[go: up one dir, main page]

CN110648970B - Semiconductor device and method of forming the same - Google Patents

Semiconductor device and method of forming the same Download PDF

Info

Publication number
CN110648970B
CN110648970B CN201810681126.8A CN201810681126A CN110648970B CN 110648970 B CN110648970 B CN 110648970B CN 201810681126 A CN201810681126 A CN 201810681126A CN 110648970 B CN110648970 B CN 110648970B
Authority
CN
China
Prior art keywords
forming
layer
dummy gate
region
gate opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810681126.8A
Other languages
Chinese (zh)
Other versions
CN110648970A (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201810681126.8A priority Critical patent/CN110648970B/en
Publication of CN110648970A publication Critical patent/CN110648970A/en
Application granted granted Critical
Publication of CN110648970B publication Critical patent/CN110648970B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • H10D64/017Manufacture or treatment using dummy gates in processes wherein at least parts of the final gates are self-aligned to the dummy gates, i.e. replacement gate processes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/0193Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices the components including FinFETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A semiconductor structure and a method of forming the same, wherein the method comprises: providing a substrate, wherein the substrate comprises a first area and a second area, and the first area and the second area are respectively provided with a pseudo gate structure and an interlayer dielectric layer which cover a part of the surface of the substrate; removing the dummy gate structure in the first interlayer dielectric layer to form a first dummy gate opening; removing the dummy gate structure in the second interlayer dielectric layer to form a second dummy gate opening; forming contact holes in the interlayer dielectric layers of the first region and the second region respectively, wherein the bottoms of the contact holes are exposed out of the source-drain doped regions of the first region and the second region respectively; forming a metal silicide layer on the bottom surface of the contact hole; forming a conductive plug filling the contact hole after forming the metal silicide layer; and after the conductive plug is formed, forming N-type work function material layers in the first dummy gate opening and the second dummy gate opening respectively. The semiconductor device formed by the method has better performance.

Description

半导体器件及其形成方法Semiconductor device and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体器件的形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a method for forming a semiconductor device.

背景技术Background technique

随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂区。With the development of semiconductor technology, the control ability of traditional planar MOS transistors on channel current is weakened, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of a semiconductor substrate, a gate structure covering part of the top surface and sidewalls of the fin, Source and drain doped regions in the fins on both sides of the gate structure.

通常采用后硅化物工艺(silicide last)在源漏掺杂区上的接触孔内形成金属硅化物,以降低源漏掺杂区和上层金属之间的接触电阻。然而形成金属硅化物采用的退火工艺加剧了N型功函数材料层中的Al离子的扩散。采用现有技术形成的半导体器件的性能有待提高。Usually, a silicide last process is used to form metal silicide in the contact holes on the source and drain doped regions, so as to reduce the contact resistance between the source and drain doped regions and the upper metal. However, the annealing process used to form the metal silicide intensifies the diffusion of Al ions in the N-type work function material layer. The performance of semiconductor devices formed using the prior art needs to be improved.

发明内容SUMMARY OF THE INVENTION

本发明解决的技术问题是提供一种半导体器件的形成方法,降低NMOS晶体管中N型功函数材料层中的Al离子扩散到栅介质层。The technical problem solved by the present invention is to provide a method for forming a semiconductor device, which reduces the diffusion of Al ions in the N-type work function material layer in the NMOS transistor to the gate dielectric layer.

为解决上述技术问题,本发明实施例提供一种半导体器件的形成方法,包括:包括:提供衬底,所述衬底上具有覆盖部分衬底表面的伪栅极结构和层间介质层,所述层间介质层覆盖伪栅极结构的侧壁表面,所述伪栅极结构两侧的衬底内具有源漏掺杂区;去除所述伪栅极结构,在所述层间介质层内形成伪栅开口;在所述层间介质层内形成接触孔,所述接触孔底部暴露出源漏掺杂区;在所述接触孔的底部表面形成金属硅化物层;形成所述金属硅化物层之后,形成填充满所述接触孔的导电插塞;形成所述导电插塞之后,在所述伪栅开口内形成N型功函数材料层。In order to solve the above technical problems, embodiments of the present invention provide a method for forming a semiconductor device, including: providing a substrate, the substrate has a dummy gate structure and an interlayer dielectric layer covering part of the surface of the substrate, so The interlayer dielectric layer covers the sidewall surface of the dummy gate structure, and the substrate on both sides of the dummy gate structure has source and drain doped regions; the dummy gate structure is removed, and the interlayer dielectric layer is forming a dummy gate opening; forming a contact hole in the interlayer dielectric layer, and exposing source and drain doped regions at the bottom of the contact hole; forming a metal silicide layer on the bottom surface of the contact hole; forming the metal silicide After the layer is formed, a conductive plug is formed to fill the contact hole; after the conductive plug is formed, an N-type work function material layer is formed in the dummy gate opening.

可选的,形成所述伪栅开口之后,形成所述接触孔。Optionally, after the dummy gate opening is formed, the contact hole is formed.

可选的,在形成所述伪栅开口之后,在形成所述接触孔之前,还包括:在所述伪栅开口的侧壁和底部表面形成界面层;在所述界面层表面形成栅介质层;在所述栅介质层表面形成扩散阻挡层。Optionally, after forming the dummy gate opening and before forming the contact hole, the method further includes: forming an interface layer on the sidewall and bottom surface of the dummy gate opening; forming a gate dielectric layer on the surface of the interface layer ; A diffusion barrier layer is formed on the surface of the gate dielectric layer.

可选的,所述衬底包括第一区和第二区;所述第一区用于形成N型场效应晶体管,所述第二区用于形成P型场效应晶体管。Optionally, the substrate includes a first region and a second region; the first region is used for forming an N-type field effect transistor, and the second region is used for forming a P-type field effect transistor.

可选的,所述伪栅极结构分别位于所述第一区的衬底表面和第二区的衬底表面;所述源漏掺杂区分别位于第一区的衬底内和第二区的衬底内;所述接触孔分别位于第一区的层间介质层内和第二区的层间介质层内;所述N型功函数材料层分别位于第一区的伪栅开口内和第二区的伪栅开口内。Optionally, the dummy gate structures are respectively located on the substrate surface of the first region and the substrate surface of the second region; the source and drain doped regions are respectively located in the substrate of the first region and the second region The contact holes are respectively located in the interlayer dielectric layer in the first region and in the interlayer dielectric layer in the second region; the N-type work function material layers are located in the dummy gate openings in the first region and within the dummy gate opening of the second region.

可选的,在形成所述扩散阻挡层之后,形成所述接触孔之前,还包括:在所述第一区的伪栅开口内和第二区的伪栅开口内形成牺牲结构,且所述牺牲结构填充满所述第一区的伪栅开口和第二区的伪栅开口。Optionally, after forming the diffusion barrier layer and before forming the contact hole, the method further includes: forming a sacrificial structure in the dummy gate opening in the first region and in the dummy gate opening in the second region, and the The sacrificial structure fills the dummy gate openings of the first region and the dummy gate openings of the second region.

可选的,所述牺牲结构包括第一牺牲层以及位于第一牺牲层表面的第二牺牲层。Optionally, the sacrificial structure includes a first sacrificial layer and a second sacrificial layer located on the surface of the first sacrificial layer.

可选的,所述牺牲结构的形成步骤包括:在所述第一区的伪栅开口和第二区的伪栅开口的侧壁和底部表面形成第一牺牲层;在第一牺牲层表面形成第二牺牲层。Optionally, the step of forming the sacrificial structure includes: forming a first sacrificial layer on the sidewalls and bottom surfaces of the dummy gate opening in the first region and the dummy gate opening in the second region; forming a first sacrificial layer on the surface of the first sacrificial layer The second sacrificial layer.

可选的,所述第一牺牲层的材料包括非晶硅、多晶硅或者单晶硅;第二牺牲层的材料包括氧化硅。Optionally, the material of the first sacrificial layer includes amorphous silicon, polycrystalline silicon or single crystal silicon; the material of the second sacrificial layer includes silicon oxide.

可选的,所述牺牲结构的形成方法还包括:在形成所述第一牺牲层之后进行第一退火工艺;所述第一退火工艺的退火温度800摄氏度~1000摄氏度。Optionally, the method for forming the sacrificial structure further includes: performing a first annealing process after forming the first sacrificial layer; the annealing temperature of the first annealing process is 800 degrees Celsius to 1000 degrees Celsius.

可选的,所述牺牲结构为单层;所述牺牲结构的材料包括非晶硅、多晶硅或者单晶硅。Optionally, the sacrificial structure is a single layer; the material of the sacrificial structure includes amorphous silicon, polycrystalline silicon or single crystal silicon.

可选的,形成所述牺牲结构之后进行第二退火工艺;所述第二退火工艺的退火温度为800摄氏度~1000摄氏度。Optionally, a second annealing process is performed after the sacrificial structure is formed; the annealing temperature of the second annealing process is 800 degrees Celsius to 1000 degrees Celsius.

可选的,所述金属硅化物层的形成方法包括:在所述接触孔侧壁和底部表面沉积金属层;进行第三退火工艺,使金属层与源漏掺杂区表面反应,形成金属硅化物层;所述第三退火工艺为激光退火工艺,退火温度为750摄氏度~900摄氏度。Optionally, the method for forming the metal silicide layer includes: depositing a metal layer on the sidewall and bottom surface of the contact hole; performing a third annealing process to make the metal layer react with the surface of the source and drain doped regions to form metal silicide The third annealing process is a laser annealing process, and the annealing temperature is 750 degrees Celsius to 900 degrees Celsius.

可选的,所述金属硅化物层的材料包括:钛硅化合物。Optionally, the material of the metal silicide layer includes: titanium silicon compound.

可选的,在形成所述导电插塞之后,形成N型功函数材料层之前,还包括:去除所述第一区的伪栅开口和第二区的伪栅开口内牺牲结构;在去除所述第一区的伪栅开口和第二区的伪栅开口内牺牲结构之后,去除所述第一区的伪栅开口内的扩散阻挡层。Optionally, after forming the conductive plug and before forming the N-type work function material layer, the method further includes: removing the dummy gate opening in the first region and the sacrificial structure in the dummy gate opening in the second region; After the dummy gate opening in the first region and the sacrificial structure in the dummy gate opening in the second region, the diffusion barrier layer in the dummy gate opening in the first region is removed.

可选的,在去除所述第一区的伪栅开口内的扩散阻挡层之后,在形成N型功函数材料层之前,还包括:在所述第二区的伪栅开口内形成P型功函数材料层。Optionally, after removing the diffusion barrier layer in the dummy gate opening in the first region, and before forming the N-type work function material layer, the method further includes: forming a P-type work function in the dummy gate opening in the second region. functional material layer.

可选的,所述P型功函数材料层的材料包括氮化钛或者氮化钽。Optionally, the material of the P-type work function material layer includes titanium nitride or tantalum nitride.

可选的,所述N型功函数材料层的材料包括TiAl、TiAlC、TiAlN和AlN中的一种或多种组合。Optionally, the material of the N-type work function material layer includes one or more combinations of TiAl, TiAlC, TiAlN and AlN.

可选的,在所述伪栅开口内形成N型功函数材料层之后,还包括:在所述伪栅开口内填充满金属材料以形成金属栅。Optionally, after forming the N-type work function material layer in the dummy gate opening, the method further includes: filling the dummy gate opening with a metal material to form a metal gate.

相应的,本发明还提供一种采用上述任一项方法形成的一种半导体器件。Correspondingly, the present invention also provides a semiconductor device formed by any one of the above methods.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

本发明技术方案提供的半导体器件的形成方法中,在所述接触孔内形成所述金属硅化物层之后,形成填充满所述接触孔的导电插塞;在形成所述导电插塞后,在所述伪栅开口内形成N型功函数材料层。通过在所述接触孔内形成金属硅化物层之后,在伪栅开口内形成所述N型功函数材料层,能够避免形成金属硅化物层进行的退火工艺高温过程对N型功函数材料层中物质产生影响,能够降低所述N型功函数材料层中Al离子的扩散,从而降低晶体管中N型功函数材料层中的Al离子扩散到栅介质层,从而能够改善栅介质层的界面态,进而改善栅介质层的可靠性,同时避免器件开启电压的改变,使获得的半导体器件的性能得到提高。In the method for forming a semiconductor device provided by the technical solution of the present invention, after the metal silicide layer is formed in the contact hole, a conductive plug is formed to fill the contact hole; An N-type work function material layer is formed in the dummy gate opening. After the metal silicide layer is formed in the contact hole, the N-type work function material layer is formed in the dummy gate opening, so that the high temperature process of the annealing process for forming the metal silicide layer can be avoided. The influence of the substance can reduce the diffusion of Al ions in the N-type work function material layer, thereby reducing the diffusion of Al ions in the N-type work function material layer in the transistor to the gate dielectric layer, thereby improving the interface state of the gate dielectric layer, Further, the reliability of the gate dielectric layer is improved, and the change of the turn-on voltage of the device is avoided at the same time, so that the performance of the obtained semiconductor device is improved.

进一步,形成所述栅介质层进行的第四退火工艺,一方面,修复栅介质层的缺陷,改善栅介质层的界面态,从而有利于改善半导体器件的可靠性和开启电压;另一方面,形成栅介质层在金属硅化物层之前,从而避免第四退火工艺对金属硅化物层产生影响,提高形成的金属硅化物层质量,从而减小源漏掺杂区和导电插塞的接触电阻,从而有利于提高半导体器件的性能。Further, the fourth annealing process for forming the gate dielectric layer, on the one hand, repairs the defects of the gate dielectric layer and improves the interface state of the gate dielectric layer, thereby helping to improve the reliability and turn-on voltage of the semiconductor device; on the other hand, The gate dielectric layer is formed before the metal silicide layer, thereby avoiding the influence of the fourth annealing process on the metal silicide layer, improving the quality of the formed metal silicide layer, thereby reducing the contact resistance of the source-drain doped region and the conductive plug, Therefore, it is beneficial to improve the performance of the semiconductor device.

进一步,所述形成方法还包括:在形成所述接触孔之前,在所述伪栅开口的侧壁和底部表面形成界面层。所述界面层能够避免衬底与后续在界面层表面形成的栅介质层发生接触,从而有利于提高半导体器件的性能。Further, the forming method further includes: before forming the contact hole, forming an interface layer on the sidewall and bottom surface of the dummy gate opening. The interface layer can prevent the substrate from coming into contact with the gate dielectric layer formed on the surface of the interface layer subsequently, thereby helping to improve the performance of the semiconductor device.

进一步,所述扩散阻挡层,一方面,能够作为PMOS晶体管内的P型功函数材料层,另一方面,能够作为阻挡层,阻挡PMOS晶体管中的N型功函数材料层扩散到栅介质层,从而改善半导体器件的可靠性和开启电压。Further, the diffusion barrier layer, on the one hand, can be used as a P-type work function material layer in the PMOS transistor, and on the other hand, can be used as a barrier layer to prevent the N-type work function material layer in the PMOS transistor from diffusing to the gate dielectric layer, Thereby, the reliability and turn-on voltage of the semiconductor device are improved.

附图说明Description of drawings

图1至图14是本发明一实施例的半导体器件的形成方法的各步骤的结构示意图。1 to 14 are schematic structural diagrams of steps of a method for forming a semiconductor device according to an embodiment of the present invention.

具体实施方式Detailed ways

如背景技术所述,现有技术形成的半导体器件的性能有待提高。As described in the background art, the performance of the semiconductor devices formed by the prior art has yet to be improved.

一种半导体器件的形成方法,包括:提供半导体衬底,所述衬底包括NMOS晶体管区域和PMOS晶体管区域,NMOS晶体管区域和PMOS晶体管区域的半导体衬底上具有覆盖部分衬底表面的伪栅极结构和层间介质层,所述层间介质层覆盖伪栅极结构的侧壁表面,所述伪栅极结构两侧的衬底内具有源漏掺杂区;去除NMOS晶体管区域的伪栅极结构,在NMOS晶体管区域的层间介质层内形成第一伪栅开口;去除PMOS晶体管区域的伪栅极结构,在PMOS晶体管区域的层间介质层内形成第二伪栅开口;形成第一伪栅开口和第二伪栅开口之后,在所述第一伪栅开口的侧壁和底部形成高k介质层、位于高k介质层上的N型功函数材料层、以及位于N型功函数材料层上的金属栅;在所述第二伪栅开口的侧壁和底部形成高k介质层、位于高k介质层上的P型功函数材料层、以及位于P型功函数材料层上的金属栅;在第一伪栅开口和第二伪栅开口内形成金属栅之后,分别在NMOS晶体管区域和PMOS晶体管区域的源漏掺杂区上方形成接触孔,在所述接触孔的侧壁和底部表面形成金属硅化物层;形成所述金属硅化物层之后,在所述接触孔内填充满金属材料形成导电插塞。A method for forming a semiconductor device, comprising: providing a semiconductor substrate, the substrate includes an NMOS transistor region and a PMOS transistor region, and the semiconductor substrate of the NMOS transistor region and the PMOS transistor region has a dummy gate covering part of the surface of the substrate structure and an interlayer dielectric layer, the interlayer dielectric layer covers the sidewall surface of the dummy gate structure, and the substrate on both sides of the dummy gate structure has source and drain doped regions; the dummy gate of the NMOS transistor region is removed structure, a first dummy gate opening is formed in the interlayer dielectric layer in the NMOS transistor region; the dummy gate structure in the PMOS transistor region is removed, and a second dummy gate opening is formed in the interlayer dielectric layer in the PMOS transistor region; a first dummy gate opening is formed After the gate opening and the second dummy gate opening, a high-k dielectric layer, an N-type work function material layer on the high-k dielectric layer, and an N-type work function material are formed on the sidewalls and the bottom of the first dummy gate opening A metal gate on the layer; a high-k dielectric layer, a P-type work function material layer on the high-k dielectric layer, and a metal on the P-type work function material layer are formed on the sidewalls and the bottom of the second dummy gate opening gate; after the metal gate is formed in the first dummy gate opening and the second dummy gate opening, a contact hole is formed over the source and drain doped regions of the NMOS transistor region and the PMOS transistor region, respectively, and the sidewall and bottom of the contact hole are formed A metal silicide layer is formed on the surface; after the metal silicide layer is formed, the contact hole is filled with metal material to form a conductive plug.

通过在形成功函数材料层之后形成金属硅化物层,可以避免形成高k介质层之后进行的退火工艺和形成功函数材料层过程中,进行的热处理对已经形成的金属硅化物层产生影响,从而能够提高金属硅化物层的质量,减小源漏掺杂区和导电插塞的接触电阻,使形成的半导体器件性能较好。By forming the metal silicide layer after forming the work function material layer, it can be avoided that the annealing process performed after the formation of the high-k dielectric layer and the heat treatment performed during the process of forming the work function material layer have an influence on the metal silicide layer that has been formed. The quality of the metal silicide layer can be improved, the contact resistance of the source-drain doped region and the conductive plug can be reduced, and the formed semiconductor device has better performance.

通过在源漏掺杂区上的接触孔内形成金属硅化物层,可以降低源漏掺杂区和填充满接触孔的金属层之间的接触电阻。然而,形成金属硅化物层需要进行退火工艺,在所述第一伪栅开口的侧壁和底部形成N型功函数金属材料层之后,再在源漏掺杂区上的接触孔内形成金属硅化物层,退火工艺的高温过程会加剧NMOS晶体管中已形成的N型功函数材料层中的Al离子扩散到下层的栅介质层,进而影响栅介质层界面态,进而影响栅介质层界面可靠性和半导体器件的开启电压,从而使形成的半导体器件的性能较差。By forming a metal silicide layer in the contact hole on the source-drain doped region, the contact resistance between the source-drain doped region and the metal layer filling the contact hole can be reduced. However, an annealing process is required to form the metal silicide layer. After the N-type work function metal material layer is formed on the sidewalls and the bottom of the first dummy gate opening, metal silicide is formed in the contact holes on the source and drain doped regions. The high temperature process of the annealing process will aggravate the diffusion of Al ions in the N-type work function material layer formed in the NMOS transistor to the lower gate dielectric layer, thereby affecting the interface state of the gate dielectric layer, thereby affecting the interface reliability of the gate dielectric layer. and the turn-on voltage of the semiconductor device, so that the performance of the formed semiconductor device is poor.

为解决所述技术问题,本发明提供了一种半导体结构的形成方法,包括:在所述层间介质层内形成接触孔,所述接触孔底部暴露出源漏掺杂区;在所述接触孔的底部表面形成金属硅化物层;形成所述金属硅化物层之后,在所述伪栅开口内形成N型功函数材料层。所述方法形成的半导体器件的性能较好。In order to solve the technical problem, the present invention provides a method for forming a semiconductor structure, comprising: forming a contact hole in the interlayer dielectric layer, the bottom of the contact hole exposes a source and drain doped region; A metal silicide layer is formed on the bottom surface of the hole; after the metal silicide layer is formed, an N-type work function material layer is formed in the dummy gate opening. The semiconductor device formed by the method has better performance.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

请参考图1,提供衬底100,所述衬底包括第一区A和第二区B,所述衬底100上具有覆盖部分衬底表面的伪栅极结构103和层间介质层107,所述层间介质层107覆盖伪栅极结构103的侧壁表面,所述伪栅极结构103两侧的衬底100内具有源漏掺杂区106,所述层间介质层107表面具有覆盖伪栅极结构103部分侧壁的保护层108。Referring to FIG. 1, a substrate 100 is provided, the substrate includes a first region A and a second region B, the substrate 100 has a dummy gate structure 103 and an interlayer dielectric layer 107 covering part of the surface of the substrate, The interlayer dielectric layer 107 covers the sidewall surface of the dummy gate structure 103 , the substrate 100 on both sides of the dummy gate structure 103 has source and drain doped regions 106 , and the surface of the interlayer dielectric layer 107 has a covering The protective layer 108 on the sidewall of the dummy gate structure 103 .

在本实施例中,所述衬底100包括:基底101和位于基底101上的鳍部102。In this embodiment, the substrate 100 includes: a base 101 and a fin 102 located on the base 101 .

在其它实施例中,当所述半导体器件为平面式的MOS晶体管时,所述衬底为平面式的半导体衬底。In other embodiments, when the semiconductor device is a planar MOS transistor, the substrate is a planar semiconductor substrate.

在本实施例中,所述第一区A用于形成NMOS晶体管,所述第二区B用于形成PMOS晶体管。In this embodiment, the first area A is used to form NMOS transistors, and the second area B is used to form PMOS transistors.

在本实施例中,所述衬底100的形成方法包括:提供初始基底,所述初始基底上具有第一掩膜层,所述第一掩膜层暴露出部分初始基底的顶部表面;以所述第一掩膜层为掩膜,刻蚀所述初始基底,形成基底101和位于基底101上的鳍部102。In this embodiment, the method for forming the substrate 100 includes: providing an initial substrate with a first mask layer thereon, the first mask layer exposing a part of the top surface of the initial substrate; The first mask layer is a mask, and the initial substrate is etched to form the substrate 101 and the fins 102 on the substrate 101 .

在本实施例中,所述初始基底的材料为硅。相应的,所述基底101和鳍部102的材料为硅。In this embodiment, the material of the initial substrate is silicon. Correspondingly, the material of the base 101 and the fins 102 is silicon.

在本实施例中,所述伪栅极结构103侧壁表面具有偏移侧墙104以及位于偏移侧墙104侧壁表面的主侧墙105。In the present embodiment, the sidewall surfaces of the dummy gate structure 103 have offset spacers 104 and main spacers 105 located on the sidewall surfaces of the offset spacers 104 .

所述偏移侧墙104用于定义轻掺杂区(图中未示出)的位置。所述主侧墙105用于定义源漏掺杂区106的位置。The offset spacers 104 are used to define the positions of the lightly doped regions (not shown). The main spacers 105 are used to define the positions of the source and drain doped regions 106 .

所述衬底100上还具有覆盖所述鳍部102的隔离结构(图中未标出),所述隔离结构的顶部表面低于所述鳍部102的顶部表面,且覆盖鳍部102的部分侧壁。The substrate 100 also has an isolation structure (not shown in the figure) covering the fins 102 , and the top surface of the isolation structure is lower than the top surface of the fins 102 and covers part of the fins 102 side wall.

请参考图2,去除所述第一区A层间介质层107内的伪栅极结构103形成第一伪栅开口109;去除所述第二区B层间介质层107内的伪栅极结构103形成第二伪栅开口110。Referring to FIG. 2, the dummy gate structure 103 in the interlayer dielectric layer 107 in the first region A is removed to form a first dummy gate opening 109; the dummy gate structure in the interlayer dielectric layer 107 in the second region B is removed 103 forms a second dummy gate opening 110 .

在本实施例中,去除伪栅极结构103的工艺为干法刻蚀工艺。具体工艺参数包括:采用的气体包括HBr和He,其中,HBr的流量为150标准毫升/分~500标准毫升/分,He的流量为100标准毫升/分~400标准毫升/分,压强为3毫托~10毫托,侧壁射频功率为200瓦~500瓦,底部射频功率为10瓦~40瓦,温度为50摄氏度~100摄氏度。In this embodiment, the process of removing the dummy gate structure 103 is a dry etching process. The specific process parameters include: the gas used includes HBr and He, wherein the flow rate of HBr is 150 standard ml/min to 500 standard ml/min, the flow rate of He is 100 standard ml/min to 400 standard ml/min, and the pressure is 3 mTorr to 10 mTorr, the side wall radio frequency power is 200 watts to 500 watts, the bottom radio frequency power is 10 watts to 40 watts, and the temperature is 50 degrees Celsius to 100 degrees Celsius.

所述第一伪栅开口109和第二伪栅开口110用于后续形成栅极结构。The first dummy gate opening 109 and the second dummy gate opening 110 are used for subsequent formation of the gate structure.

请参考图3,在所述第一伪栅开口109和第二伪栅开口110侧壁和底部表面以及保护层108表面形成界面膜111、位于所述界面膜111表面的栅介质膜112和位于所述栅介质膜112表面的扩散阻挡膜113。Referring to FIG. 3 , an interface film 111 , a gate dielectric film 112 located on the surface of the interface film 111 and a gate dielectric film 112 located on the surface of the interface film 111 are formed on the sidewalls and bottom surfaces of the first dummy gate opening 109 and the second dummy gate opening 110 and the surface of the protective layer 108 . The diffusion barrier film 113 on the surface of the gate dielectric film 112 .

形成所述界面膜111的工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The process of forming the interface film 111 includes chemical vapor deposition process, physical vapor deposition process or atomic layer deposition process.

所述界面膜111用于后续形成界面层。在本实施例中,所述界面膜111的材料包括:氧化硅。相应的,后续形成的界面层材料包括:氧化硅。The interface film 111 is used for the subsequent formation of the interface layer. In this embodiment, the material of the interface film 111 includes: silicon oxide. Correspondingly, the subsequently formed interface layer material includes: silicon oxide.

所述栅介质层膜112用于后续形成栅介质层。所述栅介质膜112的材料为高K(K大于3.9)介质材料。在本实施例中,所述栅介质层膜112的材料为氧化铪。相应的,后续形成的栅介质层的材料为氧化铪。在其他实施例中,所述栅介质层膜的材料包括:La2O3、HfSiON、HfAlO2、ZrO2、Al2O3或HfSiO4The gate dielectric layer film 112 is used for subsequent formation of the gate dielectric layer. The material of the gate dielectric film 112 is a high-K (K greater than 3.9) dielectric material. In this embodiment, the material of the gate dielectric layer film 112 is hafnium oxide. Correspondingly, the material of the subsequently formed gate dielectric layer is hafnium oxide. In other embodiments, the material of the gate dielectric layer film includes: La 2 O 3 , HfSiON, HfAlO 2 , ZrO 2 , Al 2 O 3 or HfSiO 4 .

所述栅介质层膜112的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。The formation process of the gate dielectric layer film 112 includes a chemical vapor deposition process or a physical vapor deposition process.

在本实施例中,形成所述栅介质膜112之后进行第四退火工艺;所述第四退火工艺的退火温度为800摄氏度~1000摄氏度。In this embodiment, a fourth annealing process is performed after the gate dielectric film 112 is formed; the annealing temperature of the fourth annealing process is 800 degrees Celsius to 1000 degrees Celsius.

所述第四退火工艺可以修复栅介质膜112的缺陷,从而可以修复后续形成的栅介质层的缺陷,改善栅介质层的界面态,从而有利于改善半导体器件的可靠性和开启电压。The fourth annealing process can repair the defects of the gate dielectric film 112, thereby repairing the defects of the gate dielectric layer formed subsequently, and improving the interface state of the gate dielectric layer, thereby helping to improve the reliability and turn-on voltage of the semiconductor device.

所述扩散阻挡膜113用于后续形成扩散阻挡层。所述扩散阻挡膜113的材料包括氮化钽或者氮化钛。在本实施例中,所述扩散阻挡膜113的材料为氮化钛。相应的,后续形成的扩散阻挡层的材料为氮化钛。The diffusion barrier film 113 is used for subsequent formation of a diffusion barrier layer. The material of the diffusion barrier film 113 includes tantalum nitride or titanium nitride. In this embodiment, the material of the diffusion barrier film 113 is titanium nitride. Correspondingly, the material of the subsequently formed diffusion barrier layer is titanium nitride.

所述扩散阻挡膜113的形成工艺包括化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The formation process of the diffusion barrier film 113 includes a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process.

在本实施例中,形成所述扩散阻挡膜113的工艺为原子层沉积工艺。具体工艺参数包括:提供包含钛的有机前驱物质,温度为80摄氏度~300摄氏度,压强为5毫托~20托,循环次数为5次~50次。In this embodiment, the process of forming the diffusion barrier film 113 is an atomic layer deposition process. The specific process parameters include: providing an organic precursor material containing titanium, the temperature is 80 degrees Celsius to 300 degrees Celsius, the pressure is 5 mTorr to 20 Torr, and the number of cycles is 5 to 50 times.

在本实施例中,后续在形成所述扩散阻挡膜113之后,在第一伪栅开口109和第二伪栅开口110内形成牺牲结构,所述牺牲结构填充满第一伪栅开口109和第二伪栅开口110。所述牺牲结构包括:位于所述第一伪栅开口109和第二伪栅开口110底部和侧壁表面的第一牺牲层以及位于所述第一牺牲层表面的第二牺牲层。后续结合图4至图5对所述第一牺牲层和第二牺牲层的形成过程进行说明。In this embodiment, after the diffusion barrier film 113 is formed subsequently, a sacrificial structure is formed in the first dummy gate opening 109 and the second dummy gate opening 110 , and the sacrificial structure fills the first dummy gate opening 109 and the second dummy gate opening 109 . Two dummy gate openings 110 . The sacrificial structure includes: a first sacrificial layer located on the bottom and sidewall surfaces of the first dummy gate opening 109 and the second dummy gate opening 110 and a second sacrificial layer located on the surface of the first sacrificial layer. The formation process of the first sacrificial layer and the second sacrificial layer will be described later with reference to FIGS. 4 to 5 .

请参考图4,在所述第一伪栅开口109和第二伪栅开口110内扩散阻挡膜113表面形成第一牺牲膜114和第二牺牲膜115。Referring to FIG. 4 , a first sacrificial film 114 and a second sacrificial film 115 are formed on the surface of the diffusion barrier film 113 in the first dummy gate opening 109 and the second dummy gate opening 110 .

所述第一牺牲膜114和第二牺牲膜115的形成步骤包括:在所述第一伪栅开口109和第二伪栅开口110扩散阻挡膜表面形成第一牺牲膜115;在所述第一牺牲膜114表面形成第二牺牲膜115,所述第二牺牲膜115填充满第一伪栅开口109和第二伪栅开口110。The forming steps of the first sacrificial film 114 and the second sacrificial film 115 include: forming a first sacrificial film 115 on the surface of the diffusion barrier film of the first dummy gate opening 109 and the second dummy gate opening 110; A second sacrificial film 115 is formed on the surface of the sacrificial film 114 , and the second sacrificial film 115 fills the first dummy gate opening 109 and the second dummy gate opening 110 .

所述第一牺牲膜114的材料包括非晶硅、多晶硅、单晶硅。在本实施例中,所述第一牺牲膜114的材料为非晶硅。所述非晶硅材料能够平衡高k介质材料中氧的含量,高k介质层中的氧含量过多或者过低都不好,从而形成第一牺牲膜114有利于提高半导体器件的性能。The material of the first sacrificial film 114 includes amorphous silicon, polycrystalline silicon, and single crystal silicon. In this embodiment, the material of the first sacrificial film 114 is amorphous silicon. The amorphous silicon material can balance the oxygen content in the high-k dielectric material, and the oxygen content in the high-k dielectric layer is too high or too low. Therefore, forming the first sacrificial film 114 is beneficial to improve the performance of the semiconductor device.

形成所述第一牺牲膜114的工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。所述第一牺牲膜115用于后续形成第一牺牲层。The process of forming the first sacrificial film 114 includes a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. The first sacrificial film 115 is used for the subsequent formation of the first sacrificial layer.

在本实施例中,形成所述第一牺牲膜114的工艺为化学气相沉积工艺。具体工艺参数包括:采用的气体包括SiH4,所述SiH4的流量为30标准毫升/分~3000标准毫升/分,温度为360摄氏度~520摄氏度,压强为0.03托~10托。In this embodiment, the process of forming the first sacrificial film 114 is a chemical vapor deposition process. The specific process parameters include: the gas used includes SiH 4 , the flow rate of the SiH 4 is 30 standard ml/min to 3000 standard ml/min, the temperature is 360 to 520 degrees Celsius, and the pressure is 0.03 to 10 torr.

所述第一牺牲膜114的厚度为35埃~110埃。The thickness of the first sacrificial film 114 is 35 angstroms to 110 angstroms.

选择所述第一牺牲膜114的厚度意义在于:若第一牺牲膜的厚度太薄,则其对下层栅介质膜、界面膜的保护作用不够,栅介质膜、界面膜容易受后续进行的第一退火工艺的影响,从而形成的半导体器件性能较差;若第一牺牲膜的厚度太厚,由于非晶硅材料容易受后续进行的第一退火工艺的影响,发生原子团聚,不利于后续工艺将其去除,从而形成的半导体器件性能较差。The significance of selecting the thickness of the first sacrificial film 114 is that if the thickness of the first sacrificial film is too thin, its protective effect on the lower gate dielectric film and the interface film is not enough, and the gate dielectric film and the interface film are easily affected by subsequent steps. Due to the influence of the annealing process, the resulting semiconductor device has poor performance; if the thickness of the first sacrificial film is too thick, since the amorphous silicon material is easily affected by the subsequent first annealing process, atomic agglomeration occurs, which is not conducive to the subsequent process. It is removed and the resulting semiconductor device has poor performance.

在本实施例中,形成所述第一牺牲膜114之后,进行第一退火工艺;所述第一退火工艺的退火温度为800摄氏度~1000摄氏度。In this embodiment, after the first sacrificial film 114 is formed, a first annealing process is performed; the annealing temperature of the first annealing process is 800 degrees Celsius to 1000 degrees Celsius.

所述第一退火工艺能够使下层界面膜111的致密度更高,从而提高后续形成的界面层对于衬底100和后续形成的栅介质层的隔离作用,进而有利于提高半导体器件的性能。The first annealing process can increase the density of the underlying interface film 111 , thereby improving the isolation effect of the subsequently formed interface layer on the substrate 100 and the subsequently formed gate dielectric layer, thereby improving the performance of the semiconductor device.

形成所述第二牺牲膜115的工艺包括:化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。所述第二牺牲层膜115的材料包括氧化硅,用于后续形成第二牺牲层。The process of forming the second sacrificial film 115 includes a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. The material of the second sacrificial layer film 115 includes silicon oxide, which is used for the subsequent formation of the second sacrificial layer.

请参考图5,平坦化所述界面膜111,栅介质膜112、扩散阻挡膜113、第一牺牲膜114、第二牺牲膜115,直至暴露出所述保护层108的顶部表面,在第一伪栅开口109和第二伪栅开口的侧面和底部表面形成界面层116、位于界面层116上的栅介质层117、位于栅介质层117上的扩散阻挡层118、位于扩散阻挡层118上的第一牺牲层119以及位于第一牺牲层119上的第二牺牲层120。Referring to FIG. 5 , planarize the interface film 111 , the gate dielectric film 112 , the diffusion barrier film 113 , the first sacrificial film 114 , and the second sacrificial film 115 until the top surface of the protective layer 108 is exposed. The side and bottom surfaces of the dummy gate opening 109 and the second dummy gate opening form an interface layer 116 , a gate dielectric layer 117 on the interface layer 116 , a diffusion barrier layer 118 on the gate dielectric layer 117 , and a diffusion barrier layer 118 on the diffusion barrier layer 118 The first sacrificial layer 119 and the second sacrificial layer 120 on the first sacrificial layer 119 .

平坦化所述界面膜111,栅介质膜112、扩散阻挡膜113、第一牺牲膜114、第二牺牲膜115,直至暴露出所述保护层108的顶部表面的工艺包括:化学机械研磨工艺。The process of planarizing the interface film 111 , the gate dielectric film 112 , the diffusion barrier film 113 , the first sacrificial film 114 , and the second sacrificial film 115 until the top surface of the protection layer 108 is exposed includes: a chemical mechanical polishing process.

在其他实施例中,所述牺牲结构为单层牺牲结构,所述单层牺牲结构的材料包括非晶硅、多晶硅或者单晶硅,所述单层牺牲结构填充满所述第一伪栅开口和第二伪栅开口。形成所述牺牲结构之后进行第二退火工艺;所述第二退火工艺的退火温度为800摄氏度~1000摄氏度。In other embodiments, the sacrificial structure is a single-layer sacrificial structure, the material of the single-layer sacrificial structure includes amorphous silicon, polysilicon or monocrystalline silicon, and the single-layer sacrificial structure fills the first dummy gate opening and a second dummy gate opening. After the sacrificial structure is formed, a second annealing process is performed; the annealing temperature of the second annealing process is 800 degrees Celsius to 1000 degrees Celsius.

请参考图6,分别在所述第一区A和第二区B的层间介质层107内形成接触孔121,所述接触孔121底部分别暴露出第一区A和第二区B的源漏掺杂区106。Referring to FIG. 6 , contact holes 121 are formed in the interlayer dielectric layers 107 of the first region A and the second region B, respectively, and the bottoms of the contact holes 121 expose the sources of the first region A and the second region B, respectively Drain doped region 106 .

所述接触孔121的形成方法包括:分别在所述第一区A和第二区B的层间介质层107表面形成第二掩膜层(图中未示出),所述第二掩膜层暴露出部分层间介质层107的顶部表面;以所述第二掩膜层为掩膜,刻蚀所述层间介质层107,直至暴露出源漏掺杂区106的顶部表面,在所述层间介质层107内形成接触孔121。The method for forming the contact hole 121 includes: respectively forming a second mask layer (not shown in the figure) on the surface of the interlayer dielectric layer 107 in the first region A and the second region B, the second mask layer to expose part of the top surface of the interlayer dielectric layer 107; using the second mask layer as a mask, the interlayer dielectric layer 107 is etched until the top surface of the source and drain doped regions 106 is exposed. Contact holes 121 are formed in the interlayer dielectric layer 107 .

所述第二掩膜层用于定义源漏掺杂区106顶部接触孔的位置和尺寸。The second mask layer is used to define the position and size of the contact hole at the top of the source-drain doped region 106 .

所述第二掩膜层的材料包括氮化硅或者氮化钛。The material of the second mask layer includes silicon nitride or titanium nitride.

刻蚀所述层间介质层107的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of etching the interlayer dielectric layer 107 includes: one or a combination of a dry etching process and a wet etching process.

在本实施例中,刻蚀所述层间介质层107的工艺为干法刻蚀工艺。具体工艺参数包括:采用的气体包括CH4和CHF3,CH4的流量为8标准毫升/分钟~500标准毫升/分钟,CHF3的流量为30标准毫升/分钟~200标准毫升/分钟,压强为10毫托~2000毫托,射频功率为100瓦~1300瓦,偏置电压为80伏~500伏,时间为4秒~500秒。In this embodiment, the process of etching the interlayer dielectric layer 107 is a dry etching process. The specific process parameters include: the gas used includes CH 4 and CHF 3 , the flow rate of CH 4 is 8 standard ml/min~500 standard ml/min, the flow rate of CHF 3 is 30 standard ml/min~200 standard ml/min, the pressure It is 10 mtorr to 2000 mtorr, the radio frequency power is 100 watts to 1300 watts, the bias voltage is 80 volts to 500 volts, and the time is 4 seconds to 500 seconds.

所述接触孔121用于后续容纳导电插塞。The contact holes 121 are used for accommodating conductive plugs subsequently.

请参考图7,在所述接触孔121的底部表面形成金属硅化物层122。Referring to FIG. 7 , a metal silicide layer 122 is formed on the bottom surface of the contact hole 121 .

所述金属硅化物层122的形成方法包括:在所述接触孔121侧壁和底部表面沉积形成金属层(图中未示出);进行第三退火工艺,使金属层与源漏掺杂区106表面反应,形成所述金属硅化物层122;在退火工艺之后,去除剩余的金属层。The method for forming the metal silicide layer 122 includes: depositing and forming a metal layer (not shown in the figure) on the sidewall and bottom surface of the contact hole 121; 106 The surface reacts to form the metal silicide layer 122; after the annealing process, the remaining metal layer is removed.

所述第三退火工艺采用激光退火工艺,退火温度为750摄氏度~900摄氏度。The third annealing process adopts a laser annealing process, and the annealing temperature is 750 degrees Celsius to 900 degrees Celsius.

所述金属硅化物层122材料包括:钛硅化合物。所述金属硅化物层122可以改善后续形成的导电插塞与源漏掺杂区106之间的接触电阻。The material of the metal silicide layer 122 includes: titanium silicon compound. The metal silicide layer 122 can improve the contact resistance between the subsequently formed conductive plug and the source and drain doped regions 106 .

请参考图8,形成所述金属硅化物层122之后,形成填充满所述接触孔121的导电插塞123。Referring to FIG. 8 , after the metal silicide layer 122 is formed, a conductive plug 123 filling the contact hole 121 is formed.

所述导电插塞123的形成方法包括:在第一伪栅开口109和第二伪栅开口110内以及所述保护层108表面形成导电插塞膜(图中未示出);去除部分导电插塞膜,直至暴露出保护层108的顶部表面,在所述接触孔121内形成导电插塞123。The method for forming the conductive plug 123 includes: forming a conductive plug film (not shown in the figure) in the first dummy gate opening 109 and the second dummy gate opening 110 and on the surface of the protective layer 108; removing part of the conductive plug; until the top surface of the protective layer 108 is exposed, and a conductive plug 123 is formed in the contact hole 121 .

所述导电插塞膜的材料为金属。因此,所述导电插塞123的材料为金属。金属钨具有优良的台阶覆盖率(step coverage)和填充性,成为导电优选材料。在本实施例中,所述导电插塞膜的材料为钨,相应的,所述导电插塞123的材料为钨。在其他实施例中,所述导电插塞的材料包括铝或者铜。The material of the conductive plug film is metal. Therefore, the material of the conductive plug 123 is metal. Metal tungsten has excellent step coverage (step coverage) and filling, and becomes the preferred material for electrical conductivity. In this embodiment, the material of the conductive plug film is tungsten, and correspondingly, the material of the conductive plug 123 is tungsten. In other embodiments, the material of the conductive plug includes aluminum or copper.

所述导电插塞膜的形成工艺包括:化学气相沉积工艺或者物理气相沉积工艺。The formation process of the conductive plug film includes a chemical vapor deposition process or a physical vapor deposition process.

在本实施例中,形成所述导电插塞膜的工艺为化学气相沉积工艺。具体工艺参数包括:采用的气体包括WF6,WF6的流量为100标准毫升/分钟~600标准毫升/分钟。In this embodiment, the process of forming the conductive plug film is a chemical vapor deposition process. The specific process parameters include: the gas used includes WF 6 , and the flow rate of WF 6 is 100 standard ml/min to 600 standard ml/min.

去除部分导电插塞膜的工艺包括化学机械研磨工艺。The process of removing part of the conductive plug film includes a chemical mechanical polishing process.

请参考图9,在形成所述导电插塞123之后,形成N型功函数材料层之前,去除所述第一伪栅开口109和第二伪栅开口110内的牺牲结构(图中未示出)。Referring to FIG. 9 , after the conductive plug 123 is formed and before the N-type work function material layer is formed, the sacrificial structures in the first dummy gate opening 109 and the second dummy gate opening 110 are removed (not shown in the figure). ).

去除所述第一伪栅开口109和第二伪栅开口110内的牺牲结构的步骤包括:去除所述第一伪栅开口109和第二伪栅开口110内的第二牺牲层120;去除所述第二牺牲层120之后,去除所述第一伪栅开口和第二伪栅开口110内的第一牺牲层119。The step of removing the sacrificial structure in the first dummy gate opening 109 and the second dummy gate opening 110 includes: removing the second sacrificial layer 120 in the first dummy gate opening 109 and the second dummy gate opening 110; removing all the After the second sacrificial layer 120 is removed, the first sacrificial layer 119 in the first dummy gate opening and the second dummy gate opening 110 is removed.

去除所述第一伪栅开口109和第二伪栅开口110内的第二牺牲层的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the second sacrificial layer in the first dummy gate opening 109 and the second dummy gate opening 110 includes: one or a combination of a dry etching process and a wet etching process.

在本实施例中,去除所述第一伪栅开口109和第二伪栅开口110内的第二牺牲层的工艺为干法刻蚀工艺。具体工艺参数包括:采用的气体包括He、NH3、NF3,其中,He的流量为600标准毫升/分钟~2000标准毫升/分钟,NH3的流量为200标准毫升/分钟~500标准毫升/分钟,NF3的流量为20标准毫升/分钟~200标准毫升/分钟,压强为2托~10托,时间为20秒~100秒。In this embodiment, the process of removing the second sacrificial layer in the first dummy gate opening 109 and the second dummy gate opening 110 is a dry etching process. The specific process parameters include: the gases used include He, NH 3 and NF 3 , wherein the flow rate of He is 600 standard ml/min to 2000 standard ml/min, and the flow rate of NH 3 is 200 standard ml/min to 500 standard ml/min. minute, the flow rate of NF 3 is 20 standard ml/min to 200 standard ml/min, the pressure is 2 Torr to 10 Torr, and the time is 20 to 100 seconds.

去除所述第一伪栅开口109和第二伪栅开口110内的第一牺牲层的工艺包括:干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the first sacrificial layer in the first dummy gate opening 109 and the second dummy gate opening 110 includes: one or a combination of a dry etching process and a wet etching process.

在本实施例中,去除所述第一伪栅开口109和第二伪栅开口110内的第一牺牲层的工艺为湿法刻蚀工艺。具体工艺参数包括:刻蚀溶液包括NH4OH溶液和H2O,所述NH4OH溶液和H2O的体积关系为1:10~20:1,温度为25摄氏度~80摄氏度,时间为2分钟~100min分钟。In this embodiment, the process of removing the first sacrificial layer in the first dummy gate opening 109 and the second dummy gate opening 110 is a wet etching process. The specific process parameters include: the etching solution includes NH 4 OH solution and H 2 O, the volume relationship between the NH 4 OH solution and H 2 O is 1:10-20:1, the temperature is 25 degrees Celsius to 80 degrees Celsius, and the time is 2 minutes to 100 minutes.

请参考图10,在去除第一伪栅开口109和第二伪栅开口110内的牺牲层之后,去除所述第一伪栅开口109内的扩散阻挡层118。Referring to FIG. 10 , after removing the sacrificial layer in the first dummy gate opening 109 and the second dummy gate opening 110 , the diffusion barrier layer 118 in the first dummy gate opening 109 is removed.

去除所述第一伪栅开口109内的扩散阻挡层118的工艺包括干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the diffusion barrier layer 118 in the first dummy gate opening 109 includes one or a combination of a dry etching process and a wet etching process.

在本实施例中,去除所述第一伪栅开口内扩散阻挡层118的工艺为湿法刻蚀工艺。具体工艺参数包括:刻蚀溶液1和刻蚀溶液2,刻蚀溶液1包括NH4OH、H2O2和H2O,NH4OH、H2O2和H2O的体积关系比为5:200:1000,温度为40摄氏度;刻蚀溶液2包括HCl、H2O2和H2O,HCl、H2O2和H2O的体积关系为1:1.5:100,温度为50摄氏度。In this embodiment, the process of removing the diffusion barrier layer 118 in the first dummy gate opening is a wet etching process. The specific process parameters include: etching solution 1 and etching solution 2, etching solution 1 includes NH 4 OH, H 2 O 2 and H 2 O, and the volume relationship ratio of NH 4 OH, H 2 O 2 and H 2 O is 5 : 200 :1000, the temperature is 40 degrees Celsius; the etching solution 2 includes HCl, H2O2 and H2O , the volume relationship of HCl, H2O2 and H2O is 1 :1.5:100, the temperature is 50 Celsius.

请参考图11,去除所述第一伪栅开口109内的扩散阻挡层118之后,在形成所述N型功函数材料层之前,在所述第二伪栅开口110内形成P型功函数材料膜124。Referring to FIG. 11 , after removing the diffusion barrier layer 118 in the first dummy gate opening 109 , before forming the N-type work function material layer, a P-type work function material is formed in the second dummy gate opening 110 Membrane 124 .

在所述第二伪栅开口110内形成P型功函数材料膜124的方法包括:在所述第一伪栅开口109和第二伪栅开口110内形成P型功函数材料膜124;去除所述第一伪栅开口内的P功函数材料膜124。The method for forming the P-type work function material film 124 in the second dummy gate opening 110 includes: forming the P-type work function material film 124 in the first dummy gate opening 109 and the second dummy gate opening 110; The P work function material film 124 in the first dummy gate opening is described.

所述P型功函数材料膜124用于后续形成P型功函数材料层。所述P型功函数材料膜124的材料包括:氮化铊或者氮化钛。在本实施例中,所述P型功函数材料膜124的材料为氮化钛,相应的,后续形成的P型功函数材料层的材料为氮化钛。The P-type work function material film 124 is used for the subsequent formation of the P-type work function material layer. The material of the P-type work function material film 124 includes: thallium nitride or titanium nitride. In this embodiment, the material of the P-type work function material film 124 is titanium nitride, and correspondingly, the material of the subsequently formed P-type work function material layer is titanium nitride.

所述P功函数材料膜124的形成工艺包括化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The formation process of the P work function material film 124 includes a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process.

在本实施例中,形成所述P功函数材料膜124的工艺为原子层沉积工艺。具体工艺参数为:提供包含钛的有机前驱物质,温度为80摄氏度~300摄氏度,压强为5毫托~20托,循环次数为5次~50次。In this embodiment, the process of forming the P work function material film 124 is an atomic layer deposition process. The specific process parameters are: providing an organic precursor material containing titanium, the temperature is 80 degrees Celsius to 300 degrees Celsius, the pressure is 5 mTorr to 20 Torr, and the number of cycles is 5 to 50 times.

去除所述第一伪栅开口内P功函数材料膜124的工艺包括干法刻蚀工艺和湿法刻蚀工艺中的一种或者两种组合。The process of removing the P work function material film 124 in the first dummy gate opening includes one or a combination of a dry etching process and a wet etching process.

在本实施例中,去除所述第一伪栅开口内P功函数材料膜124的工艺为湿法刻蚀工艺。具体工艺参数包括:刻蚀溶液1和刻蚀溶液2,刻蚀溶液1包括NH4OH、H2O2和H2O,NH4OH、H2O2和H2O的体积关系为5:200:1000,温度为40摄氏度;刻蚀溶液2包括HCl、H2O2和H2O,HCl、H2O2和H2O的体积关系比为1:1.5:100,温度为50摄氏度。In this embodiment, the process of removing the P work function material film 124 in the first dummy gate opening is a wet etching process. The specific process parameters include: etching solution 1 and etching solution 2, etching solution 1 includes NH 4 OH, H 2 O 2 and H 2 O, and the volume relationship between NH 4 OH, H 2 O 2 and H 2 O is 5 : 200:1000, the temperature is 40 degrees Celsius; the etching solution 2 includes HCl, H 2 O 2 and H 2 O, and the volume ratio of HCl, H 2 O 2 and H 2 O is 1:1.5:100, and the temperature is 50 Celsius.

请参考图12,在所述第二伪栅开口内形成P型功函数材料膜124之后,分别在所述第一伪栅开口109和第二伪栅开口110内形成N型功函数材料膜125。Referring to FIG. 12 , after the P-type work function material film 124 is formed in the second dummy gate opening, an N-type work function material film 125 is formed in the first dummy gate opening 109 and the second dummy gate opening 110 respectively. .

所述N型功函数材料膜125用于后续形成N型功函数材料层。所述N型功函数材料膜125的材料包括Al离子。所述N型功函数材料膜125的材料包括TiAl、TiAlC、TiAlN和AlN中的一种或多种组合。在本实施例中,所述N型功函数材料膜125的材料为TiAl,相应的,后续形成的N型功函数材料层的材料为TiAl。The N-type work function material film 125 is used for the subsequent formation of an N-type work function material layer. The material of the N-type work function material film 125 includes Al ions. The material of the N-type work function material film 125 includes one or more combinations of TiAl, TiAlC, TiAlN and AlN. In this embodiment, the material of the N-type work function material film 125 is TiAl, and correspondingly, the material of the N-type work function material layer formed subsequently is TiAl.

所述N型功函数材料膜125的形成工艺包括化学气相沉积工艺、物理气相沉积工艺或者原子层沉积工艺。The formation process of the N-type work function material film 125 includes a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process.

在本实施例中,所述N型功函数材料膜126的形成工艺为原子层沉积工艺。具体工艺参数包括:提供包含钛的有机前驱物质和包含Al的有机前驱物质,温度为80摄氏度~500摄氏度,压强为2毫托~200托,循环次数为5次~100次。In this embodiment, the formation process of the N-type work function material film 126 is an atomic layer deposition process. The specific process parameters include: providing an organic precursor material containing titanium and an organic precursor material containing Al, the temperature is 80 degrees Celsius to 500 degrees Celsius, the pressure is 2 millitorr to 200 torr, and the number of cycles is 5 to 100 times.

在本实施例中,通过分别在所述第一区A和第二区B的接触孔123内形成金属硅化物层122之后,在第一伪栅开口109和第二伪栅开口110内形成所述N型功函数材料膜125,所述N型功函数材料膜125用于后续形成N型功函数材料层,因此,能够避免形成所述金属硅化物层122进行的第三退火工艺高温过程对N型功函数材料层中物质产生影响,从而降低所述N型功函数材料层中Al离子的扩散,降低NMOS晶体管中N型功函数材料层中的Al离子扩散到下层的栅介质层117,能够改善栅介质层117界面可靠性和半导体器件的开启电压,进而使获得的半导体器件的性能得到提高。In this embodiment, after the metal silicide layer 122 is formed in the contact holes 123 of the first region A and the second region B, respectively, the metal silicide layer 122 is formed in the first dummy gate opening 109 and the second dummy gate opening 110 . The N-type work function material film 125, the N-type work function material film 125 is used for the subsequent formation of the N-type work function material layer. Therefore, the high temperature process of the third annealing process for forming the metal silicide layer 122 can be avoided. The substances in the N-type work function material layer have an influence, thereby reducing the diffusion of Al ions in the N-type work function material layer, and reducing the diffusion of Al ions in the N-type work function material layer in the NMOS transistor to the lower gate dielectric layer 117, The interface reliability of the gate dielectric layer 117 and the turn-on voltage of the semiconductor device can be improved, thereby improving the performance of the obtained semiconductor device.

请参考图13,在所述第一伪栅开口109和第二伪栅开口110内形成N型功函数材料膜后125,在所述第一伪栅开口109和第二伪栅开口110内填充满金属材料以形成金属栅膜126。Referring to FIG. 13 , after an N-type work function material film 125 is formed in the first dummy gate opening 109 and the second dummy gate opening 110 , the first dummy gate opening 109 and the second dummy gate opening 110 are filled with The metal material is filled to form the metal gate film 126 .

所述金属栅膜126用于后续形成金属栅。在本实施例中,所述金属栅膜的材料为钨。相应的,后续形成的金属栅的材料为钨。在其他实施例中,所述金属栅膜的材料包括:Al、Cu、Ag、Au、Ni、Ti、W、WN或WSi。The metal gate film 126 is used to form a metal gate later. In this embodiment, the material of the metal gate film is tungsten. Correspondingly, the material of the subsequently formed metal gate is tungsten. In other embodiments, the material of the metal gate film includes: Al, Cu, Ag, Au, Ni, Ti, W, WN or WSi.

所述金属栅膜的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。The formation process of the metal gate film includes a chemical vapor deposition process or a physical vapor deposition process.

请参考图14,平坦化所述P型功函数材料膜124、N型功函数材料膜125和金属栅膜126,直至暴露出保护层108的顶部表面,分别在所述第一伪栅开口109和第二伪栅开口110内形成N型功函数材料层128和位于N型功函数材料层128表面的金属栅129,并且,在所述第二伪栅开口内还形成P型功函数材料层127,位于扩散阻挡层118和N型功函数材料层128之间。Referring to FIG. 14 , the P-type work function material film 124 , the N-type work function material film 125 and the metal gate film 126 are planarized until the top surface of the protective layer 108 is exposed, respectively at the first dummy gate opening 109 An N-type work function material layer 128 and a metal gate 129 located on the surface of the N-type work function material layer 128 are formed in the second dummy gate opening 110, and a P-type work function material layer is also formed in the second dummy gate opening 127, located between the diffusion barrier layer 118 and the N-type work function material layer 128.

平坦化所述P型功函数材料膜124、N型功函数材料膜125和金属栅膜126的工艺包括化学机械研磨工艺。The process of planarizing the P-type work function material film 124 , the N-type work function material film 125 and the metal gate film 126 includes a chemical mechanical polishing process.

相应的,本发明实施例还提供一种采用上述方法所形成的半导体器件。Correspondingly, an embodiment of the present invention further provides a semiconductor device formed by the above method.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (13)

1. A method of forming a semiconductor device, comprising:
providing a substrate, wherein the substrate is provided with a pseudo gate structure and an interlayer dielectric layer, the pseudo gate structure and the interlayer dielectric layer cover part of the surface of the substrate, the interlayer dielectric layer covers the surface of the side wall of the pseudo gate structure, and source and drain doped regions are arranged in the substrate on two sides of the pseudo gate structure; the substrate comprises a first region and a second region; the first region is used for forming an N-type field effect transistor, and the second region is used for forming a P-type field effect transistor;
removing the pseudo gate structure, and forming a pseudo gate opening in the interlayer dielectric layer;
forming a contact hole in the interlayer dielectric layer, wherein the bottom of the contact hole is exposed out of the source drain doped region;
forming a metal silicide layer on the bottom surface of the contact hole;
after the metal silicide layer is formed, forming a conductive plug which is filled in the contact hole;
forming an N-type work function material layer in the dummy gate opening after the conductive plug is formed;
after forming the dummy gate opening and before forming the contact hole, further comprising: forming interface layers on the side wall and the bottom surface of the pseudo gate opening; forming a gate dielectric layer on the surface of the interface layer;
forming a diffusion barrier layer on the surface of the gate dielectric layer; after forming the diffusion barrier layer and before forming the contact hole, the method further comprises: forming sacrificial structures in the dummy gate openings of the first region and the dummy gate openings of the second region, wherein the sacrificial structures fill the dummy gate openings of the first region and the dummy gate openings of the second region; the sacrificial structure comprises a first sacrificial layer and a second sacrificial layer positioned on the surface of the first sacrificial layer; the first sacrificial layer covers the side walls and the bottom surfaces of the dummy gate openings of the first region and the second region; the second sacrificial layer is positioned on the surface of the first sacrificial layer; performing a first annealing process after forming the first sacrificial layer;
after the forming of the conductive plug and before the forming of the N-type work function material layer, the method further includes: removing the second sacrificial layer in the dummy gate opening of the first region and the dummy gate opening of the second region; after removing the second sacrificial layer, removing the first sacrificial layer in the dummy gate opening of the first region and the dummy gate opening of the second region; removing the diffusion barrier layer in the dummy gate opening of the first region after removing the sacrificial structure in the dummy gate opening of the first region and the dummy gate opening of the second region; forming a P-type work function material layer in the dummy gate opening of the second region, and forming an N-type work function material layer after the P-type work function material layer is formed; the material of the second sacrificial layer comprises silicon oxide.
2. The method for forming a semiconductor device according to claim 1, wherein the contact hole is formed after the dummy gate opening is formed.
3. The method of forming a semiconductor device of claim 2, wherein forming the gate dielectric layer comprises performing a fourth annealing process.
4. The method for forming a semiconductor device according to claim 3, wherein the dummy gate structures are respectively located on a substrate surface of the first region and a substrate surface of the second region; the source-drain doped region is respectively positioned in the substrate of the first region and the substrate of the second region; the contact holes are respectively positioned in the interlayer dielectric layer of the first area and the interlayer dielectric layer of the second area; the N-type work function material layer is respectively positioned in the dummy gate opening of the first area and the dummy gate opening of the second area.
5. The method for forming a semiconductor device according to claim 4, wherein a material of the first sacrificial layer comprises amorphous silicon, polycrystalline silicon, or single crystal silicon.
6. The method for forming a semiconductor device according to claim 4, wherein an annealing temperature of the first annealing process is 800 degrees Celsius to 1000 degrees Celsius.
7. The method for forming a semiconductor device according to claim 4, wherein a second annealing process is performed after the sacrificial structure is formed; the annealing temperature of the second annealing process is 800-1000 ℃.
8. The method for forming a semiconductor device according to claim 1, wherein the method for forming the metal silicide layer comprises: depositing a metal layer on the side wall and the bottom surface of the contact hole; carrying out a third annealing process to enable the metal layer to react with the surface of the source drain doped region to form a metal silicide layer; the third annealing process is a laser annealing process, and the annealing temperature is 750-900 ℃.
9. The method for forming a semiconductor device according to claim 8, wherein a material of the metal silicide layer includes: a titanium silicon compound.
10. The method for forming a semiconductor device according to claim 4, wherein a material of the P-type work function material layer comprises titanium nitride or tantalum nitride.
11. The method of forming a semiconductor device according to claim 1, wherein a material of the N-type work function material layer includes one or a combination of TiAl, TiAlC, TiAlN, and AlN.
12. The method of forming a semiconductor device according to claim 1, further comprising, after forming an N-type work function material layer within the dummy gate opening: and filling metal materials in the dummy gate opening to form a metal gate.
13. A semiconductor device formed by a method using the semiconductor device according to any one of claims 1 to 12.
CN201810681126.8A 2018-06-27 2018-06-27 Semiconductor device and method of forming the same Active CN110648970B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810681126.8A CN110648970B (en) 2018-06-27 2018-06-27 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810681126.8A CN110648970B (en) 2018-06-27 2018-06-27 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
CN110648970A CN110648970A (en) 2020-01-03
CN110648970B true CN110648970B (en) 2022-09-20

Family

ID=68988705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810681126.8A Active CN110648970B (en) 2018-06-27 2018-06-27 Semiconductor device and method of forming the same

Country Status (1)

Country Link
CN (1) CN110648970B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112563130B (en) * 2020-12-11 2024-06-07 上海微阱电子科技有限公司 A method for preparing a metal gate device
CN114864689A (en) * 2021-01-20 2022-08-05 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method of forming the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821277A (en) * 2014-01-30 2015-08-05 中芯国际集成电路制造(上海)有限公司 Method for forming transistor
CN106206721A (en) * 2015-05-05 2016-12-07 中芯国际集成电路制造(上海)有限公司 Nmos pass transistor and preparation method thereof
CN108206157A (en) * 2016-12-16 2018-06-26 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557666B2 (en) * 2011-09-13 2013-10-15 GlobalFoundries, Inc. Methods for fabricating integrated circuits
US8658487B2 (en) * 2011-11-17 2014-02-25 United Microelectronics Corp. Semiconductor device and fabrication method thereof
US9252273B2 (en) * 2014-01-03 2016-02-02 Globalfoundries Inc. Gate stack and contact structure
US9324864B2 (en) * 2014-09-30 2016-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure and method for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104821277A (en) * 2014-01-30 2015-08-05 中芯国际集成电路制造(上海)有限公司 Method for forming transistor
CN106206721A (en) * 2015-05-05 2016-12-07 中芯国际集成电路制造(上海)有限公司 Nmos pass transistor and preparation method thereof
CN108206157A (en) * 2016-12-16 2018-06-26 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and forming method thereof

Also Published As

Publication number Publication date
CN110648970A (en) 2020-01-03

Similar Documents

Publication Publication Date Title
CN110176443B (en) Bimetallic through hole for reducing contact resistance
US10297511B2 (en) Fin-FET device and fabrication method thereof
TWI415263B (en) Semiconductor device and method of manufacturing same
CN109390235B (en) Semiconductor structure and forming method thereof
CN107039272B (en) Method for forming fin type transistor
CN107346783B (en) Semiconductor structure and manufacturing method thereof
CN104701150A (en) Transistor forming method
CN106952816B (en) Method of forming a fin transistor
CN109148296B (en) Semiconductor structure and method of forming the same
CN110648970B (en) Semiconductor device and method of forming the same
CN110047741A (en) Semiconductor structure and forming method thereof
TW202040700A (en) Semiconductor device and method for manufacturing the same
US8471341B2 (en) Semiconductor device and method for fabricating the same
CN108022882A (en) Semiconductor structure and forming method thereof
CN107978514A (en) Transistor and forming method thereof
CN111863723B (en) Semiconductor structure and forming method thereof
CN109671673B (en) Semiconductor structure and method of forming the same
CN109103102B (en) Semiconductor structure and method of forming the same
CN111211055A (en) Semiconductor structure and method of forming the same
US11990415B2 (en) Semiconductor device and method for forming the same
CN109994548A (en) Semiconductor structure and method of forming the same
CN110970299B (en) Semiconductor devices and methods of forming the same
CN106653693A (en) Method for improving performance of core device and input-output device
CN112309845A (en) Semiconductor structure and method of forming the same
CN112750702B (en) Method for forming semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant