟至15分钟、8分钟至10分钟、10分钟至20分钟、10分钟至15分钟或15至20分钟。In some embodiments, the reaction mixture - after adding the indium salt and zinc source - is maintained at the reaction temperature for 2 to 20 minutes, 2 to 15 minutes, 2 to 10 minutes, 2 to 8 minutes, 2 minutes to 5 minutes, 5 minutes to 20 minutes, 5 minutes to 15 minutes, 5 minutes to 10 minutes, 5 minutes to 8 minutes, 8 minutes to 20 minutes, 8 minutes to 15 minutes, 8 minutes to 10 minutes, 10 minutes to 20 minutes, 10 minutes to 15 minutes or 15 to 20 minutes.
在一些实施方案中,在加入铟盐和锌源之后,将反应混合物与锌源和硒源接触。在一些实施方案中,锌源和硒源在250℃至350℃、250℃至320℃、250℃至300℃、250℃至290℃、250℃至280℃、250℃至270℃、270℃至350℃、270℃至320℃、270℃至300℃、270℃至290℃、270℃至280℃、280℃至350℃、280℃至320℃、280℃至300℃、280℃至290℃、290℃至350℃、290℃至320℃、290℃至300℃、300℃至350℃、300℃至320℃或320℃和350℃的反应温度下加入到反应混合物中。在一些实施方案中,在约280℃的反应温度下将锌源和硒源加入到反应混合物中。In some embodiments, after adding the indium salt and the zinc source, the reaction mixture is contacted with the zinc source and the selenium source. In some embodiments, the zinc source and the selenium source are at 250°C to 350°C, 250°C to 320°C, 250°C to 300°C, 250°C to 290°C, 250°C to 280°C, 250°C to 270°C, 270°C to 350℃, 270℃ to 320℃, 270℃ to 300℃, 270℃ to 290℃, 270℃ to 280℃, 280℃ to 350℃, 280℃ to 320℃, 280℃ to 300℃, 280℃ to 290℃ ℃, 290°C to 350°C, 290°C to 320°C, 290°C to 300°C, 300°C to 350°C, 300°C to 320°C, or 320°C and 350°C. In some embodiments, the zinc source and selenium source are added to the reaction mixture at a reaction temperature of about 280°C.
在一些实施方案中,锌源和硒源在2至60分钟、2至30分钟、2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至60分钟、5至30分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至60分钟、8至30分钟、8至20分钟、8至15分钟、8至10分钟、10至60分钟、10至30分钟、10至20分钟、10至15分钟、15至60分钟、15至30分钟、15至20分钟、20至60分钟、20分钟至30分钟或30至60分钟的时间段内添加。在一些实施方案中,锌源和硒源在20至60分钟的时间段内添加。In some embodiments, the zinc source and the selenium source are present at 2 to 60 minutes, 2 to 30 minutes, 2 to 20 minutes, 2 to 15 minutes, 2 to 10 minutes, 2 to 8 minutes, 2 to 5 minutes, 5 to 60 minutes minutes, 5 to 30 minutes, 5 to 20 minutes, 5 to 15 minutes, 5 to 10 minutes, 5 to 8 minutes, 8 to 60 minutes, 8 to 30 minutes, 8 to 20 minutes, 8 to 15 minutes, 8 to 10 minutes, 10 to 60 minutes, 10 to 30 minutes, 10 to 20 minutes, 10 to 15 minutes, 15 to 60 minutes, 15 to 30 minutes, 15 to 20 minutes, 20 to 60 minutes, 20 minutes to 30 minutes, or 30 to Added within a 60 minute period. In some embodiments, the zinc source and selenium source are added over a period of 20 to 60 minutes.
在一些实施方案中,在加入锌源和硒源之后,反应混合物在反应温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15至20分钟。在一些实施方案中,在加入锌源和硒源之后,反应混合物在反应温度下保持2至10分钟。In some embodiments, after adding the zinc source and selenium source, the reaction mixture is maintained at the reaction temperature for 2 to 20 minutes, 2 to 15 minutes, 2 to 10 minutes, 2 to 8 minutes, 2 to 5 minutes, 5 to 20 minutes minutes, 5 to 15 minutes, 5 to 10 minutes, 5 to 8 minutes, 8 to 20 minutes, 8 to 15 minutes, 8 to 10 minutes, 10 to 20 minutes, 10 to 15 minutes or 15 to 20 minutes. In some embodiments, after adding the zinc source and selenium source, the reaction mixture is maintained at the reaction temperature for 2 to 10 minutes.
为了防止铟掺杂的ZnSe核随着添加另外的前体而沉淀,另外的配体可以在生长期中添加。如果在初始成核期中添加太多配体,则锌源、硒源和铟盐的浓度将太低并且阻止有效成核。因此,配体在整个生长期中缓慢加入。在一些实施方案中,另外的配体是油胺。To prevent precipitation of the indium-doped ZnSe core with the addition of additional precursors, additional ligands can be added during the growth phase. If too many ligands are added during the initial nucleation period, the concentrations of zinc source, selenium source, and indium salt will be too low and prevent efficient nucleation. Therefore, ligands are added slowly throughout the growth phase. In some embodiments, the additional ligand is oleylamine.
在铟掺杂的ZnSe核达到所需的厚度和直径后,可以冷却它们。在一些实施方案中,将铟掺杂的ZnSe核冷却至室温。在一些实施方案中,加入有机溶剂以稀释包含铟掺杂的ZnSe核的反应混合物。After the indium-doped ZnSe cores reach the desired thickness and diameter, they can be cooled. In some embodiments, the indium-doped ZnSe core is cooled to room temperature. In some embodiments, an organic solvent is added to dilute the reaction mixture containing the indium-doped ZnSe core.
在一些实施方案中,有机溶剂是己烷、戊烷、甲苯、苯、二乙醚、丙酮、乙酸乙酯、二氯甲烷(亚甲基氯)、氯仿、二甲基甲酰胺或N-甲基吡咯烷酮。在一些实施方案中,有机溶剂是甲苯。In some embodiments, the organic solvent is hexane, pentane, toluene, benzene, diethyl ether, acetone, ethyl acetate, dichloromethane (methylene chloride), chloroform, dimethylformamide, or N-methyl Pyrrolidone. In some embodiments, the organic solvent is toluene.
在一些实施方案中,分离铟掺杂的ZnSe核。在一些实施方案中,通过从溶剂中沉淀铟掺杂的ZnSe核来分离铟掺杂的ZnSe核。在一些实施方案中,通过用乙醇沉淀来分离铟掺杂的ZnSe核。In some embodiments, an indium-doped ZnSe core is isolated. In some embodiments, the indium-doped ZnSe core is isolated by precipitating the indium-doped ZnSe core from the solvent. In some embodiments, the indium-doped ZnSe core is isolated by precipitation with ethanol.
在一些实施方案中,本发明的纳米结构的铟掺杂的ZnSe核具有在40%至90%、40%至80%、40%至70%、40%至60%、40%至50%、50%至90%、50%至80%、50%至70%、50%至60%、60%至90%、60%至80%、60%至70%、70%至90%、70%至80%或80%至90%的铟掺杂ZnSe含量(按重量计)。In some embodiments, the nanostructured indium-doped ZnSe core of the present invention has an indium-doped ZnSe core with a thickness of between 40% to 90%, 40% to 80%, 40% to 70%, 40% to 60%, 40% to 50%, 50% to 90%, 50% to 80%, 50% to 70%, 50% to 60%, 60% to 90%, 60% to 80%, 60% to 70%, 70% to 90%, 70% to 80% or 80% to 90% indium doped ZnSe content by weight.
在一些实施方案中,本发明的纳米结构的铟掺杂ZnSe核的锌与硒的摩尔比为约1:1至约1:0.8、约1:1至约1:0.9、约1:1和约1:0.92或约1:1和约1:0.94。In some embodiments, the molar ratio of zinc to selenium of the nanostructured indium-doped ZnSe core of the present invention is about 1:1 to about 1:0.8, about 1:1 to about 1:0.9, about 1:1 and about 1:0.92 or about 1:1 and about 1:0.94.
ZnSe缓冲层的产生Generation of ZnSe buffer layer
在一些实施方案中,纳米结构包含核和壳之间的缓冲层。在一些实施例中,缓冲层是ZnSe缓冲层。In some embodiments, the nanostructure includes a buffer layer between the core and the shell. In some embodiments, the buffer layer is a ZnSe buffer layer.
在一些实施方案中,ZnSe缓冲层使In掺杂的ZnSe核和ZnS壳之间的晶格应变变得容易。In some embodiments, the ZnSe buffer layer facilitates lattice straining between the In-doped ZnSe core and ZnS shell.
在一些实施方案中,单个ZnSe单层具有约0.328nm的厚度。In some embodiments, a single ZnSe monolayer has a thickness of approximately 0.328 nm.
在一些实施方案中,ZnSe缓冲层中的单层数量为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4、4至10、4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7至10、7至8或8至10。在一些实施方案中,ZnSe缓冲层包含2至6个单层。在一些实施方案中,ZnSe缓冲层包含3至5个单层。In some embodiments, the number of monolayers in the ZnSe buffer layer is 0.25 to 10, 0.25 to 8, 0.25 to 7, 0.25 to 6, 0.25 to 5, 0.25 to 4, 0.25 to 3, 0.25 to 2, 2 to 10 , 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 10, 3 to 8, 3 to 7, 3 to 6, 3 to 5, 3 to 4, 4 to 10, 4 to 8, 4 to 7, 4 to 6, 4 to 5, 5 to 10, 5 to 8, 5 to 7, 5 to 6, 6 to 10, 6 to 8, 6 to 7, 7 to 10 , 7 to 8 or 8 to 10. In some embodiments, the ZnSe buffer layer contains 2 to 6 monolayers. In some embodiments, the ZnSe buffer layer contains 3 to 5 monolayers.
可以通过改变所提供的前体量来控制ZnSe缓冲层的厚度。对于给定的层,任选地提供至少一种前体,其量为使得当生长反应基本完成时,该层具有预定的厚度。如果提供多于一种不同的前体,则每种前体的量可以如此限制,或者可以以限制量提供一种前体而过量提供其它前体。The thickness of the ZnSe buffer layer can be controlled by varying the amount of precursor provided. For a given layer, at least one precursor is optionally provided in an amount such that when the growth reaction is substantially complete, the layer has a predetermined thickness. If more than one different precursor is provided, the amount of each precursor may be so limited, or one precursor may be provided in a limited amount and the other precursors in excess.
可以使用本领域技术人员已知的技术测定ZnSe缓冲层的每个ZnSe层的厚度。通过比较添加各层之前和之后铟掺杂的ZnSe/ZnSe核/缓冲层的直径来确定每层的厚度。在一些实施方案中,通过透射电子显微镜确定在每层添加之前和之后铟掺杂的ZnSe/ZnSe核/缓冲层的直径。The thickness of each ZnSe layer of the ZnSe buffer layer can be determined using techniques known to those skilled in the art. The thickness of each layer was determined by comparing the diameter of the indium-doped ZnSe/ZnSe core/buffer layer before and after adding each layer. In some embodiments, the diameter of the indium-doped ZnSe/ZnSe core/buffer layer is determined by transmission electron microscopy before and after the addition of each layer.
在一些实施例中,ZnSe缓冲层的厚度为0.08nm至3.5nm、0.08nm至2nm、0.08nm至0.9nm、0.08nm至0.7nm、0.08nm至0.5nm、0.08nm至0.2nm、0.2nm至3.5nm、0.2nm至2nm、0.2nm至0.9nm、0.2nm至0.7nm、0.2nm至0.5nm、0.5nm至3.5nm、0.5nm至2nm、0.5nm至0.9nm、0.5nm至0.7nm、0.7nm至3.5nm、0.7nm至2nm、0.7nm至0.9nm、0.9nm至3.5nm、0.9nm至2nm或2nm至3.5nm。在一些实施方案中,ZnSe缓冲层的厚度为约2nm至约3nm。In some embodiments, the ZnSe buffer layer has a thickness of 0.08nm to 3.5nm, 0.08nm to 2nm, 0.08nm to 0.9nm, 0.08nm to 0.7nm, 0.08nm to 0.5nm, 0.08nm to 0.2nm, 0.2nm to 3.5nm, 0.2nm to 2nm, 0.2nm to 0.9nm, 0.2nm to 0.7nm, 0.2nm to 0.5nm, 0.5nm to 3.5nm, 0.5nm to 2nm, 0.5nm to 0.9nm, 0.5nm to 0.7nm, 0.7 nm to 3.5nm, 0.7nm to 2nm, 0.7nm to 0.9nm, 0.9nm to 3.5nm, 0.9nm to 2nm or 2nm to 3.5nm. In some embodiments, the ZnSe buffer layer has a thickness of about 2 nm to about 3 nm.
在一些实施方案中,本发明提供一种制备纳米结构的方法,包括:In some embodiments, the invention provides a method of preparing nanostructures, comprising:
(a)混合硒源和至少一种配体以产生反应混合物;和(a) mixing a source of selenium and at least one ligand to produce a reaction mixture; and
(b)使(a)中得到的反应混合物与锌源和铟盐接触;(b) contacting the reaction mixture obtained in (a) with a zinc source and an indium salt;
(c)使(b)中的反应混合物与锌源和硒源接触以提供铟掺杂的ZnSe核;(c) contacting the reaction mixture in (b) with a zinc source and a selenium source to provide an indium-doped ZnSe core;
(d)使(c)的铟掺杂的ZnSe核与包含锌源和硒源的溶液接触;和(e)重复(d)以提供铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构。(d) contacting the indium-doped ZnSe core of (c) with a solution containing a zinc source and a selenium source; and (e) repeating (d) to provide an indium-doped ZnSe/ZnSe core/buffer nanostructure.
可以通过控制所提供的前体的量方便地控制ZnSe缓冲层的厚度。对于给定的层,至少一种前体任选地以一定量提供,由此当生长反应基本完成时,该层具有预定的厚度。如果提供多于一种不同的前体,则每种前体的量可以如此限制,或者可以以限制量提供一种前体而过量提供其它前体。可以容易地计算出各种所得壳厚度的合适前体量。例如,铟掺杂的ZnSe/ZnSe核/缓冲层可以在其合成和纯化后分散在溶液中,并且其浓度可以例如使用Beer-Lambert定律通过UV/Vis光谱法来计算。消光系数可以从块状铟掺杂ZnSe和块状ZnSe获得。铟掺杂的ZnSe/ZnSe核/缓冲层的尺寸可以例如通过UV/Vis吸收光谱的激子峰和基于量子局限的物理建模来确定。在了解粒度、摩尔量和成壳材料的所需厚度的情况下,可以使用体晶体参数(即,一层成壳材料的厚度)计算前体的量。The thickness of the ZnSe buffer layer can be conveniently controlled by controlling the amount of precursor provided. For a given layer, at least one precursor is optionally provided in an amount such that when the growth reaction is substantially complete, the layer has a predetermined thickness. If more than one different precursor is provided, the amount of each precursor may be so limited, or one precursor may be provided in a limited amount and the other precursors in excess. Appropriate amounts of precursor can be easily calculated for various resulting shell thicknesses. For example, the indium-doped ZnSe/ZnSe core/buffer layer can be dispersed in solution after its synthesis and purification, and its concentration can be calculated by UV/Vis spectroscopy, for example using Beer-Lambert's law. The extinction coefficient can be obtained from bulk indium-doped ZnSe and bulk ZnSe. The size of the indium-doped ZnSe/ZnSe core/buffer layer can be determined, for example, by the exciton peaks of UV/Vis absorption spectra and physical modeling based on quantum confinement. Knowing the particle size, molar amount, and desired thickness of the shell-forming material, the amount of precursor can be calculated using bulk crystal parameters (ie, the thickness of a layer of shell-forming material).
在一些实施方案中,与铟掺杂的ZnSe核接触的缓冲层前体包含锌源和硒源。In some embodiments, the buffer layer precursor in contact with the indium-doped ZnSe core includes a zinc source and a selenium source.
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是羧酸锌。在一些实施方案中,锌源是二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌、硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或它们的混合物。在一些实施方案中,锌源是油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌。In some embodiments, the zinc source is a dialkyl zinc compound. In some embodiments, the zinc source is zinc carboxylate. In some embodiments, the zinc source is diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, nitric acid Zinc, zinc oleate, zinc oxide, zinc peroxide, zinc perchlorate, zinc sulfate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, dithioamino acid zinc formate or their mixtures. In some embodiments, the zinc source is zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate, or mixtures thereof. In some embodiments, the zinc source is zinc oleate.
在一些实施方案中,硒源是烷基取代的硒脲。在一些实施方案中,硒源是膦硒化物。在一些实施方案中,硒源选自三辛基硒化膦、三(正丁基)硒化膦、三(仲丁基)硒化膦、三(叔丁基)硒化膦、三甲基硒化膦、三苯基硒化膦、二苯基硒化膦、苯基硒化膦、三环己基硒化膦、环己基硒化膦、1-辛烷硒醇、1-十二烷基硒醇、硒酚、元素硒、硒化氢、双(三甲基甲硅烷基)硒化物、硒脲以及它们的混合物。在一些实施方案中,硒源是三(正丁基)硒化膦、三(仲丁基)硒化膦或三(叔丁基)硒化膦。在一些实施方案中,硒源是三辛基硒化膦。In some embodiments, the selenium source is an alkyl-substituted selenourea. In some embodiments, the selenium source is phosphine selenide. In some embodiments, the selenium source is selected from trioctylphosphine selenide, tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, tris(tert-butyl)phosphine selenide, trimethyl Phosphine selenide, triphenylphosphine selenide, diphenylphosphine selenide, phenylphosphine selenide, tricyclohexylphosphine selenide, cyclohexylphosphine selenide, 1-octaneselenol, 1-dodecyl Selenol, selenol, elemental selenium, hydrogen selenide, bis(trimethylsilyl)selenide, selenourea and mixtures thereof. In some embodiments, the selenium source is tris(n-butyl)phosphine selenide, tris(sec-butyl)phosphine selenide, or tris(tert-butyl)phosphine selenide. In some embodiments, the selenium source is trioctylphosphine selenide.
在一些实施方案中,ZnSe缓冲层在至少一种纳米结构配体的存在下合成。配体可以例如增强纳米结构在溶剂或聚合物中的可混溶性(从而允许纳米结构分布在整个组合物中以使得纳米结构不聚集在一起),增加纳米结构的量子产率和/或保持纳米结构发光(例如,当将纳米结构合并到基质中)。在一些实施方案中,用于核合成和用于缓冲层合成的配体是相同的。在一些实施方案中,用于核合成和用于缓冲层合成的配体是不同的。合成后,纳米结构表面上的任何配体可以与具有其他所需性质的不同配体交换。In some embodiments, the ZnSe buffer layer is synthesized in the presence of at least one nanostructured ligand. Ligands can, for example, enhance the miscibility of the nanostructures in solvents or polymers (thus allowing the nanostructures to be distributed throughout the composition so that the nanostructures do not clump together), increase the quantum yield of the nanostructures and/or maintain nanostructures. Structured luminescence (e.g. when incorporating nanostructures into a matrix). In some embodiments, the ligands used for nucleosynthesis and buffer layer synthesis are the same. In some embodiments, the ligands used for nucleosynthesis and buffer layer synthesis are different. After synthesis, any ligands on the surface of the nanostructure can be exchanged with different ligands with other desired properties.
在一些实施方案中,适合于合成纳米结构缓冲层(包括ZnSe缓冲层)的配体是本领域技术人员已知的。在一些实施方案中,配体是选自月桂酸、己酸、肉豆蔻酸、棕榈酸、硬脂酸和油酸的脂肪酸。在一些实施方案中,配体是有机膦或有机氧化膦其选自三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,配体是选自十二烷基胺、油胺、十六烷基胺和十八烷基胺的胺。在一些实施方案中,配体是三辛基膦(TOP)。在一些实施方案中,配体是三辛基氧化膦。In some embodiments, suitable ligands for the synthesis of nanostructured buffer layers, including ZnSe buffer layers, are known to those skilled in the art. In some embodiments, the ligand is a fatty acid selected from the group consisting of lauric acid, caproic acid, myristic acid, palmitic acid, stearic acid, and oleic acid. In some embodiments, the ligand is an organophosphine or organophosphine oxide selected from trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), diphenylphosphine (DPP), triphenylphosphine oxide, and triphenylphosphine oxide. Butylphosphine oxide. In some embodiments, the ligand is an amine selected from the group consisting of dodecylamine, oleylamine, cetylamine, and octadecylamine. In some embodiments, the ligand is trioctylphosphine (TOP). In some embodiments, the ligand is trioctylphosphine oxide.
在一些实施方案中,ZnSe缓冲层在配体混合物的存在下产生。在一些实施方案中,ZnSe缓冲层在包含2、3、4、5或6种不同配体的混合物的存在下产生。在一些实施方案中,ZnSe缓冲层在包含2种不同配体的混合物存在下产生。在一些实施方案中,配体的混合物包含三辛基膦和三辛基氧化膦。配体的实例公开于美国专利申请公开No.2005/0205849、2008/0105855、2008/0118755、2009/0065764、2010/0140551、2013/0345458、2014/0151600、2014/0264189和2014/0001405中。In some embodiments, the ZnSe buffer layer is produced in the presence of a ligand mixture. In some embodiments, the ZnSe buffer layer is produced in the presence of a mixture containing 2, 3, 4, 5 or 6 different ligands. In some embodiments, the ZnSe buffer layer is produced in the presence of a mixture containing 2 different ligands. In some embodiments, the mixture of ligands includes trioctylphosphine and trioctylphosphine oxide. Examples of ligands are disclosed in U.S. Patent Application Publication Nos. 2005/0205849, 2008/0105855, 2008/0118755, 2009/0065764, 2010/0140551, 2013/0345458, 2014/0151600, 2014/0264189, and 2014/00 01405 in.
在一些实施方案中,在缓冲层相中,铟掺杂的ZnSe核、锌源和硒源在250℃至350℃、250℃至320℃、250℃至300℃、250℃至290℃、250℃至280℃、250℃至270℃、270℃至350℃、270℃至320℃、270℃至300℃、270℃至290℃、270℃至280℃、280℃至350℃、280℃至320℃、280℃至300℃、280℃至290℃、290℃至350℃、290℃至320℃、290℃至300℃、300℃至350℃、300℃至320℃或320℃至350℃的反应温度下组合。在一些实施方案中,铟掺杂的ZnSe核、锌源和硒源在约300℃的反应温度下组合。In some embodiments, in the buffer layer phase, the indium-doped ZnSe core, zinc source, and selenium source are at 250°C to 350°C, 250°C to 320°C, 250°C to 300°C, 250°C to 290°C, 250 ℃ to 280℃, 250℃ to 270℃, 270℃ to 350℃, 270℃ to 320℃, 270℃ to 300℃, 270℃ to 290℃, 270℃ to 280℃, 280℃ to 350℃, 280℃ to 320℃, 280℃ to 300℃, 280℃ to 290℃, 290℃ to 350℃, 290℃ to 320℃, 290℃ to 300℃, 300℃ to 350℃, 300℃ to 320℃ or 320℃ to 350℃ combination at the reaction temperature. In some embodiments, the indium-doped ZnSe core, zinc source, and selenium source are combined at a reaction temperature of about 300°C.
在一些实施方案中,反应混合物-在将铟掺杂的ZnSe核、锌源和硒源组合之后-在反应温度下保持2至20分钟、2至15分钟、2至10分钟、2至8分钟、2至5分钟、5至20分钟、5至15分钟、5至10分钟、5至8分钟、8至20分钟、8至15分钟、8至10分钟、10至20分钟、10至15分钟或15和20分钟。In some embodiments, the reaction mixture - after combining the indium-doped ZnSe core, zinc source and selenium source - is maintained at the reaction temperature for 2 to 20 minutes, 2 to 15 minutes, 2 to 10 minutes, 2 to 8 minutes , 2 to 5 minutes, 5 to 20 minutes, 5 to 15 minutes, 5 to 10 minutes, 5 to 8 minutes, 8 to 20 minutes, 8 to 15 minutes, 8 to 10 minutes, 10 to 20 minutes, 10 to 15 minutes Or 15 and 20 minutes.
在一些实施方案中,将进一步添加的前体添加到反应混合物中。通常,在前一层的反应基本完成之后(例如,当至少一种先前的前体被耗尽或从反应中除去或者当检测不到另外的生长时)提供另外的前体。在一些添加物中,添加的另外的前体是硒源。进一步的前体添加产生了另外的层。In some embodiments, further additional precursors are added to the reaction mixture. Typically, additional precursors are provided after the reaction of the previous layer is substantially complete (eg, when at least one previous precursor is depleted or removed from the reaction or when no additional growth is detected). In some additives, an additional precursor added is a source of selenium. Further precursor additions create additional layers.
在铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构达到期望的厚度和直径之后,可以冷却它们。在一些实施方案中,将铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构冷却至室温。在一些实施方案中,添加有机溶剂以稀释包含铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的反应混合物。After the indium-doped ZnSe/ZnSe core/buffer nanostructures reach the desired thickness and diameter, they can be cooled. In some embodiments, the indium-doped ZnSe/ZnSe core/buffer nanostructure is cooled to room temperature. In some embodiments, an organic solvent is added to dilute the reaction mixture comprising the indium-doped ZnSe/ZnSe core/buffer nanostructures.
在一些实施方案中,有机溶剂是己烷、戊烷、甲苯、苯、二乙醚、丙酮、乙酸乙酯、二氯甲烷(亚甲基氯)、氯仿、二甲基甲酰胺、甲醇、乙醇或N-甲基吡咯烷酮。在一些实施方案中,有机溶剂是甲苯。In some embodiments, the organic solvent is hexane, pentane, toluene, benzene, diethyl ether, acetone, ethyl acetate, dichloromethane (methylene chloride), chloroform, dimethylformamide, methanol, ethanol, or N-methylpyrrolidone. In some embodiments, the organic solvent is toluene.
在一些实施方案中,分离铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构。在一些实施方案中,通过使用有机溶剂沉淀铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构来分离铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构。在一些实施方案中,通过用乙醇沉淀来分离铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构。In some embodiments, an indium-doped ZnSe/ZnSe core/buffer nanostructure is isolated. In some embodiments, the indium-doped ZnSe/ZnSe core/buffer nanostructure is isolated by precipitating the indium-doped ZnSe/ZnSe core/buffer nanostructure using an organic solvent. In some embodiments, the indium-doped ZnSe/ZnSe core/buffer nanostructures are isolated by precipitation with ethanol.
层数决定铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的尺寸。可以使用本领域技术人员已知的技术测定铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的尺寸。在一些实施方案中,使用透射电子显微镜测定铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的尺寸。在一些实施例中,铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的平均直径为1nm至15nm、1nm至10nm、1nm至9nm、1nm至8nm、1nm至7nm、1nm至6nm、1nm至5nm、5nm至15nm、5nm至10nm、5nm至9nm、5nm至8nm、5nm至7nm、5nm至6nm、6nm至15nm、6nm至10nm、6nm至9nm、6nm至8nm、6nm至7nm、7nm至15nm、7nm至10nm、7nm至9nm、7nm 8nm、8nm至15nm、8nm至10nm、约8nm至9nm、9nm至15nm、9nm至10nm或10nm至15nm。在一些实施方案中,铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的平均直径为约7nm。The number of layers determines the size of the indium-doped ZnSe/ZnSe core/buffer nanostructure. The dimensions of the indium-doped ZnSe/ZnSe core/buffer nanostructures can be determined using techniques known to those skilled in the art. In some embodiments, transmission electron microscopy is used to determine the dimensions of the indium-doped ZnSe/ZnSe core/buffer nanostructures. In some embodiments, the indium-doped ZnSe/ZnSe core/buffer layer nanostructures have an average diameter of 1 nm to 15 nm, 1 nm to 10 nm, 1 nm to 9 nm, 1 nm to 8 nm, 1 nm to 7 nm, 1 nm to 6 nm, 1 nm to 5 nm , 5nm to 15nm, 5nm to 10nm, 5nm to 9nm, 5nm to 8nm, 5nm to 7nm, 5nm to 6nm, 6nm to 15nm, 6nm to 10nm, 6nm to 9nm, 6nm to 8nm, 6nm to 7nm, 7nm to 15nm, 7nm to 10nm, 7nm to 9nm, 7nm 8nm, 8nm to 15nm, 8nm to 10nm, about 8nm to 9nm, 9nm to 15nm, 9nm to 10nm or 10nm to 15nm. In some embodiments, the indium-doped ZnSe/ZnSe core/buffer nanostructures have an average diameter of about 7 nm.
在一些实施方案中,使用量子局限来确定铟掺杂的ZnSe/ZnSe核/缓冲层纳米结构的直径。In some embodiments, quantum confinement is used to determine the diameter of the indium-doped ZnSe/ZnSe core/buffer nanostructure.
壳的产生production of shell
在一些实施方案中,本发明的纳米结构包括核和至少一个壳。在一些实施方案中,本发明的纳米结构包括核和至少两个壳。在一些实施方案中,本发明的纳米结构包括核、缓冲层和至少一个壳。在一些实施方案中,本发明的纳米结构包括核、缓冲层和至少两个壳。壳可以例如提高纳米结构的量子产率和/或稳定性。在一些实施方案中,核和壳包含不同的材料。在一些实施方案中,纳米结构包含不同壳材料的壳。In some embodiments, the nanostructures of the present invention include a core and at least one shell. In some embodiments, the nanostructures of the present invention include a core and at least two shells. In some embodiments, the nanostructures of the present invention include a core, a buffer layer, and at least one shell. In some embodiments, the nanostructures of the present invention include a core, a buffer layer, and at least two shells. Shells can, for example, increase the quantum yield and/or stability of the nanostructure. In some embodiments, the core and shell comprise different materials. In some embodiments, the nanostructures comprise shells of different shell materials.
在一些实施方案中,将包含II族和VI族元素的混合物的壳沉积在核、核/缓冲层、核/壳或核/缓冲层/壳结构上。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的至少两种的混合物。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的两种的混合物。在一些实施方案中,沉积的壳是锌源、硒源、硫源、碲源和镉源中的三种的混合物。在一些实施方案中,壳包含锌和硫;锌和硒;锌、硫和硒;锌和碲;锌、碲和硫;锌、碲和硒;锌、镉和硫;锌、镉和硒;镉和硫;镉和硒;镉、硒和硫;镉、锌和硫;镉、锌和硒;或镉、锌、硫和硒。In some embodiments, a shell comprising a mixture of Group II and Group VI elements is deposited on a core, core/buffer, core/shell or core/buffer/shell structure. In some embodiments, the deposited shell is a mixture of at least two of a zinc source, a selenium source, a sulfur source, a tellurium source, and a cadmium source. In some embodiments, the deposited shell is a mixture of two of a zinc source, a selenium source, a sulfur source, a tellurium source, and a cadmium source. In some embodiments, the deposited shell is a mixture of three of a zinc source, a selenium source, a sulfur source, a tellurium source, and a cadmium source. In some embodiments, the shell includes zinc and sulfur; zinc and selenium; zinc, sulfur and selenium; zinc and tellurium; zinc, tellurium and sulfur; zinc, tellurium and selenium; zinc, cadmium and sulfur; zinc, cadmium and selenium; Cadmium and sulfur; cadmium and selenium; cadmium, selenium and sulfur; cadmium, zinc and sulfur; cadmium, zinc and selenium; or cadmium, zinc, sulfur and selenium.
在一些实施方案中,壳包含多于一个壳材料单层。单层的数量是所有纳米结构的平均值;因此,壳中单层的数量可以是分数。在一些实施方案中,壳中单层的数量为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4、4至10,4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7至10、7或8至10。在一些实施方案中,壳包含3至5个单层。In some embodiments, the shell contains more than one single layer of shell material. The number of monolayers is the average of all nanostructures; therefore, the number of monolayers in a shell can be a fraction. In some embodiments, the number of monolayers in the shell is 0.25 to 10, 0.25 to 8, 0.25 to 7, 0.25 to 6, 0.25 to 5, 0.25 to 4, 0.25 to 3, 0.25 to 2, 2 to 10, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 10, 3 to 8, 3 to 7, 3 to 6, 3 to 5, 3 to 4, 4 to 10 , 4 to 8, 4 to 7, 4 to 6, 4 to 5, 5 to 10, 5 to 8, 5 to 7, 5 to 6, 6 to 10, 6 to 8, 6 to 7, 7 to 10, 7 Or 8 to 10. In some embodiments, the shell contains 3 to 5 monolayers.
可通过改变所提供的前体的量来控制壳的厚度。对于给定的壳厚度,任选地提供至少一种前体,其量为使得当生长反应基本完成时,获得预定厚度的壳。如果提供多于一种不同的前体,则可以限制每种前体的量,或者可以以限制量提供一种前体而过量提供其它前体。The thickness of the shell can be controlled by varying the amount of precursor provided. For a given shell thickness, at least one precursor is optionally provided in an amount such that when the growth reaction is substantially complete, a shell of a predetermined thickness is obtained. If more than one different precursor is provided, the amount of each precursor may be limited, or one precursor may be provided in a limited amount and the other precursors may be provided in excess.
可以使用本领域技术人员已知的技术确定每个壳的厚度。在一些实施方案中,通过比较每个壳添加之前和之后纳米结构的平均直径来确定每个壳的厚度。在一些实施方案中,通过TEM测定在每个壳添加之前和之后纳米结构的平均直径。在一些实施方案中,每个壳的厚度为0.05nm至3.5nm、0.05nm至2nm、0.05nm至0.9nm、0.05nm至0.7nm、0.05nm至0.5nm、0.05nm至0.3nm、0.05nm至0.1nm、0.1nm至3.5nm、0.1nm至2nm、0.1nm至0.9nm、0.1nm至0.7nm、0.1nm至0.5nm、0.1nm至0.3nm、0.3nm至3.5nm、0.3nm至2nm、0.3nm至0.9nm、0.3nm至0.7nm、0.3nm至0.5nm、0.5nm至3.5nm、0.5nm至2nm、0.5nm至0.9nm、0.5nm至0.7nm、0.7nm至3.5nm、0.7nm至2nm、0.7nm至0.9nm、0.9nm至3.5nm、0.9nm至2nm或2nm至3.5nm。The thickness of each shell can be determined using techniques known to those skilled in the art. In some embodiments, the thickness of each shell is determined by comparing the average diameter of the nanostructures before and after addition of each shell. In some embodiments, the average diameter of the nanostructures before and after addition of each shell is determined by TEM. In some embodiments, the thickness of each shell is 0.05nm to 3.5nm, 0.05nm to 2nm, 0.05nm to 0.9nm, 0.05nm to 0.7nm, 0.05nm to 0.5nm, 0.05nm to 0.3nm, 0.05nm to 0.1nm, 0.1nm to 3.5nm, 0.1nm to 2nm, 0.1nm to 0.9nm, 0.1nm to 0.7nm, 0.1nm to 0.5nm, 0.1nm to 0.3nm, 0.3nm to 3.5nm, 0.3nm to 2nm, 0.3 nm to 0.9nm, 0.3nm to 0.7nm, 0.3nm to 0.5nm, 0.5nm to 3.5nm, 0.5nm to 2nm, 0.5nm to 0.9nm, 0.5nm to 0.7nm, 0.7nm to 3.5nm, 0.7nm to 2nm , 0.7nm to 0.9nm, 0.9nm to 3.5nm, 0.9nm to 2nm or 2nm to 3.5nm.
在一些实施方案中,每个壳在至少一种纳米结构配体的存在下合成。配体可以例如增强纳米结构在溶剂或聚合物中的可混溶性(从而允许纳米结构分布在整个组合物中以使得纳米结构不聚集在一起),增加纳米结构的量子产率和/或保持纳米结构发光(例如,当将纳米结构合并到基质中)。在一些实施方案中,用于核合成和用于壳合成的配体是相同的。在一些实施方案中,用于核合成和用于壳合成的配体是不同的。合成后,纳米结构表面上的任何配体可以与具有其他所需性质的不同配体交换。配体的实例公开在美国专利号7,572,395、8,143,703、8,425,803、8,563,133、8,916,064、9,005,480、9,139,770和9,169,435以及美国专利申请公开No.2008/0118755中。In some embodiments, each shell is synthesized in the presence of at least one nanostructured ligand. Ligands can, for example, enhance the miscibility of the nanostructures in solvents or polymers (thus allowing the nanostructures to be distributed throughout the composition so that the nanostructures do not clump together), increase the quantum yield of the nanostructures and/or maintain nanostructures. Structured luminescence (e.g. when incorporating nanostructures into a matrix). In some embodiments, the ligands used for core synthesis and shell synthesis are the same. In some embodiments, the ligands used for core synthesis and those used for shell synthesis are different. After synthesis, any ligands on the surface of the nanostructure can be exchanged with different ligands with other desired properties. Examples of ligands are disclosed in U.S. Patent Nos. 7,572,395, 8,143,703, 8,425,803, 8,563,133, 8,916,064, 9,005,480, 9,139,770, and 9,169,435 and U.S. Patent Application Publication No. 2008/0118755.
适合于合成壳的配体是本领域技术人员已知的。在一些实施方案中,配体是选自月桂酸、己酸、肉豆蔻酸、棕榈酸、硬脂酸和油酸的脂肪酸。在一些实施方案中,配体是有机膦或有机氧化膦,其选自三辛基氧化膦(TOPO)、三辛基膦(TOP)、二苯基膦(DPP)、三苯基氧化膦和三丁基氧化膦。在一些实施方案中,配体是选自十二烷基胺、油胺、十六烷基胺、二辛基胺和十八烷基胺的胺。在一些实施方案中,配体是三辛基氧化膦、三辛基膦或月桂酸。Ligands suitable for the synthesis of shells are known to those skilled in the art. In some embodiments, the ligand is a fatty acid selected from the group consisting of lauric acid, caproic acid, myristic acid, palmitic acid, stearic acid, and oleic acid. In some embodiments, the ligand is an organophosphine or organophosphine oxide selected from trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), diphenylphosphine (DPP), triphenylphosphine oxide, and Tributylphosphine oxide. In some embodiments, the ligand is an amine selected from the group consisting of dodecylamine, oleylamine, cetylamine, dioctylamine, and stearylamine. In some embodiments, the ligand is trioctylphosphine oxide, trioctylphosphine, or lauric acid.
在一些实施方案中,每个壳在配体混合物存在下产生。在一些实施方案中,每个壳在包含2、3、4、5或6种不同配体的混合物存在下产生。在一些实施方案中,每个壳在包含3种不同配体的混合物存在下产生。在一些实施方案中,配体混合物包含三丁基氧化膦、三辛基膦和月桂酸。In some embodiments, each shell is produced in the presence of a mixture of ligands. In some embodiments, each shell is produced in the presence of a mixture containing 2, 3, 4, 5 or 6 different ligands. In some embodiments, each shell is produced in the presence of a mixture containing 3 different ligands. In some embodiments, the ligand mixture includes tributylphosphine oxide, trioctylphosphine, and lauric acid.
在一些实施方案中,每个壳在溶剂的存在下产生。在一些实施方案中,溶剂选自1-十八烯、1-十六碳烯、1-二十碳烯、二十烷、十八烷、十六烷、十四烷、角鲨烯、角鲨烷、三辛基氧化膦和二辛基醚。In some embodiments, each shell is produced in the presence of a solvent. In some embodiments, the solvent is selected from 1-octadecene, 1-hexadecene, 1-eicosene, eicosane, octadecane, hexadecane, tetradecane, squalene, squalane, Squalane, trioctylphosphine oxide and dioctyl ether.
在一些实施方案中,核、核/缓冲层、核/壳或核/缓冲层/壳与壳前体在20℃至310℃、20℃至280℃、20℃至250℃、20℃至200℃、20℃至150℃、20℃至100℃、20℃至50℃、50℃至310℃、50℃至280℃、50℃至250℃、50℃至200℃、50℃至150℃、50℃至100℃、100℃至310℃、100℃至280℃、100℃至250℃、100℃至200℃、100℃至150℃、150℃至310℃、150℃至280℃、150℃至250℃、150℃至200℃、200℃至310℃、200℃至280℃、200℃至250℃、250℃至310℃、250℃至280℃或280℃至310℃的温度下混合。在一些实施方案中,核、核/缓冲层、核/壳或核/缓冲层/壳与壳前体在20℃至100℃的温度下混合。In some embodiments, the core, core/buffer, core/shell, or core/buffer/shell and shell precursors are at 20°C to 310°C, 20°C to 280°C, 20°C to 250°C, 20°C to 200°C ℃, 20℃ to 150℃, 20℃ to 100℃, 20℃ to 50℃, 50℃ to 310℃, 50℃ to 280℃, 50℃ to 250℃, 50℃ to 200℃, 50℃ to 150℃, 50℃ to 100℃, 100℃ to 310℃, 100℃ to 280℃, 100℃ to 250℃, 100℃ to 200℃, 100℃ to 150℃, 150℃ to 310℃, 150℃ to 280℃, 150℃ to 250℃, 150℃ to 200℃, 200℃ to 310℃, 200℃ to 280℃, 200℃ to 250℃, 250℃ to 310℃, 250℃ to 280℃ or 280℃ to 310℃. In some embodiments, the core, core/buffer, core/shell, or core/buffer/shell and shell precursors are mixed at a temperature of 20°C to 100°C.
在一些实施方案中,在混合核、核/缓冲层、核/壳或核/缓冲层/壳和壳前体之后,将反应混合物的温度增加至200℃至310℃、200℃至280℃、200℃至250℃、200℃至220℃、220℃至310℃、220℃至280℃、220℃至250℃、250℃至310℃、250℃至280℃或280℃至310℃的升高温度。在一些实施方案中,在核、核/缓冲层、核/壳或核/缓冲层/壳和壳前体接触之后,将反应混合物的温度升高至250℃和310℃之间。In some embodiments, after mixing the core, core/buffer, core/shell, or core/buffer/shell and shell precursor, the temperature of the reaction mixture is increased to 200°C to 310°C, 200°C to 280°C, Rise from 200℃ to 250℃, 200℃ to 220℃, 220℃ to 310℃, 220℃ to 280℃, 220℃ to 250℃, 250℃ to 310℃, 250℃ to 280℃ or 280℃ to 310℃ temperature. In some embodiments, after contacting the core, core/buffer, core/shell, or core/buffer/shell and shell precursors, the temperature of the reaction mixture is increased to between 250°C and 310°C.
在一些实施方案中,在混合核、核/缓冲层、核/壳或核/缓冲层/壳和壳前体之后,温度达到升高温度的时间为2至240分钟、2至200分钟、2至100分钟、2至60分钟、2至40分钟、5至240分钟、5至200分钟、5至100分钟、5至60分钟、5至40分钟、10至240分钟、10至200分钟、10至100分钟、10至60分钟、10至40分钟、40至240分钟、40至200分钟、40至100分钟、40至60分钟、60至240分钟、60至200分钟、60至100分钟、100至240分钟、100至200分钟或200至240分钟。In some embodiments, the time to reach the elevated temperature after mixing the core, core/buffer, core/shell, or core/buffer/shell and shell precursor is 2 to 240 minutes, 2 to 200 minutes, 2 to 100 minutes, 2 to 60 minutes, 2 to 40 minutes, 5 to 240 minutes, 5 to 200 minutes, 5 to 100 minutes, 5 to 60 minutes, 5 to 40 minutes, 10 to 240 minutes, 10 to 200 minutes, 10 to 100 minutes, 10 to 60 minutes, 10 to 40 minutes, 40 to 240 minutes, 40 to 200 minutes, 40 to 100 minutes, 40 to 60 minutes, 60 to 240 minutes, 60 to 200 minutes, 60 to 100 minutes, 100 to 240 minutes, 100 to 200 minutes or 200 to 240 minutes.
在一些实施方案中,在混合核、核/缓冲层、核/壳或核/缓冲层/壳和壳前体之后,将反应混合物的温度在升高温度下保持2至240分钟、2至200分钟、2至100分钟、2至60分钟、2至40分钟、5至240分钟、5至200分钟、5至100分钟、5至60分钟、5至40分钟、10至240分钟、10至200分钟、10至100分钟、10至60分钟、10至40分钟、40至240分钟、40至200分钟、40至100分钟、40至60分钟、60至240分钟、60至200分钟、60至100分钟、100至240分钟、100至200分钟或200至240分钟。在一些实施方案中,在混合核、核/缓冲层、核/壳或核/缓冲层/壳和壳前体之后,将反应混合物的温度保持在升高的温度下30到120分钟。In some embodiments, after mixing the core, core/buffer, core/shell, or core/buffer/shell and shell precursor, the temperature of the reaction mixture is maintained at an elevated temperature for 2 to 240 minutes, 2 to 200 minutes, 2 to 100 minutes, 2 to 60 minutes, 2 to 40 minutes, 5 to 240 minutes, 5 to 200 minutes, 5 to 100 minutes, 5 to 60 minutes, 5 to 40 minutes, 10 to 240 minutes, 10 to 200 minutes, 10 to 100 minutes, 10 to 60 minutes, 10 to 40 minutes, 40 to 240 minutes, 40 to 200 minutes, 40 to 100 minutes, 40 to 60 minutes, 60 to 240 minutes, 60 to 200 minutes, 60 to 100 minutes minutes, 100 to 240 minutes, 100 to 200 minutes or 200 to 240 minutes. In some embodiments, the temperature of the reaction mixture is maintained at an elevated temperature for 30 to 120 minutes after mixing the core, core/buffer, core/shell, or core/buffer/shell and shell precursors.
在一些实施方案中,通过进一步添加壳材料前体来制备另外的壳,所述壳材料前体加入到反应混合物中,然后保持在升高的温度下。通常,在先前壳的反应基本完成之后(例如,当至少一种先前的前体被耗尽或从反应中除去时或者当检测不到额外的生长时)提供另外的壳前体。前体的进一步添加产生了另外的壳。In some embodiments, additional shells are prepared by further addition of shell material precursors which are added to the reaction mixture and then maintained at an elevated temperature. Typically, additional shell precursors are provided after the reaction of the previous shell is substantially complete (eg, when at least one previous precursor is depleted or removed from the reaction or when no additional growth is detected). Further addition of precursors produces additional shells.
在一些实施方案中,在添加另外的壳材料前体以提供另外的壳之前冷却纳米结构。在一些实施方案中,在添加壳材料前体以提供另外的壳之前将纳米结构保持在升高的温度下。In some embodiments, the nanostructure is cooled before adding additional shell material precursors to provide additional shells. In some embodiments, the nanostructures are maintained at an elevated temperature before adding shell material precursors to provide additional shells.
在添加足够的壳层以使纳米结构达到所需的厚度和直径之后,可以冷却纳米结构。在一些实施方案中,将核/壳或核/缓冲层/壳纳米结构冷却至室温。在一些实施方案中,加入有机溶剂以稀释包含核/壳或核/缓冲层/壳纳米结构的反应混合物。After adding enough shell layers to bring the nanostructure to the desired thickness and diameter, the nanostructure can be cooled. In some embodiments, the core/shell or core/buffer/shell nanostructure is cooled to room temperature. In some embodiments, organic solvent is added to dilute the reaction mixture containing core/shell or core/buffer/shell nanostructures.
在一些实施方案中,用于稀释反应混合物的有机溶剂是乙醇,己烷、戊烷、甲苯、苯、二乙醚、丙酮、乙酸乙酯、二氯甲烷(亚甲基氯)、氯仿、二甲基甲酰胺或N-甲基吡咯烷酮。在一些实施方案中,有机溶剂是甲苯。In some embodiments, the organic solvent used to dilute the reaction mixture is ethanol, hexane, pentane, toluene, benzene, diethyl ether, acetone, ethyl acetate, dichloromethane (methylene chloride), chloroform, dimethyl methyl formamide or N-methylpyrrolidone. In some embodiments, the organic solvent is toluene.
在一些实施方案中,分离核/壳或核/缓冲层/壳纳米结构。在一些实施方案中,通过使用有机溶剂沉淀来分离核/壳或核/缓冲层/壳纳米结构。在一些实施方案中,通过用乙醇絮凝分离核/壳或核/缓冲层/壳纳米结构。In some embodiments, core/shell or core/buffer/shell nanostructures are isolated. In some embodiments, core/shell or core/buffer/shell nanostructures are isolated by precipitation using organic solvents. In some embodiments, core/shell or core/buffer/shell nanostructures are isolated by flocculation with ethanol.
单层的数量决定核/壳或核/缓冲层/壳纳米结构的尺寸。核/壳或核/缓冲层/壳纳米结构的尺寸可使用本领域技术人员已知的技术确定。在一些实施方案中,使用TEM测定核/壳或核/缓冲层/壳纳米结构的尺寸。The number of monolayers determines the size of the core/shell or core/buffer/shell nanostructure. The dimensions of the core/shell or core/buffer/shell nanostructures can be determined using techniques known to those skilled in the art. In some embodiments, TEM is used to determine the dimensions of core/shell or core/buffer/shell nanostructures.
在一些实施方案中,核/壳或核/缓冲层/壳纳米结构的平均直径为1nm至15nm、1nm至10nm、1nm至9nm、1nm至8nm、1nm至7nm、1nm至6nm、1nm至5nm、5nm至15nm、5nm至10nm、5nm至9nm、5nm至8nm、5nm至7nm、5nm至6nm、6nm至15nm、6nm至10nm、6nm至9nm、6nm至8nm、6nm至7nm、7nm至15nm、7nm至10nm、7nm至9nm、7nm至8nm、8nm至15nm、8nm至10nm、8nm至9nm、9nm至15nm、9nm至10nm或10nm至15nm。在一些实施方案中,核/壳纳米结构的平均直径为6nm至7nm。In some embodiments, the average diameter of the core/shell or core/buffer/shell nanostructure is 1 nm to 15 nm, 1 nm to 10 nm, 1 nm to 9 nm, 1 nm to 8 nm, 1 nm to 7 nm, 1 nm to 6 nm, 1 nm to 5 nm, 5nm to 15nm, 5nm to 10nm, 5nm to 9nm, 5nm to 8nm, 5nm to 7nm, 5nm to 6nm, 6nm to 15nm, 6nm to 10nm, 6nm to 9nm, 6nm to 8nm, 6nm to 7nm, 7nm to 15nm, 7nm to 10nm, 7nm to 9nm, 7nm to 8nm, 8nm to 15nm, 8nm to 10nm, 8nm to 9nm, 9nm to 15nm, 9nm to 10nm or 10nm to 15nm. In some embodiments, the core/shell nanostructures have an average diameter of 6 nm to 7 nm.
ZnS壳的产生Generation of ZnS shell
在一些实施方案中,沉积在核、核/缓冲层/壳或核/壳纳米结构上的壳是ZnS壳。In some embodiments, the shell deposited on the core, core/buffer/shell or core/shell nanostructure is a ZnS shell.
在一些实施方案中,壳前体与核、核/缓冲层/壳或核/壳纳米结构接触以制备ZnS壳包括锌源和硫源。In some embodiments, the shell precursor contacted with the core, core/buffer/shell or core/shell nanostructure to prepare the ZnS shell includes a zinc source and a sulfur source.
在一些实施方案中,ZnS壳钝化颗粒表面处的缺陷,这导致在用于诸如LED和激光器的装置中时量子产率的提高和更高的效率。此外,可以通过钝化消除由缺陷态引起的光谱杂质,这增加了颜色饱和度。In some embodiments, the ZnS shell passivates defects at the particle surface, which results in increased quantum yield and higher efficiency when used in devices such as LEDs and lasers. Additionally, spectral impurities caused by defect states can be eliminated through passivation, which increases color saturation.
在一些实施方案中,锌源是二烷基锌化合物。在一些实施方案中,锌源是羧酸锌。在一些实施方案中,锌源是二乙基锌、二甲基锌、乙酸锌、乙酰丙酮锌、碘化锌、溴化锌、氯化锌、氟化锌、碳酸锌、氰化锌、硝酸锌、油酸锌、氧化锌、过氧化锌、高氯酸锌。硫酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或它们的混合物。在一些实施方案中、锌源是油酸锌、己酸锌、辛酸锌、月桂酸锌、肉豆蔻酸锌、棕榈酸锌、硬脂酸锌、二硫代氨基甲酸锌或其混合物。在一些实施方案中,锌源是油酸锌。In some embodiments, the zinc source is a dialkyl zinc compound. In some embodiments, the zinc source is zinc carboxylate. In some embodiments, the zinc source is diethyl zinc, dimethyl zinc, zinc acetate, zinc acetylacetonate, zinc iodide, zinc bromide, zinc chloride, zinc fluoride, zinc carbonate, zinc cyanide, nitric acid Zinc, zinc oleate, zinc oxide, zinc peroxide, zinc perchlorate. Zinc sulfate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate or mixtures thereof. In some embodiments, the zinc source is zinc oleate, zinc caproate, zinc octoate, zinc laurate, zinc myristate, zinc palmitate, zinc stearate, zinc dithiocarbamate, or mixtures thereof. In some embodiments, the zinc source is zinc oleate.
在一些实施方案中,硫源选自元素硫、辛硫醇、十二烷硫醇、十八烷硫醇、三丁基膦硫化物、异硫氰酸环己酯、α-甲苯硫醇、三硫代碳酸乙烯酯、烯丙基硫醇、双(三甲基甲硅烷基)硫醚、三辛基膦硫化物及其混合物。在一些实施方案中,硫源是烷基取代的二硫代氨基甲酸锌。在一些实施方案中,硫源是辛硫醇。在一些实施方案中,硫源是三丁基膦硫化物。In some embodiments, the sulfur source is selected from the group consisting of elemental sulfur, octyl mercaptan, dodecyl mercaptan, octadecanethiol, tributylphosphine sulfide, cyclohexyl isothiocyanate, alpha-toluenethiol, Ethylene trithiocarbonate, allyl mercaptan, bis(trimethylsilyl) sulfide, trioctylphosphine sulfide and mixtures thereof. In some embodiments, the sulfur source is an alkyl-substituted zinc dithiocarbamate. In some embodiments, the sulfur source is octanethiol. In some embodiments, the sulfur source is tributylphosphine sulfide.
在一些实施方案中,制备ZnS壳的核与锌源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至1:25、1:2至1:15,1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50,1:10至1:25、1:10至1:15、1:15至1:1000、1:15至1:100、1:15至1:50、1:15至1:25,1:25至1:1000、1:25至1:100、1:25至1:50、1:50至1:1000、1:50至1:100或1:100至1:1000。In some embodiments, the molar ratio of the core to the zinc source for preparing the ZnS shell is 1:2 to 1:1000, 1:2 to 1:100, 1:2 to 1:50, 1:2 to 1:25, 1:2 to 1:15, 1:2 to 1:10, 1:2 to 1:5, 1:5 to 1:1000, 1:5 to 1:100, 1:5 to 1:50, 1: 5 to 1:25, 1:5 to 1:15, 1:5 to 1:10, 1:10 to 1:1000, 1:10 to 1:100, 1:10 to 1:50, 1:10 to 1:25, 1:10 to 1:15, 1:15 to 1:1000, 1:15 to 1:100, 1:15 to 1:50, 1:15 to 1:25, 1:25 to 1:00 1000, 1:25 to 1:100, 1:25 to 1:50, 1:50 to 1:1000, 1:50 to 1:100 or 1:100 to 1:1000.
在一些实施方案中,制备ZnS壳的核与硫源的摩尔比为1:2至1:1000、1:2至1:100、1:2至1:50、1:2至1:25、1:2至1:15,1:2至1:10、1:2至1:5、1:5至1:1000、1:5至1:100、1:5至1:50、1:5至1:25、1:5至1:15、1:5至1:10、1:10至1:1000、1:10至1:100、1:10至1:50,1:10至1:25、1:10至1:15、1:15至1:1000、1:15至1:100、1:15至1:50、1:15至1:25,1:25至1:1000、1:25至1:100、1:25至1:50、1:50至1:1000、1:50至1:100或1:100至1:1000。In some embodiments, the molar ratio of the core to the sulfur source for preparing the ZnS shell is 1:2 to 1:1000, 1:2 to 1:100, 1:2 to 1:50, 1:2 to 1:25, 1:2 to 1:15, 1:2 to 1:10, 1:2 to 1:5, 1:5 to 1:1000, 1:5 to 1:100, 1:5 to 1:50, 1: 5 to 1:25, 1:5 to 1:15, 1:5 to 1:10, 1:10 to 1:1000, 1:10 to 1:100, 1:10 to 1:50, 1:10 to 1:25, 1:10 to 1:15, 1:15 to 1:1000, 1:15 to 1:100, 1:15 to 1:50, 1:15 to 1:25, 1:25 to 1:00 1000, 1:25 to 1:100, 1:25 to 1:50, 1:50 to 1:1000, 1:50 to 1:100 or 1:100 to 1:1000.
在一些实施方案中,ZnS壳中单层的数量为0.25至10、0.25至8、0.25至7、0.25至6、0.25至5、0.25至4、0.25至3、0.25至2、2至10、2至8、2至7、2至6、2至5、2至4、2至3、3至10、3至8、3至7、3至6、3至5、3至4,4至10、4至8、4至7、4至6、4至5、5至10、5至8、5至7、5至6、6至10、6至8、6至7、7至10、7至8或8至10。在一些实施方案中,ZnS壳包含2至12个单层。在一些实施方案中,ZnS壳包含4至6个单层。In some embodiments, the number of monolayers in the ZnS shell is 0.25 to 10, 0.25 to 8, 0.25 to 7, 0.25 to 6, 0.25 to 5, 0.25 to 4, 0.25 to 3, 0.25 to 2, 2 to 10, 2 to 8, 2 to 7, 2 to 6, 2 to 5, 2 to 4, 2 to 3, 3 to 10, 3 to 8, 3 to 7, 3 to 6, 3 to 5, 3 to 4, 4 to 10, 4 to 8, 4 to 7, 4 to 6, 4 to 5, 5 to 10, 5 to 8, 5 to 7, 5 to 6, 6 to 10, 6 to 8, 6 to 7, 7 to 10, 7 to 8 or 8 to 10. In some embodiments, the ZnS shell contains 2 to 12 monolayers. In some embodiments, the ZnS shell contains 4 to 6 monolayers.
在一些实施方案中,ZnS单层具有约0.31nm的厚度。In some embodiments, the ZnS monolayer has a thickness of about 0.31 nm.
在一些实施方案中,ZnS壳的厚度为0.08nm至3.5nm、0.08nm至2nm、0.08nm至0.9nm、0.08nm至0.7nm、0.08nm至0.5nm、0.08nm至0.2nm、0.2nm至3.5nm、0.2nm至2nm、0.2nm至0.9nm、0.2nm至0.7nm、0.2nm至0.5nm、0.5nm至3.5nm、0.5nm至2nm、0.5nm至0.9nm、0.5nm至0.7nm、0.7nm至3.5nm、0.7nm至2nm、0.7nm至0.9nm、0.9nm至3.5nm、0.9nm至2nm或2nm至3.5nm。In some embodiments, the ZnS shell has a thickness of 0.08nm to 3.5nm, 0.08nm to 2nm, 0.08nm to 0.9nm, 0.08nm to 0.7nm, 0.08nm to 0.5nm, 0.08nm to 0.2nm, 0.2nm to 3.5 nm, 0.2nm to 2nm, 0.2nm to 0.9nm, 0.2nm to 0.7nm, 0.2nm to 0.5nm, 0.5nm to 3.5nm, 0.5nm to 2nm, 0.5nm to 0.9nm, 0.5nm to 0.7nm, 0.7nm to 3.5nm, 0.7nm to 2nm, 0.7nm to 0.9nm, 0.9nm to 3.5nm, 0.9nm to 2nm or 2nm to 3.5nm.
铟掺杂的ZnSe核/壳纳米结构Indium-doped ZnSe core/shell nanostructures
在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构是铟掺杂的ZnSe/ZnS核/壳或铟掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳纳米结构。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构是铟掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳量子点。In some embodiments, the indium-doped ZnSe core/shell nanostructure is an indium-doped ZnSe/ZnS core/shell or an indium-doped ZnSe/ZnSe/ZnS core/buffer/shell nanostructure. In some embodiments, the indium-doped ZnSe core/shell nanostructures are indium-doped ZnSe/ZnSe/ZnS core/buffer/shell quantum dots.
在一些实施方案中,核/壳纳米结构显示高光致发光量子产率。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构显示出30%至99%、30%至95%、30%至90%、30%至85%、30%至80%、30%至70%、30%至60%、30%至50%、30%至40%、40%至99%、40%至95%、40%至90%、40%至85%、40%至80%、40%至70%、40%至60%、40%至50%、50%至99%、50%至95%、50%至90%、50%至85%、50%至70%、50%至60%、60%至99%、60%至95%、60%至85%、60%至80%、60%至70%、70%至99%、70%至95%、70%至85%、70%至80%、80%至99%、80%至90%、80%至85%、85%至99%、85%至95%或95%至99%的光致发光量子产率。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构显示出50%至70%的光致发光量子产率。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构显示出60%至70%的光致发光量子产率。In some embodiments, core/shell nanostructures exhibit high photoluminescence quantum yields. In some embodiments, the indium-doped ZnSe core/shell nanostructure exhibits 30% to 99%, 30% to 95%, 30% to 90%, 30% to 85%, 30% to 80%, 30% to 70%, 30% to 60%, 30% to 50%, 30% to 40%, 40% to 99%, 40% to 95%, 40% to 90%, 40% to 85%, 40% to 80 %, 40% to 70%, 40% to 60%, 40% to 50%, 50% to 99%, 50% to 95%, 50% to 90%, 50% to 85%, 50% to 70%, 50% to 60%, 60% to 99%, 60% to 95%, 60% to 85%, 60% to 80%, 60% to 70%, 70% to 99%, 70% to 95%, 70% to 85%, 70% to 80%, 80% to 99%, 80% to 90%, 80% to 85%, 85% to 99%, 85% to 95%, or 95% to 99% photoluminescence quanta Yield. In some embodiments, indium-doped ZnSe core/shell nanostructures exhibit photoluminescence quantum yields of 50% to 70%. In some embodiments, indium-doped ZnSe core/shell nanostructures exhibit photoluminescence quantum yields of 60% to 70%.
铟掺杂的ZnSe核/壳纳米结构的光致发光光谱可以基本上覆盖光谱的任何所需部分。在一些实施方案中,核/壳纳米结构的光致发光光谱具有在300nm和750nm、300nm和650nm、300nm和550nm、300nm和450nm、300nm和400nm、400nm和750nm、400nm和650nm、400nm和550nm、400nm和450nm、450nm和750nm、450nm和650nm、450nm和550nm、550nm和750nm、550nm和650nm或650nm和750nm之间的发射最大值。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构的光致发光光谱具有400nm至500nm之间的发射最大值。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构的光致发光光谱具有430nm至450nm之间的发射最大值。The photoluminescence spectrum of indium-doped ZnSe core/shell nanostructures can cover essentially any desired portion of the spectrum. In some embodiments, the core/shell nanostructure has a photoluminescence spectrum at 300nm and 750nm, 300nm and 650nm, 300nm and 550nm, 300nm and 450nm, 300nm and 400nm, 400nm and 750nm, 400nm and 650nm, 400nm and 550nm, Emission maximum between 400nm and 450nm, 450nm and 750nm, 450nm and 650nm, 450nm and 550nm, 550nm and 750nm, 550nm and 650nm or 650nm and 750nm. In some embodiments, the photoluminescence spectrum of the indium-doped ZnSe core/shell nanostructure has an emission maximum between 400 nm and 500 nm. In some embodiments, the photoluminescence spectrum of the indium-doped ZnSe core/shell nanostructure has an emission maximum between 430 nm and 450 nm.
核/壳纳米结构的尺寸分布可以相对窄。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构群体的光致发光光谱可具有10nm至60nm、10nm至40nm、10nm至30nm、10nm至20nm、20nm至60nm、20nm至40nm、20nm至30nm、30nm至60nm、30nm至40nm或40nm至60nm的半峰全宽。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构群体的光致发光光谱可以具有20nm至30nm的半峰全宽。The size distribution of core/shell nanostructures can be relatively narrow. In some embodiments, the photoluminescence spectrum of the indium-doped ZnSe core/shell nanostructure population can have a photoluminescence spectrum of 10 nm to 60 nm, 10 nm to 40 nm, 10 nm to 30 nm, 10 nm to 20 nm, 20 nm to 60 nm, 20 nm to 40 nm, 20 nm to Full width at half maximum of 30nm, 30nm to 60nm, 30nm to 40nm or 40nm to 60nm. In some embodiments, the photoluminescence spectrum of the indium-doped ZnSe core/shell nanostructure population may have a full width at half maximum of 20 nm to 30 nm.
所得到的铟掺杂的ZnSe核/壳纳米结构任选地嵌入基质(例如,有机聚合物、含硅聚合物、无机、玻璃状和/或其他基质)中,用于产生纳米结构磷光体和/或结合到装置中,例如LED、背光、筒灯或其他显示或照明单元或光学滤波器。示例性磷光体和照明单元可以例如通过结合具有在期望波长处或附近的发射最大值的纳米结构群来产生特定颜色光或通过结合具有不同发射最大值的两个或更多个不同纳米结构群体来产生宽色域。各种合适的基质在本领域中是已知的。参见,例如,美国专利No.7,068,898和美国专利申请公开No.2010/0276638、2007/0034833和2012/0113672。示例性纳米结构磷光体膜、LED、背光单元等描述于例如美国专利申请公开No.2010/0276638、2012/0113672、2008/0237540、2010/0110728和2010/0155749以及美国专利No.7,374,807、7,645,397、6,501,091和6,803,719中。The resulting indium-doped ZnSe core/shell nanostructures are optionally embedded in a matrix (e.g., organic polymer, silicon-containing polymer, inorganic, glassy, and/or other matrix) for generating nanostructured phosphors and /or incorporated into devices such as LEDs, backlights, downlights or other display or lighting units or optical filters. Exemplary phosphors and illumination units can produce a specific color of light, for example, by combining a population of nanostructures with an emission maximum at or near a desired wavelength or by combining two or more different populations of nanostructures with different emission maxima. to produce a wide color gamut. A variety of suitable matrices are known in the art. See, for example, U.S. Patent No. 7,068,898 and U.S. Patent Application Publication Nos. 2010/0276638, 2007/0034833, and 2012/0113672. Exemplary nanostructured phosphor films, LEDs, backlight units, and the like are described, for example, in U.S. Patent Application Publication Nos. 2010/0276638, 2012/0113672, 2008/0237540, 2010/0110728, and 2010/0155749, and U.S. Patent Nos. 7,374,807, 7,645,397, 6,501,091 and 6,803,719.
由这些方法得到的铟掺杂的ZnSe核/壳纳米结构也是本发明的特征。因此,一类实施方案提供铟掺杂的ZnSe核/壳纳米结构群体。在一些实施方案中,铟掺杂的ZnSe核/壳纳米结构是量子点。Indium-doped ZnSe core/shell nanostructures obtained by these methods are also features of the present invention. Accordingly, one class of embodiments provides a population of indium-doped ZnSe core/shell nanostructures. In some embodiments, the indium-doped ZnSe core/shell nanostructures are quantum dots.
纳米结构层Nanostructured layer
在一些实施方案中,本公开提供了包含至少一个纳米结构群体的纳米结构层,其中所述纳米结构包含铟掺杂的ZnSe核和至少一个壳,其中至少一个壳包含ZnS。In some embodiments, the present disclosure provides a nanostructure layer comprising at least one population of nanostructures, wherein the nanostructures comprise an indium-doped ZnSe core and at least one shell, wherein at least one shell comprises ZnS.
在一些实施方案中,纳米结构的FWHM为约15至约30。In some embodiments, the nanostructure has a FWHM of about 15 to about 30.
在一些实施方案中,纳米结构是量子点。In some embodiments, the nanostructures are quantum dots.
模制品molded products
在一些实施方案中,本公开提供了包含至少一个纳米结构群体的模制品,其中所述纳米结构包含铟掺杂的ZnSe核和至少一个壳,其中至少一个壳包含ZnS。In some embodiments, the present disclosure provides molded articles comprising at least one population of nanostructures, wherein the nanostructures comprise an indium-doped ZnSe core and at least one shell, wherein at least one shell comprises ZnS.
在一些实施方案中,纳米结构的FWHM为约15至约30。In some embodiments, the nanostructure has a FWHM of about 15 to about 30.
在一些实施方案中,模制品是膜、显示器的基板或发光二极管。In some embodiments, the molded article is a film, a substrate of a display, or a light emitting diode.
在一些实施方案中,纳米结构是量子点。In some embodiments, the nanostructures are quantum dots.
在一些实施例中,本发明提供一种发光二极管,包括:In some embodiments, the present invention provides a light-emitting diode, including:
(a)阳极;(a) Anode;
(b)阴极;和(b) cathode; and
(c)阳极和阴极之间的发光层,其中发光层包括包含铟掺杂的ZnSe核和至少一个壳的纳米结构,其中至少一个壳包含ZnS。(c) A luminescent layer between the anode and the cathode, wherein the luminescent layer comprises a nanostructure comprising an indium-doped ZnSe core and at least one shell, wherein at least one shell comprises ZnS.
在一些实施方案中,发光二极管还包含空穴传输层。在一些实施方案中,空穴传输层包含选自胺、三芳基胺、噻吩、咔唑、酞菁、卟啉及其组合的材料。在一些实施方案中,空穴传输层包含N,N'-二(萘-1-基)-N,N'-双(4-乙烯基苯基)-4,4'-二胺。In some embodiments, the light emitting diode further includes a hole transport layer. In some embodiments, the hole transport layer includes a material selected from the group consisting of amines, triarylamines, thiophenes, carbazoles, phthalocyanines, porphyrins, and combinations thereof. In some embodiments, the hole transport layer includes N,N'-bis(naphth-1-yl)-N,N'-bis(4-vinylphenyl)-4,4'-diamine.
在一些实施方案中,发光二极管还包含电子传输层。在一些实施方案中,电子传输层包含选自咪唑、吡啶、嘧啶、哒嗪、吡嗪、噁二唑、喹啉、喹喔啉、蒽、苯并蒽、芘、苝、苯并咪唑、三嗪、酮、氧化膦、吩嗪、菲咯啉、三芳基硼烷、金属氧化物及其组合的材料。在一些实施方案中,电子传输层包含1,3-双(3,5-二吡啶-3-基苯基)苯(B3PyPB)、浴铜灵、红菲咯啉、3-(联苯-4-基)-5-(4-叔丁基)-丁基苯基)-4-苯基-4H-1,2,4-三唑、2-(4-联苯基)-5-苯基-1,3,4-噁二唑、3,5-双(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑、双(8-羟基-2-甲基喹啉)-(4-苯基苯氧基)铝、2,5-双(1-萘基)-1,3,4-噁二唑、3,5-二苯基-4-(1-萘基)-1H-1,2,4-三唑、1,3,5-三(间-吡啶-3-基苯基)苯(TmPyPB)、2,2',2”-(1,3,5-苯三基)-三(1-苯基-1-H-苯并咪唑)(TPBi)、三-(8-羟基喹啉)铝、TiO2、ZnO、SnO2、SiO2、ZrO2或ZnMgO。在一些实施方案中,电子传输层包含ZnMgO。In some embodiments, the light emitting diode further includes an electron transport layer. In some embodiments, the electron transport layer comprises imidazole, pyridine, pyrimidine, pyridazine, pyrazine, oxadiazole, quinoline, quinoxaline, anthracene, benzanthracene, pyrene, perylene, benzimidazole, tris Materials of azines, ketones, phosphine oxides, phenazines, phenanthrolines, triarylboranes, metal oxides and combinations thereof. In some embodiments, the electron transport layer includes 1,3-bis(3,5-dipyridin-3-ylphenyl)benzene (B3PyPB), bathocuproline, bathophenanthroline, 3-(biphenyl-4 -base)-5-(4-tert-butyl)-butylphenyl)-4-phenyl-4H-1,2,4-triazole, 2-(4-biphenyl)-5-phenyl -1,3,4-oxadiazole, 3,5-bis(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, bis(8-hydroxy-2- Methylquinoline)-(4-phenylphenoxy)aluminum, 2,5-bis(1-naphthyl)-1,3,4-oxadiazole, 3,5-diphenyl-4-( 1-naphthyl)-1H-1,2,4-triazole, 1,3,5-tris(m-pyridin-3-ylphenyl)benzene (TmPyPB), 2,2',2”-(1 ,3,5-phenyltriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), tris-(8-hydroxyquinoline)aluminum, TiO 2 , ZnO, SnO 2 , SiO 2 , ZrO 2 or ZnMgO. In some embodiments, the electron transport layer includes ZnMgO.
制备纳米结构层Preparation of nanostructured layers
在一些实施方案中,纳米结构层可以嵌入聚合物基质中。如本文所用,术语“嵌入”用于表示纳米结构群体被构成基质的大部分组分的聚合物包围或包裹。在一些实施方案中,至少一个纳米结构群体适当地均匀分布在整个基质中。在一些实施方案中,根据应用特异性分布来分布至少一个纳米结构群体。在一些实施方案中,纳米结构混合在聚合物中并施加到基底的表面上。In some embodiments, the nanostructured layer can be embedded in a polymer matrix. As used herein, the term "embedded" is used to mean that a population of nanostructures is surrounded or encapsulated by a polymer that constitutes a majority component of the matrix. In some embodiments, at least one population of nanostructures is suitably evenly distributed throughout the matrix. In some embodiments, at least one population of nanostructures is distributed according to an application-specific distribution. In some embodiments, the nanostructures are mixed in the polymer and applied to the surface of the substrate.
在一些实施方案中,沉积纳米结构组合物以形成纳米结构层。在一些实施方案中,纳米结构组合物可通过本领域已知的任何合适方法沉积,包括但不限于涂刷、喷涂、溶剂喷雾、湿涂、粘合剂涂布、旋涂、带涂覆(tape-coating)、辊涂、流涂、喷墨蒸汽喷射、滴铸、刮涂、雾状沉积(mist deposition)或其组合。纳米结构组合物可以直接涂覆在所需的基底层上。或者,纳米结构组合物可以作为独立元件形成固体层,然后施加到基底上。在一些实施方案中,纳米结构组合物可沉积在一个或多个阻挡层上。In some embodiments, the nanostructured composition is deposited to form a nanostructured layer. In some embodiments, the nanostructured composition may be deposited by any suitable method known in the art, including, but not limited to, brushing, spraying, solvent spray, wet coating, adhesive coating, spin coating, tape coating ( tape-coating), roller coating, flow coating, inkjet vapor spraying, drop casting, blade coating, mist deposition or combinations thereof. The nanostructured composition can be coated directly on the desired substrate layer. Alternatively, the nanostructured composition can be formed as a separate element into a solid layer and then applied to a substrate. In some embodiments, the nanostructured composition can be deposited on one or more barrier layers.
在一些实施方案中,纳米结构层在沉积后固化。合适的固化方法包括光固化如UV固化和热固化。传统的层压膜加工方法、带涂覆方法和/或卷对卷制造方法可用于形成纳米结构层。In some embodiments, the nanostructured layer is solidified after deposition. Suitable curing methods include light curing such as UV curing and thermal curing. Traditional laminate film processing methods, tape coating methods, and/or roll-to-roll manufacturing methods can be used to form the nanostructured layer.
旋涂spin coating
在一些实施方案中,使用旋涂将纳米结构组合物沉积到基底上。在旋涂中,通常将少量材料沉积在装载到称为旋转器的机器上的基底的中心上,其通过真空固定。通过旋转器在基底上施加高速旋转,这导致向心力以将材料从中心扩散到基板的边缘。虽然大多数材料被抛离,但是一定量保留在基底上,从而随着旋转继续在表面上形成材料薄膜。除了为旋转工艺选择的参数(例如旋转速度、加速度和旋转时间)之外,薄膜的最终厚度由沉积材料和基底的性质决定。在一些实施方案中,使用1500至6000rpm的旋转速度,旋转时间为10-60秒。In some embodiments, the nanostructured composition is deposited onto the substrate using spin coating. In spin coating, a small amount of material is typically deposited on the center of a substrate loaded onto a machine called a spinner, which is held in place by a vacuum. High-speed rotation is exerted on the substrate by a spinner, which results in centripetal force to spread the material from the center to the edges of the substrate. Although most of the material is thrown off, a certain amount remains on the substrate, continuing to form a film of material on the surface as the rotation proceeds. In addition to the parameters selected for the spin process (such as spin speed, acceleration, and spin time), the final thickness of the film is determined by the properties of the deposited material and the substrate. In some embodiments, a rotation speed of 1500 to 6000 rpm is used, with a rotation time of 10-60 seconds.
雾状沉积mist deposit
在一些实施方案中,使用雾状沉积将纳米结构组合物沉积到基底上。雾状沉积在室温和大气压下进行,并且允许通过改变工艺条件精确控制膜厚度。在雾状沉积期间,液体源材料变成非常细的薄雾并通过氮气运送到沉积室。然后通过场屏和晶片支架之间的高电压势将薄雾吸引到晶片表面。一旦液滴聚并在晶片表面上,就将晶片从腔室中取出并热固化以使溶剂蒸发。液体前体是溶剂和待沉积材料的混合物。它通过加压氮气运送到雾化器。Price,S.C等,“Formation of Ultra-Thin Quantum Dot Films by Mist Deposition”,ESC Transactions 11:89-94(2007)。In some embodiments, the nanostructured composition is deposited onto the substrate using mist deposition. Mist deposition occurs at room temperature and atmospheric pressure and allows precise control of film thickness by varying process conditions. During mist deposition, the liquid source material is reduced to a very fine mist and transported to the deposition chamber by nitrogen gas. The mist is then attracted to the wafer surface by a high voltage potential between the field screen and the wafer holder. Once the droplets coalesce on the wafer surface, the wafer is removed from the chamber and thermally cured to allow the solvent to evaporate. A liquid precursor is a mixture of solvent and material to be deposited. It is delivered to the atomizer via pressurized nitrogen. Price, S.C., et al., "Formation of Ultra-Thin Quantum Dot Films by Mist Deposition," ESC Transactions 11: 89-94 (2007).
喷涂Spray
在一些实施方案中,使用喷涂将纳米结构组合物沉积在基材上。用于喷涂的典型设备包括喷嘴、雾化器、前体溶液和载气。在喷雾沉积过程中,借助于载气或通过雾化(例如,超声波、鼓风或静电)将前体溶液粉碎成微米尺寸的液滴。通过根据需要进行控制和调节的载气的帮助,从雾化器出来的液滴通过喷嘴通过基底表面加速。喷嘴和基底之间的相对运动通过设计限定,目的是完全覆盖基底。In some embodiments, the nanostructured composition is deposited onto a substrate using spray coating. Typical equipment used for spray coating includes nozzles, atomizers, precursor solutions, and carrier gases. During spray deposition, the precursor solution is pulverized into micron-sized droplets with the aid of a carrier gas or by atomization (e.g., ultrasonic, air blast, or electrostatic). The droplets emerging from the atomizer are accelerated through the nozzle across the substrate surface with the help of a carrier gas that is controlled and adjusted as needed. The relative motion between the nozzle and the substrate is defined by design with the goal of complete coverage of the substrate.
在一些实施方案中,纳米结构组合物的施加还包括溶剂。在一些实施方案中,用于施加纳米结构组合物的溶剂是水、有机溶剂、无机溶剂、卤代有机溶剂或其混合物。示例性溶剂包括但不限于水、D2O、丙酮、乙醇、二噁烷、乙酸乙酯、甲基乙基酮、异丙醇、苯甲醚、γ-丁内酯、二甲基甲酰胺、N-甲基吡咯烷酮、二甲基乙酰胺、六甲基磷酰胺、甲苯、二甲基亚砜、环戊酮。四亚甲基亚砜、二甲苯、ε-己内酯、四氢呋喃、四氯乙烯、氯仿、氯苯、二氯甲烷、1,2-二氯乙烷、1,1,2,2-四氯乙烷或其混合物。In some embodiments, application of the nanostructured composition also includes a solvent. In some embodiments, the solvent used to apply the nanostructured composition is water, an organic solvent, an inorganic solvent, a halogenated organic solvent, or mixtures thereof. Exemplary solvents include, but are not limited to, water, D2O , acetone, ethanol, dioxane, ethyl acetate, methyl ethyl ketone, isopropyl alcohol, anisole, gamma-butyrolactone, dimethylformamide , N-methylpyrrolidone, dimethylacetamide, hexamethylphosphoramide, toluene, dimethyl sulfoxide, cyclopentanone. Tetramethylene sulfoxide, xylene, ε-caprolactone, tetrahydrofuran, tetrachloroethylene, chloroform, chlorobenzene, methylene chloride, 1,2-dichloroethane, 1,1,2,2-tetrachloro Ethane or mixtures thereof.
在一些实施方案中,将纳米结构组合物热固化以形成纳米结构层。在一些实施方案中,组合物使用UV光固化。在一些实施方案中,将纳米结构组合物直接涂覆在纳米结构膜的阻挡层上,随后将另外的阻挡层沉积在纳米结构层上以产生纳米结构膜。可以在阻挡膜下方使用支持基底以增加强度、稳定性和涂层均匀性,并且防止材料不一致、气泡形成以及阻挡层材料或其他材料的起皱或折叠。另外,优选在纳米结构层上沉积一个或多个阻挡层以密封顶部和底部阻挡层之间的材料。适当地,阻挡层可以作为层压膜沉积并且任选地密封或进一步处理,然后将纳米结构膜结合到特定的照明装置中。如本领域普通技术人员理解的,纳米结构组合物沉积过程可包括另外的或变化的组分。这些实施方案将允许纳米结构发射特性的在线工艺调整,例如亮度和颜色(例如,调整量子点膜白点),以及纳米结构膜厚度和其他特性。另外,这些实施方案允许在生产期间定期测试纳米结构薄膜特性,以及任何必要的切换以实现精确的纳米结构薄膜特性。这种测试和调整也可以在不改变工艺线的机械配置的情况下完成,因为可以采用计算机程序来电子地改变用于形成纳米结构薄膜的混合物的相应量。In some embodiments, the nanostructured composition is thermally cured to form a nanostructured layer. In some embodiments, the composition is cured using UV light. In some embodiments, the nanostructured composition is coated directly on the barrier layer of the nanostructured film, and an additional barrier layer is subsequently deposited on the nanostructured layer to create the nanostructured film. A support substrate can be used underneath the barrier film to add strength, stability, and coating uniformity, and to prevent material inconsistencies, bubble formation, and wrinkling or folding of the barrier material or other materials. Additionally, one or more barrier layers are preferably deposited on the nanostructured layer to seal the material between the top and bottom barrier layers. Suitably, the barrier layer can be deposited as a laminate film and optionally sealed or further processed before incorporating the nanostructured film into a specific lighting device. As one of ordinary skill in the art will appreciate, the nanostructure composition deposition process may include additional or varying components. These embodiments will allow for in-line process tuning of nanostructure emission properties, such as brightness and color (e.g., tuning the quantum dot film white point), as well as nanostructure film thickness and other properties. Additionally, these embodiments allow for regular testing of nanostructured film properties during production, as well as any necessary switching to achieve precise nanostructured film properties. This testing and adjustment can also be accomplished without changing the mechanical configuration of the process line, since a computer program can be employed to electronically vary the corresponding amounts of mixture used to form the nanostructured film.
阻挡层barrier layer
在一些实施方案中,模制品包括设置在纳米结构层的一侧或两侧上的一个或多个阻挡层。合适的阻挡层保护纳米结构层和模制品免受环境条件如高温、氧和湿气的影响。合适的阻挡材料包括不黄变的透明光学材料,其是疏水的,与模制品在化学和机械上相容,表现出光稳定性和化学稳定性,并且可以承受高温。在一些实施方案中,一个或多个阻挡层与模制品折射率匹配。在一些实施方案中,模制品的基质材料和一个或多个相邻的阻挡层是折射率匹配的以具有相似的折射率,使得透过阻挡层朝向模制品传输的大部分光从阻挡层透射到纳米结构层中。这种折射率匹配减少了阻挡层和基质材料之间界面处的光损失。In some embodiments, the molded article includes one or more barrier layers disposed on one or both sides of the nanostructured layer. Suitable barrier layers protect the nanostructured layer and molded article from environmental conditions such as high temperature, oxygen and moisture. Suitable barrier materials include non-yellowing transparent optical materials that are hydrophobic, chemically and mechanically compatible with the molded article, exhibit photostability and chemical stability, and can withstand high temperatures. In some embodiments, the one or more barrier layers are index matched to the molded article. In some embodiments, the matrix material of the molded article and one or more adjacent barrier layers are index matched to have similar refractive indices such that most of the light transmitted through the barrier layer towards the molded article is transmitted from the barrier layer into the nanostructured layer. This index matching reduces light loss at the interface between the barrier layer and the matrix material.
阻挡层合适地是固体材料,并且可以是固化的液体、凝胶或聚合物。根据具体应用,阻挡层可包括柔性或非柔性材料。阻挡层优选是平面层,并且可以包括任何合适的形状和表面区域构型,这取决于特定的照明应用。在一些实施方案中,一个或多个阻挡层与层压膜加工技术相容,从而纳米结构层设置在至少第一阻挡层上,并且根据一个实施方案至少第二阻挡层在纳米结构层的相对侧上设置在纳米结构层上以形成模制品。合适的阻挡材料包括本领域已知的任何合适的阻挡材料。在一些实施方案中,合适的阻挡材料包括玻璃、聚合物和氧化物。合适的阻挡层材料包括但不限于聚合物,例如聚对苯二甲酸乙二醇酯(PET);氧化物如氧化硅、氧化钛或氧化铝(如SiO2、Si2O3、TiO2或Al2O3);及其合适的组合。优选地,模制品的每个阻挡层包括至少2个包含不同材料或组合物的层,使得多层屏障消除或减少阻挡层中的针孔缺陷对齐,从而提供氧气和水分渗透到纳米结构中的有效屏障。纳米结构层可包括任何合适的材料或材料的组合以及纳米结构层的任一侧或两侧上的任何合适数量的阻挡层。阻挡层的材料、厚度和数量将取决于具体应用,并且将适当地选择以最大化纳米结构层的屏障保护和亮度,同时使模制品的厚度最小化。在优选的实施方案中,每个阻挡层包括层压膜,优选双重层压膜,其中每个阻挡层的厚度足够厚以在卷对卷或层压制造过程中消除起皱。在纳米结构包含重金属或其他有毒材料的实施方案中,屏障的数量或厚度可进一步取决于法律毒性指导,该指导可能要求更多或更厚的屏障层。屏障的其他考虑因素包括成本、可得性和机械强度。The barrier layer is suitably a solid material and may be a solidified liquid, gel or polymer. Depending on the specific application, the barrier layer may include flexible or non-flexible materials. The barrier layer is preferably a planar layer and may include any suitable shape and surface area configuration, depending on the particular lighting application. In some embodiments, the one or more barrier layers are compatible with laminate film processing techniques such that the nanostructured layer is disposed on at least a first barrier layer, and according to one embodiment at least a second barrier layer is located opposite the nanostructured layer. The sides are disposed on the nanostructured layer to form a molded article. Suitable barrier materials include any suitable barrier material known in the art. In some embodiments, suitable barrier materials include glasses, polymers, and oxides. Suitable barrier materials include, but are not limited to, polymers such as polyethylene terephthalate (PET); oxides such as silicon oxide, titanium oxide, or aluminum oxide (e.g., SiO 2 , Si 2 O 3 , TiO 2 or Al 2 O 3 ); and suitable combinations thereof. Preferably, each barrier layer of the molded article includes at least 2 layers containing different materials or compositions such that the multi-layer barrier eliminates or reduces pinhole defect alignment in the barrier layer, thereby providing oxygen and moisture penetration into the nanostructure. Effective barrier. The nanostructured layer may include any suitable material or combination of materials and any suitable number of barrier layers on either or both sides of the nanostructured layer. The material, thickness, and number of barrier layers will depend on the specific application and will be appropriately selected to maximize barrier protection and brightness of the nanostructured layer while minimizing the thickness of the molded article. In preferred embodiments, each barrier layer includes a laminated film, preferably a dual laminated film, wherein the thickness of each barrier layer is sufficiently thick to eliminate wrinkling during roll-to-roll or laminate manufacturing processes. In embodiments where the nanostructures contain heavy metals or other toxic materials, the number or thickness of the barriers may further depend on legal toxicity guidance, which may require more or thicker barrier layers. Other considerations for barriers include cost, availability, and mechanical strength.
在一些实施方案中,纳米结构薄膜包括邻近纳米结构层的每一侧的两个或更多个阻挡层,例如,纳米结构层的每一侧上的两个或三个层或者纳米结构层的每一侧上的两个阻挡层。在一些实施例中,每个阻挡层包括薄玻璃板,例如厚度为约100μm、100μm或更小,或50μm或更小的玻璃板。In some embodiments, the nanostructured film includes two or more barrier layers adjacent each side of the nanostructured layer, e.g., two or three layers on each side of the nanostructured layer or of the nanostructured layer. Two barrier layers on each side. In some embodiments, each barrier layer includes a thin glass plate, such as a glass plate having a thickness of about 100 μm, 100 μm or less, or 50 μm or less.
模制品的每个阻挡层可具有任何合适的厚度,这取决于照明装置和应用的特定要求和特性,以及单个膜组件,例如阻挡层和纳米结构层,如本领域普通技术人员将理解的。在一些实施方案中,每个阻挡层可具有50μm或更小、40μm或更小、30μm或更小、25μm或更小、20μm或更小或者15μm或更小的厚度。在某些实施例中,阻挡层包括氧化物涂层,其可包含诸如氧化硅、氧化钛和氧化铝(例如,SiO2、Si2O3、TiO2或Al2O3)的材料。氧化物涂层可具有约10μm或更小、5μm或更小、1μm或更小或者100nm或更小的厚度。在某些实施方案中,阻挡层包含薄氧化物涂层,其厚度为约100nm或更小、10nm或更小、5nm或更小或者3nm或更小。顶部和/或底部屏障可以由薄氧化物涂层组成,或者可以包括薄氧化物涂层和一个或多个另外的材料层。Each barrier layer of the molded article may have any suitable thickness, depending on the specific requirements and characteristics of the lighting device and application, as well as the individual film components, such as barrier layers and nanostructured layers, as one of ordinary skill in the art will understand. In some embodiments, each barrier layer may have a thickness of 50 μm or less, 40 μm or less, 30 μm or less, 25 μm or less, 20 μm or less, or 15 μm or less. In certain embodiments, the barrier layer includes an oxide coating, which may include materials such as silicon oxide, titanium oxide, and aluminum oxide (eg, SiO 2 , Si 2 O 3 , TiO 2 , or Al 2 O 3 ). The oxide coating may have a thickness of about 10 μm or less, 5 μm or less, 1 μm or less, or 100 nm or less. In certain embodiments, the barrier layer includes a thin oxide coating having a thickness of about 100 nm or less, 10 nm or less, 5 nm or less, or 3 nm or less. The top and/or bottom barrier may consist of a thin oxide coating, or may include a thin oxide coating and one or more additional material layers.
纳米结构层特征和实施方式Nanostructured Layer Characteristics and Implementations
在一些实施方案中,纳米结构层用于形成显示装置。如本文所使用的,显示装置指的是具有照明显示器的任何系统。这些装置包括但不限于包括液晶显示器(LCD)、电视、计算机、移动电话、智能电话、个人数字助理(PDA)、游戏设备、电子阅读设备、数码相机等。In some embodiments, nanostructured layers are used to form display devices. As used herein, a display device refers to any system with an illuminated display. These devices include, but are not limited to, liquid crystal displays (LCDs), televisions, computers, mobile phones, smart phones, personal digital assistants (PDAs), gaming devices, electronic reading devices, digital cameras, etc.
具有改善的特性的模制品Molded articles with improved properties
在一些实施方案中,使用纳米结构制备的模制品显示出约1.5%至约20%、约1.5%至约15%、约1.5%至约12%、约1.5%至约10%、约1.5%至约8%、约1.5%至约4%、约1.5%至约3%、约3%至约20%、约3%至约15%、约3%至约12%、约3%至约10%、约3%至约8%、约8%至约20%、约8%至约15%、约8%至约12%、约8%至约10%、约10%约20%、约10%至约15%、约10%至约12%、约12%至约20%、约12%至约15%或约15%至约20%的EQE。在一些实施方案中,纳米结构是量子点。在一些实施方案中,模制品是发光二极管。In some embodiments, molded articles prepared using nanostructures exhibit about 1.5% to about 20%, about 1.5% to about 15%, about 1.5% to about 12%, about 1.5% to about 10%, about 1.5% to about 8%, about 1.5% to about 4%, about 1.5% to about 3%, about 3% to about 20%, about 3% to about 15%, about 3% to about 12%, about 3% to about 10%, about 3% to about 8%, about 8% to about 20%, about 8% to about 15%, about 8% to about 12%, about 8% to about 10%, about 10% about 20%, An EQE of about 10% to about 15%, about 10% to about 12%, about 12% to about 20%, about 12% to about 15%, or about 15% to about 20%. In some embodiments, the nanostructures are quantum dots. In some embodiments, the molded article is a light emitting diode.
在一些实施方案中,使用纳米结构制备的模制品显示发射最大值在400nm和500nm之间的光致发光光谱。在一些实施方案中,使用纳米结构制备的模制品显示发射最大值在430nm和450nm之间的光致发光光谱。In some embodiments, molded articles prepared using nanostructures exhibit a photoluminescence spectrum with an emission maximum between 400 nm and 500 nm. In some embodiments, molded articles prepared using nanostructures exhibit a photoluminescence spectrum with an emission maximum between 430 nm and 450 nm.
以下实施例是本文所述产品和方法的说明性而非限制性的实施例。本领域通常用到的并且基于本公开内容对于本领域技术人员而言是显而易见的各种条件、制剂和其他参数的适当修改和适应在本发明的精神和范围内。The following examples are illustrative, but not limiting, of the products and methods described herein. Appropriate modifications and adaptations of various conditions, formulations and other parameters commonly used in the art and which will be apparent to those skilled in the art based on this disclosure are within the spirit and scope of the invention.
实施例Example
实施例1Example 1
InCl3-掺杂的ZnSe纳米结构的合成Synthesis of InCl 3 -doped ZnSe nanostructures
将油胺(15mL)加入到100mL三颈烧瓶中并在110℃下真空脱气30分钟。在氮气流下将混合物加热至300℃。在该温度下,向烧瓶中加入1.5mL三辛基硒化膦(TOPSe,1.92M)和二苯基膦(225μL)在三辛基膦(TOP,总共1.0mL)中的溶液。一旦温度反弹至300℃,快速注入二乙基锌(295μL)在TOP(2.5mL)中的溶液和氯化铟(8mg,36μmol)在TOP(2.5mL)中的溶液。将温度设定在280℃并在5分钟后以1mL/分钟的速率输入二乙基锌(1.38mL)和10.5mL TOPSe(1.92M)在TOP(总共6.5mL)中的溶液。7.5mL后停止10分钟,9.5mL后停止15分钟。在锌注入后26分钟开始,以1.5mL/分钟的速率输注另外的油胺(20mL)。输注完成后,将反应混合物在280℃保持15分钟,然后冷却至室温。然后用等体积的甲苯(65mL)稀释生长溶液,并通过加入乙醇(130mL)使纳米晶体沉淀。离心后,弃去上清液,将纳米晶体再分散在己烷(40mL)中。浓度通过从等分试样蒸发溶剂作为干重来测量。Oleylamine (15 mL) was added to a 100 mL three-neck flask and vacuum degassed at 110°C for 30 minutes. The mixture was heated to 300°C under a stream of nitrogen. At this temperature, 1.5 mL of a solution of trioctylphosphine selenide (TOPSe, 1.92 M) and diphenylphosphine (225 μL) in trioctylphosphine (TOP, 1.0 mL total) was added to the flask. Once the temperature rebounded to 300°C, rapidly inject a solution of diethylzinc (295 μL) in TOP (2.5 mL) and indium chloride (8 mg, 36 μmol) in TOP (2.5 mL). The temperature was set at 280°C and after 5 minutes a solution of diethylzinc (1.38 mL) and 10.5 mL TOPSe (1.92 M) in TOP (total 6.5 mL) was introduced at a rate of 1 mL/min. Stop for 10 minutes after 7.5mL and stop for 15 minutes after 9.5mL. Additional oleylamine (20 mL) was infused at a rate of 1.5 mL/min starting 26 minutes after zinc infusion. After the infusion is complete, the reaction mixture is held at 280°C for 15 minutes and then cooled to room temperature. The growth solution was then diluted with an equal volume of toluene (65 mL) and the nanocrystals were precipitated by adding ethanol (130 mL). After centrifugation, the supernatant was discarded and the nanocrystals were redispersed in hexane (40 mL). Concentration was measured by evaporating the solvent from an aliquot as dry weight.
实施例2Example 2
InCl3掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳纳米结构的合成Synthesis of InCl 3 -doped ZnSe/ZnSe/ZnS core/buffer layer/shell nanostructures
使用以下程序在具有4ML ZnSe缓冲层和6ML ZnS的平均直径4.0nm的InCl3掺杂的ZnSe纳米晶体核上涂覆ZnSe/ZnS缓冲层/壳。Use the following procedure to coat a ZnSe/ZnS buffer layer/shell on an InCl doped ZnSe nanocrystal core with an average diameter of 4.0 nm with 4 ML ZnSe buffer layer and 6 ML ZnS.
向100mL三颈烧瓶中加入油酸锌(6.03g)、月桂酸(3.85g)和三辛基氧化膦(4.93g)。在三次真空和氮气回填循环后,将TOP(9.9mL)和InCl3掺杂的ZnSe核溶液(1.5mL,78.9mg/mL,在甲苯中)加入烧瓶中。将溶液在真空下在100℃下脱气20分钟,然后在氮气流下加热至310℃。在达到该温度10分钟后,开始以0.19mL/min的速率缓慢输注TOPSe(9.5mL,TOP中0.3M)。硒输注完成后,将反应在310℃保持10分钟。然后开始以0.42mL/分钟的速率输注三丁基膦硫化物(16.9mL,在TOP中0.4M)。在硫输注完成后,将反应在310℃下保持10分钟,然后冷却至室温。将反应混合物用甲苯(50mL)稀释。通过添加乙醇(100mL)沉淀核/缓冲层/壳纳米晶体,然后通过离心分离,倾析上清液,并将纳米晶体再分散在己烷(50mL)中。用乙醇(50mL)重复沉淀一次,最后将纳米晶体再分散在辛烷(7mL)中。将溶液通过聚四氟乙烯(PTFE)0.22μm注射器式过滤器过滤,并在测量等分试样的干重后将浓度调节至18mg/mL。Add zinc oleate (6.03g), lauric acid (3.85g) and trioctylphosphine oxide (4.93g) to a 100mL three-neck flask. After three cycles of vacuum and nitrogen backfill, TOP (9.9 mL) and InCl3 - doped ZnSe core solution (1.5 mL, 78.9 mg/mL in toluene) were added to the flask. The solution was degassed under vacuum at 100°C for 20 minutes and then heated to 310°C under a stream of nitrogen. 10 minutes after reaching this temperature, start a slow infusion of TOPSe (9.5 mL, 0.3 M in TOP) at a rate of 0.19 mL/min. After the selenium infusion was completed, the reaction was held at 310°C for 10 minutes. An infusion of tributylphosphine sulfide (16.9 mL, 0.4 M in TOP) was then started at a rate of 0.42 mL/minute. After the sulfur infusion was complete, the reaction was held at 310°C for 10 minutes and then cooled to room temperature. The reaction mixture was diluted with toluene (50 mL). The core/buffer/shell nanocrystals were precipitated by adding ethanol (100 mL), then separated by centrifugation, the supernatant was decanted, and the nanocrystals were redispersed in hexanes (50 mL). The precipitation was repeated once with ethanol (50 mL) and finally the nanocrystals were redispersed in octane (7 mL). The solution was filtered through a polytetrafluoroethylene (PTFE) 0.22 μm syringe filter and the concentration was adjusted to 18 mg/mL after measuring the dry weight of the aliquots.
实施例3Example 3
铟掺杂的ZnSe纳米结构的合成Synthesis of Indium-Doped ZnSe Nanostructures
可以使用实施例1-2中的程序使用各种铟盐制备铟掺杂的ZnSe纳米结构。表1中提供了铟掺杂的ZnSe/ZnS核/壳纳米结构的量和所得光学性质。Indium-doped ZnSe nanostructures can be prepared using various indium salts using the procedures in Examples 1-2. The amounts of indium doped ZnSe/ZnS core/shell nanostructures and the resulting optical properties are provided in Table 1.
表1Table 1
如表1和图1所示,可以通过改变所用铟盐的量和类型来调节铟掺杂的ZnSe核和ZnSe/ZnSe/ZnS核/缓冲层/壳纳米结构的PWL。As shown in Table 1 and Figure 1, the PWL of indium-doped ZnSe core and ZnSe/ZnSe/ZnS core/buffer/shell nanostructures can be tuned by changing the amount and type of indium salt used.
实施例4Example 4
使用纳米结构制备的电致发光装置的分析Analysis of electroluminescent devices fabricated using nanostructures
通过旋涂和热蒸发的组合来制备装置。首先,将空穴注入材料聚(3,4-亚乙基二氧基噻吩):聚(苯乙烯磺酸酯)(PEDOT:PSS)(50nm)旋涂在UV-臭氧处理的氧化铟锡(ITO)基底上并在200℃下烘烤15分钟。将装置转移到惰性气氛中,和将空穴传输材料N,N'-二(萘-1-基)-N,N'-双(4-乙烯基苯基)联苯基-4,4'-二胺(VNPB)(20nm)通过旋涂沉积并在200℃下烘烤15分钟。通过旋涂沉积ZnSe/ZnS或铟掺杂的ZnSe/ZnS量子点的溶液,然后旋涂电子传输材料ZnMgO(20nm)。然后通过热蒸发沉积Al阴极(150nm),随后使用封盖-玻璃、吸气剂和环氧树脂包封装置。Devices were prepared by a combination of spin coating and thermal evaporation. First, the hole injection material poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (50 nm) was spin-coated on UV-ozone-treated indium tin oxide ( ITO) substrate and baked at 200°C for 15 minutes. Transfer the device to an inert atmosphere and add the hole transport material N,N'-bis(naphth-1-yl)-N,N'-bis(4-vinylphenyl)biphenyl-4,4' - Diamine (VNPB) (20 nm) was deposited by spin coating and baked at 200°C for 15 minutes. A solution of ZnSe/ZnS or indium-doped ZnSe/ZnS quantum dots was deposited by spin coating, followed by spin coating of the electron transport material ZnMgO (20 nm). An Al cathode (150 nm) was then deposited by thermal evaporation, followed by encapsulation of the device using cover-glass, getter and epoxy.
图5显示与使用铟掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳量子点制备的发光装置相比,使用未掺杂的ZnSe/ZnS量子点制备的发光装置的寿命曲线。如图5和表2所示,使用铟掺杂的ZnSe/ZnSe/ZnS核/缓冲层/壳量子点制备的装置显示出比使用未掺杂的ZnSe/ZnS量子点制备的装置更长的工作寿命。Figure 5 shows the lifetime curve of a light-emitting device prepared using undoped ZnSe/ZnS quantum dots compared to a light-emitting device prepared using indium-doped ZnSe/ZnSe/ZnS core/buffer layer/shell quantum dots. As shown in Figure 5 and Table 2, devices prepared using indium-doped ZnSe/ZnSe/ZnS core/buffer/shell quantum dots showed longer operation than devices prepared using undoped ZnSe/ZnS quantum dots. life.
表2Table 2
现在已经充分描述了本发明,本领域普通技术人员将理解,可以在宽和等同的条件、制剂和其他参数范围内同样地进行,而不会影响本发明的范围或任何其实施方式。本文引用的所有专利、专利申请和出版物均通过引用整体并入本文。Now that the invention has been fully described, it will be understood by those of ordinary skill in the art that it may equally be practiced within a wide and equivalent range of conditions, formulations and other parameters without affecting the scope of the invention or any embodiments thereof. All patents, patent applications, and publications cited herein are incorporated by reference in their entirety.
Claims (73)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862691873P | 2018-06-29 | 2018-06-29 | |
US62/691,873 | 2018-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110655922A CN110655922A (en) | 2020-01-07 |
CN110655922B true CN110655922B (en) | 2024-02-27 |
Family
ID=69028745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910577676.XA Active CN110655922B (en) | 2018-06-29 | 2019-06-28 | Using In 3+ Wavelength tuning of ZnSe quantum dots with salts as dopants |
Country Status (3)
Country | Link |
---|---|
US (1) | US11434423B2 (en) |
KR (1) | KR102769403B1 (en) |
CN (1) | CN110655922B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210089485A (en) | 2020-01-08 | 2021-07-16 | 삼성전자주식회사 | Apparatus and method for authentication of software |
KR20210089486A (en) | 2020-01-08 | 2021-07-16 | 삼성전자주식회사 | Apparatus and method for securely managing keys |
KR20220146583A (en) * | 2020-03-03 | 2022-11-01 | 나노시스, 인크. | Blue Emitting Nanocrystals with Cubic Shape and Group IV Metal Fluoride Passivation |
CN111785970B (en) * | 2020-07-16 | 2021-11-02 | 长沙理工大学 | A kind of double-layer carbon-coated-metal selenide composite electrode material and preparation method thereof |
US20220380249A1 (en) * | 2021-05-28 | 2022-12-01 | Nick F. Borrelli | Quantum dot-doped glass |
US12305277B2 (en) * | 2023-01-03 | 2025-05-20 | City University Of Hong Kong | Methods of producing single-layer transition metal selenide |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017019789A1 (en) * | 2015-07-28 | 2017-02-02 | The Regents Of The University Of California | Co-doped core/shell nanocrystals for visible light emission |
CN106753326A (en) * | 2016-11-21 | 2017-05-31 | 北京科技大学 | M:ZnSe/ZnSe/ZnS structure quantum point preparation methods |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607829B1 (en) | 1997-11-13 | 2003-08-19 | Massachusetts Institute Of Technology | Tellurium-containing nanocrystalline materials |
US6322901B1 (en) | 1997-11-13 | 2001-11-27 | Massachusetts Institute Of Technology | Highly luminescent color-selective nano-crystalline materials |
US6501091B1 (en) | 1998-04-01 | 2002-12-31 | Massachusetts Institute Of Technology | Quantum dot white and colored light emitting diodes |
US6225198B1 (en) | 2000-02-04 | 2001-05-01 | The Regents Of The University Of California | Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process |
EP2399970A3 (en) | 2002-09-05 | 2012-04-18 | Nanosys, Inc. | Nanocomposites |
JP2006511634A (en) | 2002-09-05 | 2006-04-06 | ナノシス・インク. | Organic species that facilitate charge transfer to or from nanostructures |
JP4789809B2 (en) | 2004-01-15 | 2011-10-12 | サムスン エレクトロニクス カンパニー リミテッド | Matrix doped with nanocrystals |
US7645397B2 (en) | 2004-01-15 | 2010-01-12 | Nanosys, Inc. | Nanocrystal doped matrixes |
US8563133B2 (en) | 2004-06-08 | 2013-10-22 | Sandisk Corporation | Compositions and methods for modulation of nanostructure energy levels |
JP5000510B2 (en) | 2004-06-08 | 2012-08-15 | ナノシス・インク. | Method and device for forming nanostructure monolayer and device comprising such monolayer |
TWI237314B (en) | 2004-06-24 | 2005-08-01 | Ind Tech Res Inst | Doping method for forming quantum dots |
US7632428B2 (en) * | 2005-04-25 | 2009-12-15 | The Board Of Trustees Of The University Of Arkansas | Doped semiconductor nanocrystals and methods of making same |
WO2008028054A1 (en) | 2006-08-30 | 2008-03-06 | University Of Florida Research Foundation, Inc. | Doped nanocrystals |
CA2678798C (en) | 2007-03-19 | 2017-06-20 | Nanosys, Inc. | Methods for encapsulating nanocrystals |
US20100110728A1 (en) | 2007-03-19 | 2010-05-06 | Nanosys, Inc. | Light-emitting diode (led) devices comprising nanocrystals |
US20100155749A1 (en) | 2007-03-19 | 2010-06-24 | Nanosys, Inc. | Light-emitting diode (led) devices comprising nanocrystals |
US8283412B2 (en) | 2009-05-01 | 2012-10-09 | Nanosys, Inc. | Functionalized matrices for dispersion of nanostructures |
JP5940079B2 (en) | 2010-11-10 | 2016-06-29 | ナノシス・インク. | Display backlight unit and method for forming display backlight unit |
CN103270200A (en) * | 2010-12-28 | 2013-08-28 | 生命科技公司 | Preparation of nanocrystals using a mixture of organic ligands |
US9139770B2 (en) | 2012-06-22 | 2015-09-22 | Nanosys, Inc. | Silicone ligands for stabilizing quantum dot films |
TWI596188B (en) | 2012-07-02 | 2017-08-21 | 奈米系統股份有限公司 | High-luminous nano structure and manufacturing method thereof |
CA2905890C (en) | 2013-03-14 | 2022-02-08 | Nanosys, Inc. | Method for solventless quantum dot exchange |
WO2017044597A1 (en) | 2015-09-09 | 2017-03-16 | Truskier Jonathan | Highly luminescent cadmium-free nanocrystals with blue emission |
-
2019
- 2019-06-28 CN CN201910577676.XA patent/CN110655922B/en active Active
- 2019-06-28 KR KR1020190078228A patent/KR102769403B1/en active Active
- 2019-06-28 US US16/456,211 patent/US11434423B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017019789A1 (en) * | 2015-07-28 | 2017-02-02 | The Regents Of The University Of California | Co-doped core/shell nanocrystals for visible light emission |
CN106753326A (en) * | 2016-11-21 | 2017-05-31 | 北京科技大学 | M:ZnSe/ZnSe/ZnS structure quantum point preparation methods |
Non-Patent Citations (1)
Title |
---|
Tunable Photoluminescent Core/Shell Cu+‑Doped ZnSe/ZnS Quantum Dots Codoped with Al3+, Ga3+, or In3+;Jason K. Cooper等;《ACS Appl. Mater. Interfaces》;20150420;第7卷;第10055-10066页 * |
Also Published As
Publication number | Publication date |
---|---|
KR102769403B1 (en) | 2025-02-17 |
CN110655922A (en) | 2020-01-07 |
US20200010761A1 (en) | 2020-01-09 |
US11434423B2 (en) | 2022-09-06 |
KR20200002692A (en) | 2020-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113039256B (en) | Synthesis method of blue-light-emitting ZnSe1-xTex alloy nanocrystals | |
CN110655922B (en) | Using In 3+ Wavelength tuning of ZnSe quantum dots with salts as dopants | |
US11005058B2 (en) | Light-emitting device including quantum dots | |
JP7520287B2 (en) | Nanostructures with inorganic ligands for electroluminescent devices | |
US20180119007A1 (en) | Stable inp quantum dots with thick shell coating and method of producing the same | |
KR102688701B1 (en) | Stable InP quantum dots with thick shell coating and method to fabricate the same | |
CN113646403B (en) | Method for synthesizing inorganic nanostructures using molten salt chemistry | |
CN114867818B (en) | Synthesis of blue-light-emitting ZnSe1-xTex alloy nanocrystals with low full width at half maximum | |
US12356772B2 (en) | Method of improving performance of devices with QDs comprising thin metal oxide coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20231018 Address after: Tokyo, Japan Applicant after: SHOEI CHEMICAL Inc. Address before: California Applicant before: NANOSYS, Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |